
Artificial Intelligence

AI

• A serious science.

• General-purpose AI like the robots of science fiction is
incredibly hard

• Human brain appears to have lots of special and general functions,
integrated in some amazing way that we really do not understand at
all (yet)

• Special-purpose AI E.g., chess/poker playing programs, logistics
planning, automated translation, voice recognition, web
search, data mining, medical diagnosis, keeping a car on the
road

Definitions of AI

• Systems that think like humans

• Systems that think rationally

• Systems that act like humans

• Systems that act rationally

Turing Test
• (Human) judge communicates with a human and a

machine over text-only channel,

•Both human and machine try to act like a human,

• Judge tries to tell which is which.

•Numerous variants

•Current programs nowhere close to passing this

• It is possible to (temporarily) fool humans who do not
realize they may be talking to a robot

History of AI
• 50s/60s: Early successes! AI can draw logical conclusions, prove

some theorems, create simple plans… Some initial work on neural
networks…

• Led to overhyping: researchers promised funding agencies
spectacular progress, but started running into difficulties:

• Ambiguity: highly funded translation programs (Russian to English) were good at
syntactic manipulation but bad at disambiguation

• Scalability/complexity: early examples were very small, programs could not scale to
bigger instances

70s, 80s: Creation of expert systems (systems specialized for one particular task based on
experts’ knowledge), wide industry adoption

Searching methods

•We have some actions that can change the state of the
world
• Change induced by an action perfectly predictable

•Try to come up with a sequence of actions that will lead
us to a goal state
• May want to minimize number of actions
• More generally, may want to minimize total cost of actions

•Do not need to execute actions in real life while
searching for solution!
• Everything perfectly predictable anyway

Key concepts in search

•Set of states that we can be in
• Including an initial state…
• … and goal states (equivalently, a goal test)

•For every state, a set of actions that we can take
• Each action results in a new state
• Typically defined by successor function

• Given a state, produces all states that can be reached from it

•Cost function that determines the cost of each action
(or path = sequence of actions)

•Solution: path from initial state to a goal state
• Optimal solution: solution with minimal cost

8-puzzle

1 2 3

4 5 6

7 8

1 2

4 5 3

7 8 6

goal state

8-puzzle

1 2

4 5 3

7 8 6

1 5 2

4 3

7 8 6

1 2

4 5 3

7 8 6

1 2

4 5 3

7 8 6

...
...

Uninformed Search methods

•Given a state, we only know whether it is a goal state or
not

•Cannot say one nongoal state looks better than another
nongoal state

•Can only traverse state space blindly in hope of
somehow hitting a goal state at some point
• Also called blind search
• Blind does not imply unsystematic!

Breadth-first search

Properties of breadth-first search

• Nodes are expanded in the same order in which they are
generated

• Fringe can be maintained as a First-In-First-Out (FIFO) queue

• BFS is complete: if a solution exists, one will be found

• BFS finds a shallowest solution
• Not necessarily an optimal solution

• If every node has b successors (the branching factor), first
solution is at depth d, then fringe size will be at least bd at some
point

• This much space (and time) required

Depth-first search

Implementing depth-first search

• Fringe can be maintained as a Last-In-First-Out (LIFO) queue
(aka. a stack)

• Also easy to implement recursively:

• DFS(node)
• If goal(node) return solution(node);
• For each successor of node

• Return DFS(successor) unless it is failure;

• Return failure;

Properties of depth-first search

•Not complete (might cycle through nongoal states)

• If solution found, generally not optimal/shallowest

• If every node has b successors (the branching factor),
and we search to at most depth m, fringe is at most bm
• Much better space requirement ☺
• Actually, generally don’t even need to store all of fringe

•Time: still need to look at every node
• bm + bm-1 + … + 1 (for b>1, O(bm))
• Inevitable for uninformed search methods…

BFS and DFS

• Limited depth DFS: just like DFS, except never go deeper than

some depth d

• Iterative deepening DFS:

• Call limited depth DFS with depth 0;

• If unsuccessful, call with depth 1;

• If unsuccessful, call with depth 2;

• Etc.

• Complete, finds shallowest solution

• Space requirements of DFS

• May seem wasteful timewise because replicating effort

• Really not that wasteful because almost all effort at deepest level

• db + (d-1)b2 + (d-2)b3 + ... + 1bd is O(bd) for b > 1

Uniform Cost
• BFS finds shallowest solution because always works on

shallowest nodes first

• Similar idea: always work on the lowest-cost node first (uniform-
cost search)

• Will find optimal solution (assuming costs increase by at least
constant amount along path)

• Will often pursue lots of short steps first

• If optimal cost is C, and cost increases by at least L each step, we
can go to depth C/L

• Similar memory problems as BFS
• Iterative lengthening DFS does DFS up to increasing costs

Searching backwards from the goal

•Sometimes can search backwards from the goal
• Maze puzzles
• Eights puzzle
• Reaching location F
• What about the goal of “having visited all locations”?

•Need to be able to compute predecessors instead of
successors

•What’s the point?

Predecessor branching factor can be smaller than
successor branching factor

• Stacking blocks:
• only action is to add something to the stack

A

B

C

In hand: nothingIn hand: A, B, C

Start state Goal state

We’ll see more of this…

Bidirectional search
•Even better: search from both the start and the goal, in
parallel!

• If the shallowest solution has depth d and

branching factor is b on both sides, requires only

O(bd/2) nodes to be explored!

image from cs-alb-pc3.massey.ac.nz/notes/59302/fig03.17.gif

bidirectional search

•Need to be able to figure out whether the fringes

intersect

• Need to keep at least one fringe in memory…

•Other than that, can do various kinds of search on either

tree, and get the corresponding optimality etc.

guarantees

•Not possible (feasible) if backwards search not possible

(feasible)

• Hard to compute predecessors

• High predecessor branching factor

• Too many goal states

Informed search

•So far, have assumed that no nongoal state looks better
than another

•Unrealistic
• Even without knowing the road structure, some locations seem

closer to the goal than others
• Some states of the 8s puzzle seem closer to the goal than others

•Makes sense to expand closer-seeming nodes first

Heuristics

• Key notion: heuristic function h(n) gives an estimate of the
distance from n to the goal

• h(n)=0 for goal nodes

• E.g. straight-line distance for traveling problem

A

B

C

F

D E
3 4

4

3

9

2

2

start state

goal state

• Say: h(A) = 9, h(B) = 8, h(C) = 9, h(D) = 6, h(E) = 3, h(F) = 0

• We’re adding something new to the problem!

• Can use heuristic to decide which nodes to expand first

Greedy best-first search

• Greedy best-first search: expand nodes with lowest h values first

• Rapidly finds the optimal solution!

• Does it always?

state = A,

cost = 0, h = 9

state = B,

cost = 3, h = 8

state = D,

cost = 3, h = 6

goal state!

state = E,

cost = 7, h = 3

state = F,

cost = 11, h = 0

A*

A

B

F

D E
3 4

4

7 6

start state

goal state

• Say: h(A) = 9, h(B) = 5, h(D) = 6, h(E) = 3, h(F) = 0

• Note: if h=0 everywhere, then just uniform cost search

• Let g(n) be cost incurred already on path to n

• Expand nodes with lowest g(n) + h(n) first

Admissibility

•A heuristic is admissible if it never overestimates the
distance to the goal
• If n is the optimal solution reachable from n’, then g(n) ≥ g(n’) +

h(n’)

•Straight-line distance is admissible: can’t hope for
anything better than a straight road to the goal

•Admissible heuristic means that A* is always optimistic

Optimality of A*

• If the heuristic is admissible, A* is optimal (in the sense that

it will never return a suboptimal solution)

•Proof:

• Suppose a suboptimal solution node n with solution value C >

C* is about to be expanded (where C* is optimal)

• Let n* be an optimal solution node (perhaps not yet

discovered)

• There must be some node n’ that is currently in the fringe and

on the path to n*

• We have g(n) = C > C* = g(n*) ≥ g(n’) + h(n’)

• But then, n’ should be expanded first (contradiction)

A* is not complete (in contrived examples)

A

B

FD …start state

goal state

• No optimal search algorithm can succeed on this

example (have to keep looking down the path in hope of

suddenly finding a solution)

C E

infinitely many nodes on a straight path to the

goal that doesn’t actually reach the goal

A*

•A* is optimally efficient in the sense that any other

optimal algorithm must expand at least the nodes A*

expands

•Proof:

• Besides solution, A* expands exactly the nodes with g(n)+h(n) <

C*
• Assuming it does not expand non-solution nodes with g(n)+h(n) = C*

• Any other optimal algorithm must expand at least these nodes

(since there may be a better solution there)

•Note: This argument assumes that the other algorithm

uses the same heuristic h

A*

•Suppose we try to avoid repeated states

•Ideally, the second (or third, …) time that we

reach a state the cost is at least as high as the first

time
• Otherwise, have to update everything that came after

• This is guaranteed if the heuristic is consistent: if one step takes us from n to n’,

then h(n) ≤ h(n’) + cost of step from n to n’

• Similar to triangle inequality

Iterative Deepening A*
•One big drawback of A* is the space requirement:

similar problems as uniform cost search, BFS

•Limited-cost depth-first A*: some cost cutoff c, any node
with g(n)+h(n) > c is not expanded, otherwise DFS

• IDA* gradually increases the cutoff of this

•Can require lots of iterations
• Trading off space and time…

• RBFS algorithm reduces wasted effort of IDA*, still linear space

requirement

• SMA* proceeds as A* until memory is full, then starts doing other

things

More about heuristics

• One heuristic: number of misplaced tiles

• Another heuristic: sum of Manhattan distances of tiles to
their goal location
– Manhattan distance = number of moves required if no other tiles

are in the way

• Admissible? Which is better?

• Admissible heuristic h1 dominates admissible heuristic h2 if
h1(n) ≥ h2(n) for all n
– Will result in fewer node expansions

• “Best” heuristic of all: solve the remainder of the problem
optimally with search
– Need to worry about computation time of heuristics…

1 2

4 5 3

7 8 6

Designing heuristics
• One strategy for designing heuristics: relax the problem (make it

easier)

• “Number of misplaced tiles” heuristic corresponds to relaxed
problem where tiles can jump to any location, even if something
else is already there

• “Sum of Manhattan distances” corresponds to relaxed problem
where multiple tiles can occupy the same spot

• Another relaxed problem: only move 1,2,3,4 into correct
locations

• The ideal relaxed problem is
• easy to solve,

• not much cheaper to solve than original problem

• Some programs can successfully automatically create heuristics

Game playing
• Rich tradition of creating game-playing programs in AI

• Many similarities to search

• Most of the games studied
• have two players,

• are zero-sum: what one player wins, the other loses

• have perfect information: the entire state of the game is known to both
players at all times

• E.g., tic-tac-toe, checkers, chess, Go, backgammon, …

• Will focus on these for now

• Recently more interest in other games
• Esp. games without perfect information; e.g., poker

• Need probability theory, game theory for such games

• Player 1 moves, then player 2, finally player 1 again

• Move = 0 or 1

• Player 1 wins if and only if all moves together sum to 2

Player 1

Player 2 Player 2

Player 1

-1

Player 1 Player 1 Player 1

0

0

0

0

00 0

1

11

1 1 11

-1 -1 1 -1 1 1 -1

Player 1’s utility is in the leaves; player 2’s utility is the negative of this

minimax
• From leaves upward, analyze best decision for player at node, give

node a value

• Once we know values, easy to find optimal action (choose best value)

Player 1

Player 2 Player 2

Player 1

-1

Player 1 Player 1 Player 1

0

0

0

0

00 0

1

11

1 1 11

-1 -1 1 -1 1 1 -1

-1 1 1 1

1-1

1

• From leaves upward, analyze best decision for player at node, give node a value

Player 1

Player 2 Player 2

Player 1

-1

Player 1 Player 1 Player 1

0

0

0

0

00 0

1

11

1 1 11

-2 -3 4 -5 6 7 -8

-1 4 6 7

6-1

6

Alpha-beta pruning
• Pruning = cutting off parts of the search tree (because you realize you don’t need

to look at them)
• When we considered A* we also pruned large parts of the search tree

• Maintain alpha = value of the best option for player 1 along the path so far

• Beta = value of the best option for player 2 along the path so far

Pruning on beta
•Beta at node v is -1

•We know the value of node v is going to be at least 4, so

the -1 route will be preferred

•No need to explore this node further
Player 1

Player 2 Player 2

Player 1

-1

Player 1 Player 1 Player 1

0

0

0

0

00 0

1

11

1 1 11

-2 ? 4

node v

Pruning on alpha
• Alpha at node w is 6

• We know the value of node w is going to be at most -1, so the
6 route will be preferred

• No need to explore this node further

Player 1

Player 2 Player 2

Player 1

-1

Player 1 Player 1 Player 1

0

0

0

0

00 0

1

11

1 1 11

-2 6 7? ? -5 -8

node w

Benefits of alpha-beta pruning

•Without pruning, need to examine O(bm) nodes

•With pruning, depends on which nodes we consider

first

• If we choose a random successor, need to examine

O(b3m/4) nodes

• If we manage to choose the best successor first, need

to examine O(bm/2) nodes
• Practical heuristics for choosing next successor to consider

get quite close to this

•Can effectively look twice as deep!
• Difference between reasonable and expert play

Repeated states

•As in search, multiple sequences of moves may
lead to the same state

•Again, can keep track of previously seen states
(usually called a transposition table in this
context)
•May not want to keep track of all previously seen

states…

Using evaluation functions

•Most games are too big to solve even with alpha-beta

pruning

•Solution: Only look ahead to limited depth

(nonterminal nodes)

•Evaluate nodes at depth cutoff by a heuristic (aka.

evaluation function)

•E.g., chess:

• Material value: queen worth 9 points, rook 5, bishop 3, knight

3, pawn 1

• Heuristic: difference between players’ material values

Games with imperfect information

•Players cannot necessarily see the whole current state

of the game

• Card games

•Ridiculously simple poker game:

• Player 1 receives King (winning) or Jack (losing),

• Player 1 can bet or stay,

• Player 2 can call or fold

•Dashed lines indicate

indistinguishable states

•Backward induction does not work, need random

strategies for optimality! (more later in course)

1 gets King 1 gets Jack

bet bet stay

call call fold call fold call fold

“nature”

player 1player 1

player 2

2 1 1 1 -2 -11 1

Limitations of propositional logic

•So far we studied propositional logic

•Some English statements are hard to model in

propositional logic:

•“If your roommate is wet because of rain, your

roommate must not be carrying any umbrella”

•Pathetic attempt at modeling this:

•RoommateWetBecauseOfRain =>

(NOT(RoommateCarryingUmbrella0) AND

NOT(RoommateCarryingUmbrella1) AND

NOT(RoommateCarryingUmbrella2) AND …)

Problems with propositional logic

•No notion of objects

•No notion of relations among objects

•RoommateCarryingUmbrella0 is instructive to us,

suggesting

• there is an object we call Roommate,

• there is an object we call Umbrella0,

• there is a relationship Carrying between these two objects

•Formally, none of this meaning is there

• Might as well have replaced RoommateCarryingUmbrella0 by P

Elements of first-order logic

•Objects: can give these names such as Umbrella0,

Person0, John, Earth, …

•Relations: Carrying(., .), IsAnUmbrella(.)

•Carrying(Person0, Umbrella0), IsUmbrella(Umbrella0)

•Relations with one object = unary relations =

properties

•Functions: Roommate(.)

•Roommate(Person0)

•Equality: Roommate(Person0) = Person1

Reasoning about many objects at once

•Variables: x, y, z, … can refer to multiple objects

•New operators “for all” and “there exists”
• Universal quantifier and existential quantifier

• for all x: CompletelyWhite(x) => NOT(PartiallyBlack(x))
• Completely white objects are never partially black

• there exists x: PartiallyWhite(x) AND PartiallyBlack(x)
• There exists some object in the world that is partially white and

partially black

Is this a tautology?

•“Property P implies property Q, or propery P
implies property Q (or both)”

•for all x: ((P(x) => Q(x)) OR (Q(x) => P(x)))

•(for all x: (P(x) => Q(x)) OR (for all x: (Q(x) => P(x)))

Relationship between universal and existential

•for all x: a

•is equivalent to

•NOT(there exists x: NOT(a))

Something we cannot do in first-order
logic

• We are not allowed to reason in general about relations and functions

• The following would correspond to higher-order logic (which is more
powerful):

• “If John is Jack’s roommate, then any property of John is also a property of
Jack’s roommate”

• (John=Roommate(Jack)) => for all p: (p(John) => p(Roommate(Jack)))

• “If a property is inherited by children, then for any thing, if that property is
true of it, it must also be true for any child of it”

• for all p: (IsInheritedByChildren(p) => (for all x, y: ((IsChildOf(x,y) AND p(y)) =>
p(x))))

Axioms and theorems

•Axioms: basic facts about the domain, our “initial”
knowledge base

•Theorems: statements that are logically derived
from axioms

SUBST

•SUBST replaces one or more variables with something

else

•For example:

• SUBST({x/John}, IsHealthy(x) => NOT(HasACold(x))) gives us

• IsHealthy(John) => NOT(HasACold(John))

Instantiating quantifiers

• From

• for all x: a

• we can obtain

• SUBST({x/g}, a)

• From

• there exists x: a

• we can obtain

• SUBST({x/k}, a)

• where k is a constant that does not appear elsewhere in the
knowledge base

• Don’t need original sentence anymore

Instantiating existentials after universals

• for all x: there exists y: IsParentOf(y,x)

•WRONG: for all x: IsParentOf(k, x)

•RIGHT: for all x: IsParentOf(k(x), x)

• Introduces a new function (Skolem function)

•… again, assuming k has not been used previously

modus ponens

• for all x: Loves(John, x)

• John loves every thing

• for all y: (Loves(y, Jane) => FeelsAppreciatedBy(Jane, y))

• Jane feels appreciated by every thing that loves her

• Can infer from this:

• FeelsAppreciatedBy(Jane, John)

• Here, we used the substitution {x/Jane, y/John}

• Note we used different variables for the different sentences

• General UNIFY algorithms for finding a good substitution

Resolution for first-order logic

• for all x: (NOT(Knows(John, x)) OR IsMean(x) OR Loves(John, x))

• John loves everything he knows, with the possible exception of mean

things

• for all y: (Loves(Jane, y) OR Knows(y, Jane))

• Jane loves everything that does not know her

• What can we unify? What can we conclude?

• Use the substitution: {x/Jane, y/John}

• Get: IsMean(Jane) OR Loves(John, Jane) OR Loves(Jane, John)

• Complete (i.e., if not satisfiable, will find a proof of this), if we

can remove literals that are duplicates after unification

• Also need to put everything in canonical form first

inference in first-order logic

•Deciding whether a sentence is entailed is
semidecidable: there are algorithms that will eventually
produce a proof of any entailed sentence

• It is not decidable: we cannot always conclude that a
sentence is not entailed

first-order logic
•You know the following things:

• You have exactly one other person living in your house, who is wet

• If a person is wet, it is because of the rain, the sprinklers, or both

• If a person is wet because of the sprinklers, the sprinklers must be on

• If a person is wet because of rain, that person must not be carrying any
umbrella

• There is an umbrella that “lives in” your house, which is not in its house

• An umbrella that is not in its house must be carried by some person who
lives in that house

• You are not carrying any umbrella

•Can you conclude that the sprinklers are on?

Applications

•Some serious novel mathematical results proved

•Verification of hardware and software
• Prove outputs satisfy required properties for all inputs

•Synthesis of hardware and software
• Try to prove that there exists a program satisfying such and

such properties, in a constructive way

•Also: contributions to planning (up next)

Planning

•We studied how to take actions in the world (search)

•We studied how to represent objects, relations, etc.

(logic)

•Now we will combine the two!

State of the world (STRIPS language)
•State of the world = conjunction of positive, ground,

function-free literals

•At(Home) AND IsAt(Umbrella, Home) AND
CanBeCarried(Umbrella) AND IsUmbrella(Umbrella)
AND HandEmpty AND Dry

•Not OK as part of the state:
• NOT(At(Home)) (negative)

• At(x) (not ground)

• At(Bedroom(Home)) (uses the function Bedroom)

•Any literal not mentioned is assumed false
• Other languages make different assumptions, e.g., negative

literals part of state, unmentioned literals unknown

An action: TakeObject

•TakeObject(location, x)

•Preconditions:
• HandEmpty

• CanBeCarried(x)

• At(location)

• IsAt(x, location)

•Effects (“NOT something” means that that
something should be removed from state):

• Holding(x)

• NOT(HandEmpty)

• NOT(IsAt(x, location))

Another action

•WalkWithUmbrella(location1, location2,

umbr)

•Preconditions:

•At(location1)

•Holding(umbr)

•IsUmbrella(umbr)

•Effects:

•At(location2)

•NOT(At(location1))

Yet another action

•WalkWithoutUmbrella(location1, location2)

•Preconditions:
•At(location1)

•Effects:
•At(location2)
•NOT(At(location1))
•NOT(Dry)

A goal and a plan

•Goal: At(Work) AND Dry
•Recall initial state:

• At(Home) AND IsAt(Umbrella, Home) AND
CanBeCarried(Umbrella) AND IsUmbrella(Umbrella) AND
HandEmpty AND Dry

•TakeObject(Home, Umbrella)
• At(Home) AND CanBeCarried(Umbrella) AND

IsUmbrella(Umbrella) AND Dry AND Holding(Umbrella)

•WalkWithUmbrella(Home, Work, Umbrella)
• At(Work) AND CanBeCarried(Umbrella) AND

IsUmbrella(Umbrella) AND Dry AND Holding(Umbrella)

Some start states

Start1: HasTimeForStudy(You) AND Knows(You,Math) AND Knows(You,Coding) AND

Knows(You,Writing)

Start2: HasTimeForStudy(You) AND Creative(You) AND Knows(Advisor,AI) AND

Knows(Advisor,Math) AND Knows(Advisor,Coding) AND Knows(Advisor,Writing)

(Good luck with that plan…)

Start3: Knows(You,AI) AND Knows(You,Coding) AND Knows(OfficeMate,Math) AND

HasTimeForStudy(OfficeMate) AND Knows(Advisor,AI) AND Knows(Advisor,Writing)

Start4: HasTimeForStudy(You) AND Knows(Advisor,AI) AND Knows(Advisor,Math) AND

Knows(Advisor,Coding) AND Knows(Advisor,Writing)

We’ll use these as examples…

Forward state-space search (progression planning)

• Successors: all states that can be reached with an action whose

preconditions are satisfied in current state

At(Home)

IsAt(Umbrella, Home)

CanBeCarried(Umbrella)

IsUmbrella(Umbrella)

HandEmpty

Dry

At(Home)

Holding(Umbrella)

CanBeCarried(Umbrella)

IsUmbrella(Umbrella)

Dry

TakeObject(Home, Umbrella)

At(Work)

IsAt(Umbrella, Home)

CanBeCarried(Umbrella)

IsUmbrella(Umbrella)

HandEmpty

WalkWithoutUm

brella(Home,

Work)

WalkWithUmbrella(

Home, Work,

Umbrella)

At(Work)

Holding(Umbrella)

CanBeCarried(Umbrella)

IsUmbrella(Umbrella)

Dry

WalkWithout

Umbrella(Wor

k, Home)

At(Home)

IsAt(Umbrella, Home)

CanBeCarried(Umbrella)

IsUmbrella(Umbrella)

HandEmpty

GOAL!

WalkWithoutUmbrella(

Home, Umbrella) (!)

WalkWithoutUm

brella(Home,

Work)

Backward state-space search (regression
planning)

• Predecessors: for every action that accomplishes one of the
literals (and does not undo another literal), remove that literal
and add all the preconditions

At(location1)

At(location2)

IsAt(umbr, location2)

CanBeCarried(umbr)

IsUmbrella(umbr)

HandEmpty

Dry

At(location1)

Holding(umbr)

IsUmbrella(umbr)

Dry

TakeObject(location2, umbr)

This is accomplished in the

start state, by substituting

location1=location2=Home,

umbr=Umbrella

WalkWithUmbrella(

location1, Work,

umbr)

At(Work)

Dry

GOAL

WalkWithUmbrella(location2, location1)

WalkWithoutUmbrella can never be used, because it undoes Dry

(this is good)

Heuristics for state-space search

•Cost of a plan: (usually) number of actions

•Heuristic 1: plan for each subgoal (literal) separately,

sum costs of plans
• Does this ever underestimate? Overestimate?

•Heuristic 2: solve a relaxed planning problem in which
actions never delete literals (empty-delete-list heuristic)
• Does this ever underestimate? Overestimate?

• Very effective, even though requires solution to (easy) planning

problem

•Progression planners with empty-delete-list heuristic

perform well

Blocks world

• On(B, A), On(A, Table), On(D, C), On(C, Table), Clear(B), Clear(D)

A

B

C

D

Blocks world: Move action

• Move(x,y,z)

• Preconditions:
• On(x,y), Clear(x), Clear(z)

• Effects:
• On(x,z), Clear(y), NOT(On(x,y)), NOT(Clear(z))

A

B

C

D

Blocks world: MoveToTable action

• MoveToTable(x,y)

• Preconditions:
• On(x,y), Clear(x)

• Effects:
• On(x,Table), Clear(y), NOT(On(x,y))

A

B

C

D

Blocks world example

• Goal: On(A,B) AND Clear(A) AND On(C,D) AND Clear(C)

• A plan: MoveToTable(B, A), MoveToTable(D, C), Move(C, Table, D), Move(A,
Table, B)

• Really two separate problems

A

B

C

D

A partial-order plan

Goal: On(A,B) AND Clear(A) AND
On(C,D) AND Clear(C)

A

B

C

D
Start

MoveToTable(

B,A)

MoveToTable(

D,C)

Move(A,

Table, B)

Move(C,

Table, D)

Finish
Any total order on the actions consistent with

this partial order will work

A partial-order plan (with more detail)
Start

MoveToTable(B,

A)

MoveToTable(D,

C)

Move(A,T

able, B)

Move(C,

Table, D)

Finish

On(B,A) Clear(B) On(D,C)Clear(D)

Clear(A)Clear(B) On(A, Table) Clear(D) Clear(C)On(C, Table)

On(A, B) On(C, D)Clear(A) Clear(C)

On(B,A) Clear(B) On(D,C)Clear(D)On(A, Table) On(C, Table)

Uncertainty

•So far in course, everything deterministic

• If I walk with my umbrella, I will not get wet

•But: there is some chance my umbrella will break!

• Intelligent systems must take possibility of failure into

account…

• May want to have backup umbrella in city that is often windy

and rainy

•… but should not be excessively conservative

• Two umbrellas not worthwhile for city that is usually not windy

•Need quantitative notion of uncertainty

Probability
• Example: roll two dice

• Random variables:

– X = value of die 1

– Y = value of die 2

• Outcome is represented by an

ordered pair of values (x, y)

– E.g., (6, 1): X=6, Y=1

– Atomic event or sample point tells

us the complete state of the

world, i.e., values of all random

variables

• Exactly one atomic event will

happen; each atomic event has a

≥0 probability; sum to 1

1/36 1/36 1/36 1/36 1/36 1/36

1/36 1/36 1/36 1/36 1/36 1/36

1/36 1/36 1/36 1/36 1/36 1/36

1/36 1/36 1/36 1/36 1/36 1/36

1/36 1/36 1/36 1/36 1/36 1/36

1/36 1/36 1/36 1/36 1/36 1/36

• An event is a proposition about

the state (=subset of states)

– X+Y = 7

• Probability of event = sum of

probabilities of atomic events

where event is true

1

2

3

4

5

6

1 2 3 4 5 6
X

Y

Cards and combinatorics

• Draw a hand of 5 cards from a standard deck with 4*13 = 52

cards (4 suits, 13 ranks each)

• Each of the (52 choose 5) hands has same probability 1/(52

choose 5)

• Probability of event = number of hands in that event / (52

choose 5)

• What is the probability that…

• no two cards have the same rank?

• you have a flush (all cards the same suit?)

• you have a straight (5 cards in order of rank, e.g., 8, 9, 10, J, Q)?

• you have a straight flush?

• you have a full house (three cards have the same rank and the two other

cards have the same rank)?

Facts about probabilities of events

•If events A and B are disjoint, then

•P(A or B) = P(A) + P(B)

•More generally:

•P(A or B) = P(A) + P(B) - P(A and B)

• If events A1, …, An are disjoint and exhaustive (one of them must happen) then

P(A1) + … + P(An) = 1

• Special case: for any random variable, ∑x P(X=x) = 1

• Marginalization: P(X=x) = ∑y P(X=x and Y=y)

Conditional probability

• We might know something about the world – e.g., “X+Y=6 or X+Y=7” –
given this (and only this), what is the probability of Y=5?

• Part of the sample space is eliminated; probabilities are renormalized to
sum to 1

1/11 0 0 0 0 0

1/11 1/11 0 0 0 0

0 1/11 1/11 0 0 0

0 0 1/11 1/11 0 0

0 0 0 1/11 1/11 0

0 0 0 0 1/11 1/111

2

3

4

5

6

1 2 3 4 5 6 X

Y
1/36 1/36 1/36 1/36 1/36 1/36

1/36 1/36 1/36 1/36 1/36 1/36

1/36 1/36 1/36 1/36 1/36 1/36

1/36 1/36 1/36 1/36 1/36 1/36

1/36 1/36 1/36 1/36 1/36 1/36

1/36 1/36 1/36 1/36 1/36 1/361

2

3

4

5

6

1 2 3 4 5 6 X

Y

• P(Y=5 | (X+Y=6) or (X+Y=7)) = 2/11

Facts about conditional probability

•P(A | B) = P(A and B) / P(B)

• P(A | B)P(B) = P(A and B)

• P(A | B) = P(B | A)P(A)/P(B)

– Bayes’ rule

Conditional probability and cards

•Given that your first two cards are Queens, what

is the probability that you will get at least 3

Queens?

•Given that you have at least two Queens (not

necessarily the first two), what is the probability

that you have at least three Queens?

•Given that you have at least two Queens, what is

the probability that you have three Kings?

How can we scale this?
•In principle, we now have a complete approach
for reasoning under uncertainty:

• Specify probability for every atomic event,

• Can compute probabilities of events simply by summing probabilities of atomic events,

• Conditional probabilities are specified in terms of probabilities of events: P(A | B) =
P(A and B) / P(B)

• If we have n variables that can each take k values, how many atomic events are
there?

Independence

•Some variables have nothing to do with each other

•Dice: if X=6, it tells us nothing about Y

•P(Y=y | X=x) = P(Y=y)

•So: P(X=x and Y=y) = P(Y=y | X=x)P(X=x) = P(Y=y)P(X=x)
• Usually just write P(X, Y) = P(X)P(Y)

• Only need to specify 6+6=12 values instead of 6*6=36 values
• Independence among 3 variables: P(X,Y,Z)=P(X)P(Y)P(Z), etc.

•Are the events “you get a flush” and “you get a straight”
independent?

An example without cards or dice

•What is the probability of
• Rain in Beaufort? Rain in Durham?
• Rain in Beaufort, given rain in Durham?
• Rain in Durham, given rain in Beaufort?

•Rain in Beaufort and rain in Durham are correlated

.2 .1

.2 .5

Rain in

Durham

Rain in

Beaufort

Sun in

Durham

Sun in

Beaufort

(disclaimer:

no idea if

these

numbers are

realistic)

Conditional independence

•Intuition:
• the only reason that X told us something about Y,
• is that X told us something about Z,
•and Z tells us something about Y

• If we already know Z, then X tells us nothing about Y

• P(Y | Z, X) = P(Y | Z) or

• P(X, Y | Z) = P(X | Z)P(Y | Z)

• “X and Y are conditionally independent given Z”

Specifying probability distributions

•Specifying a probability for every atomic event is
impractical

•We have already seen it can be easier to specify
probability distributions by using (conditional)
independence

•Bayesian networks allow us
• to specify any distribution,
• to specify such distributions concisely if there is

(conditional) independence, in a natural way

A general approach to specifying probability distributions

•Say the variables are X1, …, Xn

•P(X1, …, Xn) = P(X1)P(X2|X1)P(X3|X1,X2)…P(Xn|X1, …, Xn-1)

•Can specify every component

• If every variable can take k values,

•P(Xi|X1, …, Xi-1) requires (k-1)ki-1 values

•Σi={1,..,n}(k-1)ki-1 = Σi={1,..,n}k
i-ki-1 = kn - 1

•Same as specifying probabilities of all atomic events – of
course, because we can specify any distribution!

Conditional independence to the rescue!

•Problem: P(Xi|X1, …, Xi-1) requires us to specify too
many values

•Suppose X1, …, Xi-1 partition into two subsets, S
and T, so that Xi is conditionally independent
from T given S

•P(Xi|X1, …, Xi-1) = P(Xi|S, T) = P(Xi|S)

•Requires only (k-1)k|S| values instead of (k-1)ki-1

values

References

• Textbook: Artificial Intelligence: A Modern Approach, Stuart Russell
and Peter Norvig.

