
Automata theory



What is automata theory

• Automata theory is the study of abstract 
computational devices

• Abstract devices are (simplified) models of 
real computations 

• Computations happen everywhere: On your 
laptop, on your cell phone, in nature, …

• Why do we need abstract models?



What does Automata mean? 

• It is the plural of automaton, and it means  
“something that works automatically”.

• Automata theory is the study of abstract
computational devices and the computational
problems that can be solved using them.

• Abstract devices are (simplified) models of
real computations.



• Helps in design and construction of different
software's and what we can expect from our
software's.

• Automata play a major role in theory of
computation, compiler design, artificial
intelligence.



Introduction to languages 

Kinds of languages:

– Talking language

– Programming language

– Formal Languages (Syntactic languages) 



EMPTY STRING or NULL STRING

• Sometimes a string with no symbol at all is 
used, denoted by (Small Greek letter Lambda) 
λ or (Capital Greek letter Lambda) Λ, is called 
an empty string or null string.

• The capital lambda will mostly be used to 
denote the empty string, in further discussion.



Words 

• Definition: 

Words are strings belonging to some language. 

• Example: 

If Σ= {a} then a language L can be defined as    
L={an : n=1,2,3,…..} or L={a,aa,aaa,….} 

Here a,aa,… are the words of L

All words are strings, but not all strings are words 



These devices can model many things

• They can describe the operation of any “small 
computer”, like the control component of an 
alarm clock or a microwave

• They are also used in lexical analyzers to recognize 
well formed expressions in programming 
languages:

ab1 is a legal name of a variable in C

5u= is not



Some devices we will see

finite automata Devices with a finite amount of memory.

Used to model “small” computers.

push-down 

automata

Devices with infinite memory that can be 

accessed in a restricted way.

Used to model parsers, etc.

Turing Machines Devices with infinite memory.

Used to model any computer.

time-bounded 

Turing Machines

Infinite memory, but bounded running time.

Used to model any computer program that 

runs in a “reasonable” amount of time.



Alphabets and strings

• A common way to talk about words, number, pairs 
of words, etc. is by representing them as strings

• To define strings, we start with an alphabet

• Examples

An alphabet is a finite set of symbols.

S1 = {a, b, c, d, …, z}: the set of letters in English

S2 = {0, 1, …, 9}: the set of (base 10) digits

S3 = {a, b, …, z, #}: the set of letters plus the 

special symbol #

S4 = {(, )}: the set of open and closed brackets 



Strings

• The empty string will be denoted by e

• Examples

A string over alphabet S is a finite sequence

of symbols in S.

abfbz is a string over S1 = {a, b, c, d, …, z}

9021 is a string over S2 = {0, 1, …, 9}

ab#bc is a string over S3 = {a, b, …, z, #}

))()(() is a string over S4 = {(, )}



Languages

• Languages can be used to describe problems 
with “yes/no” answers, for example:

A language is a set of strings over an alphabet.

L1 = The set of all strings over S1 that contain

the substring “fool”

L2 = The set of all strings over S2 that are divisible by 7

= {7, 14, 21, …}

L3 = The set of all strings of the form s#s where s is any

string over {a, b, …, z}

L4 = The set of all strings over S4 where every ( can be

matched with a subsequent )



Finite Automata



Example of a finite automaton

• There are states off and on, the automaton starts
in off and tries to reach the “good state” on

• What sequences of fs lead to the good state?

• Answer: {f, fff, fffff, …} = {f  n: n is odd}

• This is an example of a deterministic finite 
automaton over alphabet {f}

off on

f

f



Deterministic finite automata

• A deterministic finite automaton (DFA) is a 5-
tuple (Q, S, d, q0, F) where
– Q is a finite set of states

– S is an alphabet

– d: Q × S → Q is a transition function

– q0  Q is the initial state

– F  Q is a set of accepting states (or final states).

• In diagrams, the accepting states will be 
denoted by double loops



Example

q0 q1 q2
1 0

0 0,11

alphabet S = {0, 1}

start state Q = {q0, q1, q2}

initial state q0

accepting states F = {q0, q1}

st
at

e
s

inputs

0 1
q0

q1

q2

q0 q1

q2

q2q2

q1

transition function d:



Language of a DFA

• Language of M is {f, fff, fffff, …} = {f  n: n is odd}

The language of a DFA (Q, S, d, q0, F) is the set of 

all strings over S that, starting from q0 and 

following the transitions as the string is read left

to right, will reach some accepting state.

off on

f

f

M:



q0 q1

q0 q1

q0 q1 q2

0 0

1

1

0 1

1

0

1 0

0 0,11

What are the languages of these DFAs?

Examples



Examples

• Construct a DFA that accepts the language 

L = {010, 1} ( S = {0, 1} )



Examples
• Construct a DFA that accepts the language 

• Answer

L = {010, 1} ( S = {0, 1} )

qe

q0

q1

q01 q010

qdie
0, 1

0

1 0

0, 11

0 1

0, 1



Examples

• Construct a DFA over alphabet {0, 1} that 
accepts all strings that end in 101



Examples

• Construct a DFA over alphabet {0, 1} that 
accepts all strings that end in 101

• Hint: The DFA must “remember” the last 3 bits 
of the string it is reading



Examples

• Construct a DFA over alphabet {0, 1} that 
accepts all strings that end in 101

• Sketch of answer:

0

1

…

…

…
…

qe

q0

q1

q00

q10

q01

q11

q000

q001

q101

q111

0

1

0

1

0

1

1

1

1

1

0



Grammar ?

•Describes underlying rules (syntax) of
programming languages

Compilers (parsers) are based on such
descriptions

•More expressive than regular
expressions/finite automata

•Context-free grammar (CFG) or just
grammar

24



Grammar and its Chomsky 
Classification

• We’ll cover three types of structures used in modeling computation:
• Grammars

• Used to generate sentences of a language and to determine if a given 
sentence is in a language

• Formal languages, generated by grammars, provide models for 
programming languages (Java, C, etc) as well as natural language  ---
important for constructing compilers

• Finite-state machines (FSM)
• FSM are characterized by a set of states, an input alphabet, and 

transitions that assigns a next state to a pair of state and an input. We’ll 
study FSM with and without output. They are used in language 
recognition (equivalent to certain grammar)but also for other tasks such 
as controlling vending machines

• Turing Machine – they are an abstraction of a computer; used to 
compute number theoretic functions

25



Intro to Languages

• English grammar tells us if a given combination of words is a 
valid sentence. 

• The syntax of a sentence  concerns its form while the semantics
concerns 

• its meaning.
• e.g. the mouse wrote a poem

• From a syntax point of view this is a valid sentence. 

• From a semantics point of view not so fast…perhaps in Disney 
land

• Natural languages (English, French, Portguese, etc) have very 
complex rules of syntax and not necessarily well-defined.

26



Formal Language

• Formal language – is specified by well-defined set of rules of 
syntax

• We describe the sentences of a formal language using a 
grammar.

• Two key questions:
• 1 - Is a combination of words a valid sentence in a formal 

language?
• 2 – How can we generate the valid sentences of a formal 

language?

• Formal languages provide models for both natural languages 
and programming languages.

27



Grammars

• A formal grammar G is any compact, precise 
mathematical definition of a language L.
– As opposed to just a raw listing of all of the language’s 

legal sentences, or just examples of them.

• A grammar implies an algorithm that would generate 
all legal sentences of the language.
– Often, it takes the form of a set of recursive definitions.

• A popular way to specify a grammar recursively is to 
specify it as a phrase-structure grammar.



Grammars (Semi-formal)

• Example:    A grammar that generates a 
subset of the English language

29
verbpredicate

nounarticlephrasenoun

predicatephrasenounsentence







_

_



•

30

sleepsverb

runsverb

dognoun

boynoun

thearticle

aarticle















• A derivation of “the boy sleeps”:

31

sleepsboythe

verbboythe

verbnounthe

verbnounarticle

verbphrasenoun

predicatephrasenounsentence













_

_



• Language of the grammar:

32

L = { “a boy runs”,

“a boy sleeps”,

“the boy runs”,

“the boy sleeps”,

“a dog runs”,

“a dog sleeps”,

“the dog runs”,

“the dog sleeps” }



Notation

•

33

dognoun

boynoun





Variable

or

Non-terminal

Symbols of 

the vocabulary

Terminal

Symbols of 

the vocabulary

Production

rule



Basic Terminology

► A vocabulary/alphabet, V is a finite nonempty set of elements 
called symbols.

• Example: V = {a, b, c, A, B, C, S} 

► A word/sentence over V is a string of finite length of elements 
of V.

• Example: Aba

► The empty/null string, λ is the string with no symbols.

► V* is the set of all words over V.

• Example: V* = {Aba, BBa, bAA, cab …}

► A language over V is a subset of V*.

• We can give some criteria for a word to be in a language.



Analytical Definition of grammar

A grammar is a 4-tuple G = (V,T,P,S)

• V:  set of variables or nonterminals

• T:  set of terminal symbols (terminals)

• P:  set of productions

– Each production: head  body, where head is a 
variable, and body is a string of zero or more 
terminals and variables

• S:  a start symbol from V
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Example 1:
Assignment statements

• V = { S, E }, T = { i, =, +, *, n }

• Productions:
S  i = E
E  n
E  i
E  E + E
E  E * E

36



Example 3:  0n1n

• V = { S }, T = { 0, 1 }

• Productions:
S  e

S  0S1
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Derivation

• Definition

• Let G=(V,T,S,P)  be a phrase-structure grammar.

• Let w0=lz0r (the concatenation of l, z0, and r) w1=lz1r be strings over V.

• If z0 z1 is a production of G we say that w1 is directly derivable from w0 
and we write  wo => w1.

• If  w0, w1, …., wn are strings over V such that w0 =>w1,w1=>w2,…, wn-1 => wn, 
then we say that wn is derivable from w0, and write w0=>*wn.

• The sequence of steps used to obtain wn from wo is called a derivation.



L(G): Language of a grammar

• Definition:  Given a grammar G, and a string w over 
the alphabet T, S *

G w if there is a sequence of 
productions that derive w

• L(G) = { w in T* | S *
G w },

the language of the grammar G

40



Leftmost vs rightmost derivations

• Leftmost derivation:  the leftmost variable is always 
the one replaced when applying a production

– Example:  S  i = E  i = E + E
 i = n + E  i = n + n

• Rightmost derivation: rightmost variable is replaced

– Example: S  i = E  i = E + E
 i = E + n  i = n + n



Sentential forms

• In a derivation, assuming it begins with S, all 
intermediate strings are called sentential forms of 
the grammar G

• Example: i = E  and i = E + n  are sentential forms of 
the assignment statement grammar

• The sentential forms are called leftmost (rightmost) 
sentential forms if they are a result of leftmost 
(rightmost) derivations



Parse trees

• Recall that a tree in graph theory is a set of nodes 
such that
– There is a special node called the root

– Nodes can have zero or more child nodes

– Nodes without children are called leaves

– Interior nodes: nodes that are not leaves

• A parse tree for a grammar G is a tree such that the 
interior nodes are non-terminals in G and children of 
a non-terminal correspond to the body of a 
production in G



Yield of a parse tree

• Yield:  concatenation of leaves from left to right

• If the root of the tree is the start symbol, and all 
leaves are terminal symbols, then the yield is a string 
in L(G)

• A derivation always corresponds to some parse tree



Types of Grammars -
Chomsky hierarchy of languages

• Venn Diagram of Grammar Types:

Type 0 – Phrase-structure Grammars

Type 1 –

Context-Sensitive

Type 2 –

Context-Free

Type 3 –

Regular



Classifying grammars

• Given a grammar, we need to be able to find the 
smallest class in which it belongs.  This can be 
determined by answering three questions: 

• Are the left hand sides of all of the productions 
single non-terminals? 

• If yes, does each of the productions create at most 
one non-terminal and is it on the right?

• Yes – regular No – context-free

• If not, can any of the rules reduce the length of  a 
string of terminals and non-terminals?

• Yes – unrestricted No – context-sensitive



•

Fall 2006

Regular Languages

}0:{ nba nn }{ Rww

**ba *)( ba 

Context-Free Languages



Grammar

Productions of the form:

xA
String of variables 

and terminals

),,,( PSTVG 

Vocabulary Terminal

symbols

Start

variable

Non-Terminal

Definition: Context-Free Grammars



Derivation Tree of A Context-free Grammar

►Represents the language using an ordered rooted tree.

►Root represents the starting symbol.

► Internal vertices represent the nonterminal symbol that 
arise in the production.

► Leaves represent the terminal symbols.

► If the production A→ w arise in the derivation, where w
is a word, the vertex that represents A has as children 
vertices that represent each symbol in w, in order from 
left to right.



Ambiguity

Fall 2006
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Grammar for mathematical expressions

))(()( aaaaaaa 

Example strings:

Denotes any number

aEEEEEE |)(|| 
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A leftmost derivation

for

aaa 

E

EE

EE



a

a a



aaaEaa

EEaEaEEE

*



aEEEEEE |)(|| 
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E

EE



a a



EE a

aaaEaa

EEaEEEEEE





Another 

leftmost derivation

for

aEEEEEE |)(|| 

aaa 
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aaa  E

EE



a a



EE a

E

EE

EE



a

a a



Two derivation trees

for

aEEEEEE |)(|| 
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E

EE





EE

E

EE

EE



2

2 2 2 2

2

222  aaa

take 2a
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E

EE





EE

E

EE

EE





6222 

2

2 2 2 2

2

8222 

4

2 2

2

6

2 2

24

8

Good Tree Bad Tree

Compute expression result

using the tree
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Ambiguous Grammar:

A context-free grammar        is ambiguous

if there is a string                   which has:

two different derivation trees

or

two leftmost derivations

G

)(GLw

(Two different derivation trees give two 

different leftmost derivations and vice-versa)



• Context-Sensitive Languages

• The language { anbncn | n  1} is context-sensitive 
but not context free.

• A grammar for this language is given by:

• S  aSBC | aBC

• CB  BC

• aB   ab

• bB  bb

• bC  bc

• cC  cc

Terminal

and 

non-terminal



• A derivation from this grammar is:-

• S   aSBC

•  aaBCBC (using S  aBC)

•  aabCBC (using aB  ab)

•  aabBCC (using CB  BC)

•  aabbCC (using bB  bb)

•  aabbcC (using bC  bc)

•  aabbcc (using cC  cc)

• which derives a2b2c2.



Deterministic Finite State Automata (DFA)

……..

• One-way, infinite tape, broken into cells

• One-way, read-only tape head.

• Finite control, i.e., 
– finite number of states, and 

– transition rules between them, i.e., 

– a program, containing the position of the read head, current symbol being 
scanned, and the current “state.”

• A string is placed on the tape, read head is positioned at the left end, 
and the DFA will read the string one symbol at a time until all symbols 
have been read. The DFA will then either accept or reject the string.

61

Finite

Control

0 1 1 0 0



• The finite control can be described by a transition diagram or table:

• Example #1:

1 0 0 1 1

q0 q0 q1 q0 q0 q0

• One state is final/accepting, all others are rejecting.

• The above DFA accepts those strings that contain an even number of 
0’s, including the null string, over Sigma = {0,1}

L = {all strings with zero or more 0’s}

• Note, the DFA must reject all other strings 62

q0
q1

0

0

1

1



• Example #2:

a c c c b accepted

q0 q0 q1 q2 q2 q2

a a c rejected

q0 q0 q0 q1             

• Accepts those strings that contain at least two c’s
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q1q0
q2

a

b

a

b

c c

a/b/c
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q1q0
q2

a

b

a

b

c c

a/b/c

Inductive Proof (sketch): that the machine correctly accepts strings with at least two c’s

Proof goes over the length of the string.

Base: x a string with |x|=0. state will be q0 => rejected.

Inductive hypothesis: |x|= integer k, & string x is rejected - in state q0 (x must have zero c),

OR, rejected – in state q1 (x must have one c),

OR, accepted – in state q2 (x has already with two c’s)

Inductive steps: Each case for symbol p, for string xp (|xp| = k+1), the last symbol p = a, b or c

xa xb xc

x ends in q0 q0 =>reject
(still zero c => should 
reject)

q0 =>reject
(still zero c => should 
reject)

q1 =>reject
(still zero c => should 
reject)

x ends in q1 q1 =>reject
(still one c => should 
reject)

q1 =>reject
(still one c => should 
reject)

q2 =>accept
(two c  now=> should 
accept)

x ends in q2 q2 =>accept
(two c  already => 
should accept)

q2 =>accept
(two c  already => 
should accept)

q2 =>accept
(two c  already => 
should accept)



Formal Definition of a DFA

• A DFA is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states

Σ A finite input alphabet

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A transition function, which is a total function from Q x Σ to Q

δ: (Q x Σ) –> Q δ is defined for any q in Q and s in Σ, and 

δ(q,s) = q’ is equal to some state q’ in Q, could be q’=q

Intuitively, δ(q,s) is the state entered by M after reading symbol s while in 
state q.
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• Revisit example #1:

Q = {q0, q1}

Σ = {0, 1}

Start state is q0

F = {q0}

δ:

0 1

q0 q1 q0

q1 q0 q1

66

q0
q1

0

0

1

1



• Revisit example #2:

Q = {q0, q1, q2}

Σ = {a, b, c}

Start state is q0

F = {q2}

δ: a b c

q0 q0 q0 q1

q1 q1 q1 q2

q2 q2 q2 q2

• Since δ is a function, at each step M has exactly one option.

• It follows that for a given string, there is exactly one computation.

67

q1q0
q2

a

b

a

b

c c

a/b/c



Nondeterministic Finite State
Automata (NFA)

• An NFA is a five-tuple:

M = (Q, Σ, δ, q0, F)

Q A finite set of states

Σ A finite input alphabet

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A transition function, which is a total function from Q x Σ to 2Q

δ: (Q x Σ) –> 2Q :2Q is the power set of Q, the set of all subsets of Q 
δ(q,s) :The set of all states p such that there is a transition

labeled s from q to p

δ(q,s) is a function from Q x S to 2Q (but not only to Q)

68



• Example #1: one or more 0’s followed by one or more 1’s

Q = {q0, q1, q2}

Σ = {0, 1}

Start state is q0

F = {q2}

δ: 0 1

q0

q1

q2

69

{q0, q1} {}

{} {q1, q2}

{q2} {q2}

q1q0
q2

0 1

0 1

0/1



• Example #2: pair of 0’s or pair of 1’s as substring

Q = {q0, q1, q2 , q3 , q4}

Σ = {0, 1}

Start state is q0

F = {q2, q4}

δ: 0 1

q0

q1

q2

q3

q4

70

{q0, q3} {q0, q1}

{} {q2}

{q2} {q2}

{q4} {}

{q4} {q4}

q0

0/1

0 0
q3

q4

0/1

q1
q2

0/11

1



• Question: Why non-determinism is useful?

– Non-determinism  =  Backtracking

– Compressed information

– Non-determinism hides backtracking

– Programming languages, e.g., Prolog, hides backtracking => Easy to 
program at a higher level: what we want to do, rather than how to do it

– Useful in algorithm complexity study

– Is NDA more “powerful” than DFA, i.e., accepts type of languages that 
any DFA cannot?
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Equivalence of DFAs and NFAs

• Do DFAs and NFAs accept the same class of languages?

– Is there a language L that is accepted by a DFA, but not by any NFA?

– Is there a language L that is accepted by an NFA, but not by any DFA?

• Observation: Every DFA is an NFA, DFA is only restricted NFA.

• Therefore, if L is a regular language then there exists an NFA M such 
that L = L(M).

• It follows that NFAs accept all regular languages.

• But do NFAs accept more?
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• Consider the following DFA: 2 or more c’s

Q = {q0, q1, q2}

Σ = {a, b, c}

Start state is q0

F = {q2}

δ: a b c

q0 q0 q0 q1

q1 q1 q1 q2

q2 q2 q2 q2

73

q1q0
q2

a

b

a

b

c c

a/b/c



• An Equivalent NFA:

Q = {q0, q1, q2}

Σ = {a, b, c}

Start state is q0

F = {q2}

δ: a b c

q0 {q0} {q0} {q1}

q1 {q1} {q1} {q2}

q2 {q2} {q2} {q2}
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q1q0
q2

a

b

a

b

c c

a/b/c



Grep

Coke Machines

Thermostats (fridge)

Elevators

Train Track Switches

Lexical Analyzers for Parsers

Real-life Uses of DFAs
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• Chomsky normal form
• Preliminary simplifications
• Final steps

• Greibach Normal Form
• Algorithm (Example)

• Summary
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Grammar: G = (V, T, P, S)

T = { a, b }Terminals 

V = A, B, CVariables

SStart Symbol

P = S → AProduction
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Grammar example

S → aBSc
S → abc
Ba → aB
Bb → bb

L = { anbncn | n ≥ 1 }

S        aBSc        aBabcc        aaBbcc         aabbcc   
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Context free grammar

The head of any production contains only one 
non-terminal symbol

S → P
P → aPb
P → ε

L = { anbn | n ≥ 0 }



Chomsky Normal Form
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A → BC
A → α

A context free grammar is said to be in Chomsky 
Normal Form if all productions are in the following 
form:

• A, B and C are non terminal symbols
• α is a terminal symbol
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Eliminate Useless Symbols1

Eliminate ε productions 2

Eliminate unit productions3

There are three preliminary simplifications
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Eliminate Useless Symbols

We need to determine if the symbol is useful by 
identifying if a symbol is generating and is reachable

• X is generating if X       ω for some terminal string ω.
• X is reachable if there is a derivation X       αXβ

for some α and β





*

*
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Example: Removing non-generating symbols

S → AB | a
A → b Initial CFL grammar

S → AB | a
A → b

Identify generating symbols

S → a
A → b

Remove non-generating
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Example: Removing non-reachable symbols

S → a Eliminate non-reachable

S → a
A → b

Identify reachable symbols
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The order is important. 

S → AB | a
A → b

Looking first for non-reachable symbols and then 
for non-generating symbols can still leave some 
useless symbols.

S → a
A → b
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Finding generating symbols

If there is a production A → α, and every symbol 
of α is already known to be generating. Then A is 
generating 

S → AB | a
A → b

We cannot use S → AB because 
B has not been established to 
be generating 
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Finding reachable symbols

S is surely reachable. All symbols in the body of a 
production with S in the head are reachable.

S → AB | a
A → b

In this example the symbols   
{S, A, B, a, b} are reachable.
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Eliminate ε Productions

• In a grammar ε productions are convenient but 
not essential

• If L has a CFG, then L – {ε} has a CFG

Nullable variable

A        ε*
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If A is a nullable variable

• Whenever A appears on the body of a production 
A might or might not derive ε

S → ASA | aB
A → B | S
B → b | ε

Nullable: {A, B}
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• Create two version of the production, one with 
the nullable variable and one without it

• Eliminate productions with ε bodies

S → ASA | aB
A → B | S
B → b | ε

S → ASA | aB | AS | SA | S | a
A → B | S
B → b

Eliminate ε Productions
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• Create two version of the production, one with 
the nullable variable and one without it

• Eliminate productions with ε bodies

S → ASA | aB
A → B | S
B → b | ε

S → ASA | aB | AS | SA | S | a
A → B | S
B → b

Eliminate ε Productions
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• Create two version of the production, one with 
the nullable variable and one without it

• Eliminate productions with ε bodies

S → ASA | aB
A → B | S
B → b | ε

S → ASA | aB | AS | SA | S | a
A → B | S
B → b

Eliminate ε Productions
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Eliminate unit productions

A unit production is one of the form A → B where both 
A and B are variables

A         B*

A → B, B → ω, then A → ω

Identify unit pairs
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Example:

I → a | b | Ia | Ib | I0 | I1
F → I | (E)
T → F | T * F
E → T | E + T

Pairs Productions

( E, E ) E → E + T

( E, T ) E → T * F

( E, F ) E → (E)

( E, I ) E → a | b | Ia | Ib | I0 | I1

( T, T ) T → T * F

( T, F ) T → (E)

( T, I ) T → a | b | Ia |Ib | I0 | I1

( F, F ) F → (E)

( F, I ) F → a | b | Ia | Ib | I0 | I1

( I, I ) I → a | b | Ia | Ib | I0 | I1

Basis: (A, A)  is a unit pair 
of any variable A, if           
A         A  by  0  steps.*

T = {*, +, (, ), a, b, 0, 1}
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Example:

Pairs Productions

… …

( T, T ) T → T * F

( T, F ) T → (E)

( T, I ) T → a | b | Ia |Ib | I0 | I1

… …

I → a | b | Ia | Ib | I0 | I1
E → E + T | T * F | (E ) | a | b | la | lb | l0 | l1
T → T * F | (E) | a | b | Ia | Ib | I0 | I1
F → (E) | a | b | Ia | Ib | I0 | I1
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Chomsky Normal Form (CNF)

1. Arrange that all bodies of length 2 or more to 
consists only of variables.

2. Break bodies of length 3 or more into a cascade of 
productions, each with a body consisting of two 
variables.

Starting with a CFL grammar with the preliminary 
simplifications performed
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Step 1: For every terminal α that appears in a body 
of length 2 or more create a new variable that has 
only one production.

E → E + T | T * F | (E ) | a | b | la | lb | l0 | l1
T → T * F | (E) | a | b | Ia | Ib | I0 | I1
F → (E) | a | b | Ia | Ib | I0 | I1
I → a | b | Ia | Ib | I0 | I1

E → EPT | TMF | LER | a | b | lA | lB | lZ | lO
T → TMF | LER | a | b | IA | IB | IZ | IO
F → LER | a | b | IA | IB | IZ | IO
I → a | b | IA | IB | IZ | IO
A → a B → b Z → 0 O → 1 
P → + M → * L → ( R → ) 
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Step 2: Break bodies of length 3 or more adding 
more variables

E → EPT | TMF | LER | a | b | lA | lB | lZ | lO
T → TMF | LER | a | b | IA | IB | IZ | IO
F → LER | a | b | IA | IB | IZ | IO
I → a | b | IA | IB | IZ | IO
A → a B → b Z → 0 O → 1 
P → + M → * L → ( R → )

C1 → PT
C2 → MF
C3 → ER  
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A → αX

A context free grammar is said to be in Greibach 
Normal Form if all productions are in the following 
form:

• A is a non terminal symbols
• α is a terminal symbol
• X is a sequence of non terminal symbols. 

It may be empty.
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Example:

S → XA | BB
B → b | SB
X → b
A → a

CNF

S = A1

X = A2

A = A3

B = A4

New Labels

A1 → A2A3 | A4A4

A4 → b | A1A4

A2 → b
A3 → a

Updated CNF
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Example:

A1 → A2A3 | A4A4

A4 → b | A1A4

A2 → b
A3 → a

First Step

Xk is a string of zero 
or more variables

Ai → AjXk j > i 

A4 → A1A4
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Example:

A1 → A2A3 | A4A4

A4 → b | A1A4

A2 → b
A3 → a

A4 → A1A4

A4 → A2A3A4 | A4A4A4 | b

A4 → bA3A4 | A4A4A4 | b

First Step Ai → AjXk j > i 
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Example:

Second Step

Eliminate Left 
Recursions

A1 → A2A3 | A4A4

A4 → bA3A4 | A4A4A4 | b 
A2 → b
A3 → a

A4 → A4A4A4
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Example:

Second Step

Eliminate Left 
Recursions

A1 → A2A3 | A4A4

A4 → bA3A4 | A4A4A4 | b 
A2 → b
A3 → a

A4 → bA3A4 | b | bA3A4Z | bZ

Z → A4A4 | A4A4Z
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Example:

A1 → A2A3 | A4A4

A4 → bA3A4 | b | bA3A4Z | bZ
Z   → A4A4 | A4A4 Z
A2 → b
A3 → a

A → αX

GNF
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Example:

A1 → A2A3 | A4A4

A4 → bA3A4 | b | bA3A4Z | bZ
Z   → A4A4 | A4A4 Z
A2 → b
A3 → a

Z   → bA3A4A4 | bA4 | bA3A4ZA4 | bZA4 | bA3A4A4 | bA4 | bA3A4ZA4 | bZA4

A1 → bA3 | bA3A4A4 | bA4 | bA3A4ZA4 | bZA4
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Example:

A1 → bA3 | bA3A4A4 | bA4 | bA3A4ZA4 | bZA4 

A4 → bA3A4 | b | bA3A4Z | bZ
Z   → bA3A4A4 | bA4 | bA3A4ZA4 | bZA4 | bA3A4A4 | bA4 | bA3A4ZA4 | bZA4

A2 → b
A3 → a

Grammar in Greibach Normal Form
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Definition of a Regular Expression

• R is a regular expression if it is:
1. a for some a in the alphabet , standing for the language {a}

2. ε, standing for the language {ε}

3. Ø, standing for the empty language

4. R1+R2 where R1 and R2 are regular expressions, and + signifies 
union  (sometimes | is used)

5. R1R2 where R1 and R2 are regular expressions and this signifies 
concatenation

6. R* where R is a regular expression and signifies closure

7. (R) where R is a regular expression, then a parenthesized R is 
also a regular expression

This definition may seem circular, but 1-3 form the basis

Precedence: Parentheses have the highest precedence, followed by *(iteration), 

concatenation, and then union(ICU)



RE Examples

• L(001) = {001} 
• L(0+10*) = { 0, 1, 10, 100, 1000, 10000, … }
• L(0*10*) = {1, 01, 10, 010, 0010, …}    i.e. {w | w has exactly a single 1}
• L()* = {w | w is a string of even length}
• L((0(0+1))*) = { ε, 00, 01, 0000, 0001, 0100, 0101, …}
• L((0+ε)(1+ ε)) = {ε, 0, 1, 01}
• L(1Ø)  = Ø    ;  concatenating the empty set to any set yields the empty set.
• Rε = R
• R+Ø = R

• Note that R+ε  may or may not equal R (we are adding ε to the language)
• Note that RØ will only equal R if R itself is the empty set.



Regular Expressions

• Regular expressions 

• describe regular languages  

• Example:

• describes the language

Fall 2006 Costas Busch - RPI 112

*)( cba 

   ,...,,,,,*, bcaabcaabcabca 



Languages of Regular Expressions

:   language of regular expression

• Example

•

Fall 2006 Costas Busch - RPI 113

 rL r

   ,...,,,,,*)( bcaabcaabcacbaL 



Equivalence of FA and RE

• Finite Automata and Regular Expressions are 
equivalent.  To show this:

– Show we can express a DFA as an equivalent RE

– Show we can express a RE as an ε-NFA.  Since the 
ε-NFA can be converted to a DFA and the DFA to 
an NFA, then RE will be equivalent to all the 
automata we have described.



DFARE Example

• Convert the following 
to a RE

• First convert the edges 
to RE’s:

3Start 1 2
1 1

0

0

0,1

3Start 1 2
1 1

0

0

0+1



Converting a RE to an Automata

• We have shown we can convert an automata to a RE.  
To show equivalence we must also go the other 
direction, convert a RE to an automaton.

• We can do this easiest by converting a RE to an ε-NFA

– Inductive construction

– Start with a simple basis, use that to build more complex 
parts of the NFA



RE to ε-NFA

• Basis:

R=a

R=ε

a

ε

R=Ø

Next slide: More complex RE’s



R=S+T

S

T

ε

ε

ε

ε

R=ST
S T

ε

R=S*

S
ε

ε

ε

ε



RE to ε-NFA Example

• Convert R= (ab+a)* to an NFA

– We proceed in stages, starting from simple 
elements and working our way up 

a
a

b
b

ab
a bε



RE to ε-NFA Example (2)

ab+a

a bε

a

ε

ε

ε

ε

(ab+a)*
a bε

a

ε

ε

ε

ε

εε

ε

ε



Pushdown Automata



Formal Definition of a PDA

• A pushdown automaton (PDA) is a seven-tuple:

M = (Q, Σ, Г, δ, q0, z0, F)

Q A finite set of states

Σ A finite input alphabet

Г A finite stack alphabet

q0 The initial/starting state, q0 is in Q

z0 A starting stack symbol, is in Г    // need not always remain at the bottom of stack

F A set of final/accepting states, which is a subset of Q

δ A transition function, where

δ: Q x (Σ U {ε}) x Г –> finite subsets of Q x Г*
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Pushdown Automaton

• A pushdown automaton (PDA) is an abstract model machine 

similar to the FSA

• It has a finite set of states. However, in addition, it has 

a pushdown stack. Moves of the PDA are as follows:

• 1. An input symbol is read and the top symbol on the stack 

is read.

• 2. Based on both inputs, the machine enters a new state and 

writes zero or more symbols onto the pushdown stack.

• 3. Acceptance of a string occurs if the stack is ever 

empty. (Alternatively, acceptance can be if the PDA is in a 

final state. Both models can be shown to be equivalent.)
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Power of PDAs

• PDAs are more powerful than FSAs. 

• anbn, which cannot be recognized by an FSA, can 

easily be recognized by the PDA.

• Stack all a symbols and, for each b, pop an a off 

the stack. 

• If the end of input is reached at the same time 

that the stack becomes empty, the string is 

accepted.

• It is less clear that the languages accepted by

• PDAs are equivalent to the context-free languages.
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NDPDAs are different from DPDAs

• What is the relationship between deterministic

• PDAs and nondeterministic PDAs? They are different.

• Consider the set of palindromes, strings reading the same 

forward and backward, generated by the grammar

• S  0S0 | 1S1 | 2

• We can recognize such strings by a deterministic PDA:

– 1. Stack all 0s and 1s as read.

– 2. Enter a new state upon reading a 2.

– 3. Compare each new input to the top of stack, and pop 

stack.

• However, consider the following set of palindromes:

• S  0S0 | 1S1 | 0 | 1

• In this case, we never know where the middle of the string is. 

To recognize these palindromes, the automaton must guess where 

the middle of the string is (i.e., is nondeterministic). 
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• The PDA can be represented by 

M = (Q, Σ, Γ, δ, s, F)

where Σ is the alphabet of input symbols and Γ
is the alphabet of stack symbols.

• The set of all strings accepted by a PDA M is 
denoted by L(M). We also say that the 
language L(M) is accepted by M.



• The  transition diagram of a PDA is an alternative way 
to represent the PDA.

• For M = (Q, Σ, Γ, δ, s, F), the transition diagram of M
is an edge-labeled digraph G=(V, E) satisfying the 
following:

V = Q (s = , f = for f F)

E = { q               p |  (p,u)   δ(q, a, v) }.



a, v/u



Example 1. Construct PDA to accept 

L= {0 1  | n > 0}
n n

Solution 1. 

0, ε/0

1, 0/ε

1, 0/ε



Solution 2.

Consider a CFG 

G = ({S}, {0,1}, {S → ε | 0S1}, S). 

ε,  ε/S 

ε, ε/S

ε, S/ε

ε, ε/0

ε, S/1

0, 0/ε

1, 1/ε



• TMs model the computing capability of a general purpose computer, which 
informally can be described as:

– Effective procedure

• Finitely describable

• Well defined, discrete, “mechanical” steps

• Always terminates

– Computable function

• A function computable by an effective procedure

• TMs formalize the above notion.

• Church-Turing Thesis: There is an effective procedure for solving a problem if 
and only if there is a TM that halts for all inputs and solves the problem.
– There are many other computing models, but all are equivalent to or subsumed by 

TMs. There is no more powerful machine (Technically cannot be proved).

• DFAs and PDAs do not model all effective procedures or computable 
functions, but only a subset.
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Deterministic Turing Machine (DTM)

…….. ……..

• Two-way, infinite tape, broken into cells, each containing one symbol.

• Two-way, read/write tape head.

• An input string is placed on the tape, padded to the left and right infinitely with 
blanks, read/write head is positioned at the left end of input string.

• Finite control, i.e., a program, containing the position of the read head, current 
symbol being scanned, and the current state.

• In one move, depending on the current state and the current symbol being 
scanned, the TM 1) changes state, 2) prints a symbol over the cell being 
scanned, and 3) moves its’ tape head one cell left or right.

• Many modifications possible, but Church-Turing declares equivalence of all.
131
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Control

B B 0 1 1 0 0 B B



Formal Definition of a DTM

• A DTM is a seven-tuple:

M = (Q, Σ, Γ, δ, q0, B, F)

Q A finite set of states

Σ A finite input alphabet, which is a subset of Γ– {B}

Γ A finite tape alphabet, which is a strict superset of Σ 

B A distinguished blank symbol, which is in Γ

q0 The initial/starting state, q0 is in Q

F A set of final/accepting states, which is a subset of Q

δ A next-move function, which is a mapping (i.e., may be undefined) from

Q x Γ –> Q x Γ x {L,R}

Intuitively, δ(q,s) specifies the next state, symbol to be written, and the direction of 
tape head movement by M after reading symbol s while in state q.
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• Example #1: {w | w is in {0,1}* and w ends with a 0}

0

00

10

10110

Not ε

Q = {q0, q1, q2}

Γ = {0, 1, B}

Σ = {0, 1}

F = {q2}

δ:

0 1 B

->q0 (q0, 0, R) (q0, 1, R) (q1, B, L)

q1 (q2, 0, R) - -

q2
* - - -

– q0 is the start state and the “scan right” state, until hits B

– q1 is the verify 0 state

– q2 is the final state
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• Example #2: {0n1n | n ≥ 1}

0 1 X Y B

->q0 (q1, X, R) - - (q3, Y, R)0’s finished -

q1 (q1, 0, R)ignore1 (q2, Y, L) - (q1, Y, R) ignore2 - (more 0’s)

q2 (q2, 0, L) ignore2 - (q0, X, R) (q2, Y, L) ignore1 -

q3 - - (more 1’s) - (q3, Y, R) ignore (q4, B, R)

q4* - - - - -

• Sample Computation: (on 0011),   presume state q  looks rightward

134

q00011BB..  |— Xq1011

|— X0q111

|— Xq20Y1

|— q2X0Y1

|— Xq00Y1

|— XXq1Y1

|— XXYq11

|— XXq2YY

|— Xq2XYY

|— XXq0YY

|— XXYq3Y B…

|— XXYYq3 BB…

|— XXYYBq4



• Same Example #2: {0n1n | n ≥ 1}

0 1 X Y B

q0 (q1, X, R) - - (q3, Y, R) -

q1 (q1, 0, R) (q2, Y, L) - (q1, Y, R) -

q2 (q2, 0, L) - (q0, X, R) (q2, Y, L) -

q3 - - - (q3, Y, R) (q4, B, R)

q4 - - - - -

Logic: cross 0’s with X’s, scan right to look for corresponding 1, on finding it cross it with Y, and scan 
left to find next leftmost 0, keep iterating until no more 0’s, then scan right looking for B.

– The TM matches up 0’s and 1’s

– q1 is the “scan right” state, looking for 1

– q2 is the “scan left” state, looking for X

– q3 is “scan right”, looking for B

– q4 is the final state

Can you extend the machine to include n=0?
How does the input-tape look like for string epsilon?

• Other Examples:

000111 00

11 001

011
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Formal Definitions for DTMs

• Let M = (Q, Σ, Г, δ, q0, B, F) be a TM.

• Definition: An instantaneous description (ID) is a triple α1qα2, where:

– q, the current state, is in Q

– α1α2, is in Г*, and is the current tape contents up to the rightmost non-blank symbol, or the 
symbol to the left of the tape head, whichever is rightmost

– The tape head is currently scanning the first symbol of α2

– At the start of a computation α1= ε

– If α2= ε then a blank is being scanned

• Example: (for TM #1)

q00011 Xq1011 X0q111 Xq20Y1 q2X0Y1

Xq00Y1 XXq1Y1 XXYq11 XXq2YY Xq2XYY

XXq0YY XXYq3Y XXYYq3 XXYYBq4
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• Suppose the following is the current ID of a DTM

x1x2…xi-1qxixi+1…xn

Case 1) δ(q, xi) = (p, y, L)

(a) if i = 1 then qx1x2…xi-1xixi+1…xn |— pByx2…xi-1xixi+1…xn 

(b) else x1x2…xi-1qxixi+1…xn |— x1x2…xi-2pxi-1yxi+1…xn

– If any suffix of xi-1yxi+1…xn is blank then it is deleted.

Case 2) δ(q, xi) = (p, y, R)

x1x2…xi-1qxixi+1…xn |— x1x2…xi-1ypxi+1…xn

– If i>n then the ID increases in length by 1 symbol

x1x2…xnq |— x1x2…xnyp
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L is Recursively enumerable: 

TM exist: M0, M1, …

They accept string in L, and do not accept any string outside L

L is Recursive: 

at least one TM halts on L and on ∑*-L, others may or may not

L is Recursively enumerable but not Recursive: 

TM exist: M0, M1, … 

but none halts on all x in ∑*-L

M0 goes on infinite loop on a string p in ∑*-L,  while M1 on q in ∑*-L

However, each correct TM  accepts each string in L, and none in ∑*-L

L is not R.E: 

no TM exists 



Modifications of the Basic TM Model

• Other (Extended) TM Models:

– One-way infinite tapes

– Multiple tapes and tape heads

– Non-Deterministic TMs

– Multi-Dimensional TMs (n-dimensional tape)

– Multi-Heads

– Multiple tracks

All of these extensions are equivalent to the basic DTM model
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The Halting Problem - Background

• Definition: A decision problem is a problem having a yes/no answer (that one 
presumably wants to solve with a computer). Typically, there is a list of parameters on 
which the problem is based.

– Given a list of numbers, is that list sorted?

– Given a number x, is x even?

– Given a C program, does that C program contain any syntax errors?

– Given a TM (or C program), does that TM contain an infinite loop?

From a practical perspective, many decision problems do not seem all that interesting.  
However, from a theoretical perspective they are for the following two reasons:

– Decision problems are more convenient/easier to work with when proving complexity results.

– Non-decision counter-parts can always be created & are typically at least as difficult to solve.

• Notes:

– The following terms and phrases are analogous:

Algorithm - A halting TM program

Decision Problem - A language(will show shortly)

(un)Decidable - (non)Recursive
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A language is called Turing-recognizable or recursively enumerable (r.e.) if 

some TM recognizes it.

A language is called decidable or recursive if some TM decides it.

recursive

languages

r.e. 

languages
recursive

languages

r.e. 

languages



HALTTM = { (M,w) | M is a TM that halts on string w }

Theorem: HALTTM is undecidable

THE HALTING PROBLEM

Proof: Assume, for a contradiction, that TM H decides HALTTM

We use H to construct a TM D that decides ATM

On input (M,w), D runs H on (M,w)

If H rejects then reject

If H accepts, run M on w until it halts:

Accept if M accepts and 

Reject if M rejects
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