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Introduction

Syllabus

The syllabus contains the following articles:

First Order Differential Equation

Leibnitz linear equation
Bernoulli’s equation
Exact differential equation
Equations not of first degree

Equation solvable for p
Equation solvable for x
Equation solvable for y

Clairaut’s equation

Higher Order Differential Equation

Second order linear differential equations with variable coefficients
Method of variation of parameters
Power series solutions
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First Order Differential Equations Leibnitz linear equation

Leibnitz linear equation

Definition

An equation of the form
dy

dx
+ Py = Q, where P and Q are either constants or

functions of x only is called Leibnitz linear equation.

Alternately, the equation may be of the form
dx

dy
+ Px = Q, where P and Q

are either constants or functions of y only.

Solution

This equation is solved by evaluating the Integration Factor that is given by

IF = e
∫
Pdx and the solution is obtained by y(IF ) =

∫
Q(IF )dx+ c for the

former case and for the latter x is replaced by y in the IF and the solution.
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First Order Differential Equations Leibnitz linear equation

Questions

dy

dx
+
y

x
= x3 − 3

x log x
dy

dx
+ y = 2 log x

dy

dx
+ y cotx = 5ecos x

dy

dx
=

y

2y log y + y − x√
1− y2dx = (sin−1 y − x)dy
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First Order Differential Equations Bernoulli equation

Bernoulli’s Equation

Definition

An equation of the form
dy

dx
+ Py = Qyn, where P and Q are either constants

or functions of x only is called Bernoulli’s equation.

Alternately, the equation may also be written as
dx

dy
+ Px = Qxn, where P

and Q are either constants or functions of y only.

Solution

This equation is reduced to Leibnitz linear equation by substituting y1−n = z
and differentiating. This generates the Leibnitz equation in z and x that is
solved as explained earlier and then z is resubstituted in terms of y. The
corresponding changes are made in the latter case of definition.
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First Order Differential Equations Bernoulli equation

Questions

x
dy

dx
+ y = x3y6

ey
(
dy

dx
+ 1

)
= ex

dy

dx
− tan y

1 + x
= (1 + x)ex sec y

dy

dx
+
y log y

x
=
y(log y)2

x2

(xy2 − e1/x
3

)dx− x2ydy = 0
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First Order Differential Equations Exact differential equation

Exact Differential Equation

Definition

An equation of the form M(x, y)dx+N(x, y)dy = 0 is said to be an Exact
differntial equation if it can be obtained directly by differentiating the equation
u(x, y) = c, which is its primitive.
i.e. if

du = Mdx+Ndy

Necessary and Sufficient Condition

The necessary and sufficient condition for the equation Mdx+Ndy = 0 to be
exact is

∂M

∂y
=
∂N

∂x

Solution

The solution of Mdx+Ndy = 0 is given by∫
y constant

Mdx+

∫
(terms of N not containing x)dy = c
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First Order Differential Equations Exact differential equation

Questions

(x2 − 4xy − 2y2)dx+ (y2 − 4xy − 2x2)dy = 0

(1 + ex/y)dx+

(
1− x

y

)
ex/ydy = 0

(2xy cosx2 − 2xy + 1)dx+ (sinx2 − x2)dy = 0

xdy + ydx+
xdy − ydx
x2 + y2

= 0

(y2exy
2

+ 4x3)dx+ (2xyexy
2

− 3y2)dy = 0
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First Order Differential Equations Equations reducible to exact equations

Equations reducible to exact equations

Reducible to exact equations

Equations which are not exact can sometimes be made exact after multiplying
by a suitable factor (function of x and/or y) called the Integration Factor (IF).

IF by Inspection

ydx+ xdy = d(xy)

ydx− xdy
y2

= d

(
x

y

)
xdy − ydx

xy
= d

[
log
(y
x

)]
xdx+ ydy

x2 + y2
= d

[
1

2
log(x2 + y2)

]

xdy − ydx
x2

= d
(y
x

)
xdy − ydx
x2 + y2

= d

(
tan−1

x

y

)
ydx+ xdy

xy
= d[log(xy)]

xdy − ydx
x2 − y2

= d

(
1

2
log

x+ y

x− y

)

(BBSBEC, FGS) B.Tech. (First Year) 9 / 34



First Order Differential Equations Equations reducible to exact equations

Equations reducible to exact equations

IF for Homoegeneous Equation

If Mdx+Ndy = 0 is a Homoegeneous equation in x and y, then
1

Mx+Ny
is

an IF provided Mx+Ny 6= 0.

IF for f1(xy)ydx+ f2(xy)xdy = 0

For equation of this type, IF is given by
1

Mx−Ny
.
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First Order Differential Equations Equations reducible to exact equations

Equations reducible to exact equations

IF for Mdx+Ndy = 0

If

∂M
∂y −

∂N
∂x

N
is a function of x only, say f(x), then IF = e

∫
f(x)dx.

If

∂N
∂x −

∂M
∂y

M
is a function of y only, say g(y), then IF = e

∫
g(y)dy.

IF for xayb(mydx+ nxdy) + xcyd(pydx+ qxdy) = 0

In this equation, a, b, c, d,m, n, p, q are all constants and IF is given by xhyk,
where h and k are so chosen that the equation becomes exact after
multiplication with IF.
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First Order Differential Equations Equations reducible to exact equations

Questions

(1 + xy)ydx+ (1− xy)xdy = 0

xdy − ydx = xy2dx

(xyex/y + y2)dx− x2ex/ydy = 0

(x2y2 + xy + 1)ydx+ (x2y2 − xy + 1)xdy = 0(
y +

y3

3
+
x2

2

)
dx+

1

4
(x+ xy2)dy = 0

(2x2y − 3y4)dx+ (3x3 + 2xy3)dy = 0

(xy2 + 2x2y3)dx+ (x2y − x3y2)dy = 0
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First Order Differential Equations Equations not of first degree

Equations of first order and higher degree

Definition

A differential equation of the first order and nth degree is of the form

pn + P1p
n−1 + P2p

n−2 + · · ·+ Pn = 0, where p =
dy

dx
(1)
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First Order Differential Equations Equations not of first degree

Equations solvable for p

Resolve equation (1) into n linear factors and solve each of the factors to
obtain solution of the given equation.

Questions

p2 − 7p+ 12 = 0

xyp2 − (x2 + y2)p+ xy = 0

p− 1

p
=
x

y
− y

x

p2 − 2p sinhx− 1 = 0

4y2p2 + 2pxy(3x+ 1)3x3 = 0
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First Order Differential Equations Equations not of first degree

Equations solvable for y

Differentiate equation (1), wrt x, to obtain a differential equation of first order
in p and x that has solution of the form φ(x, p, c) = 0. The elimination p from
this solution and equation (1) gives the desired solution.

Questions

xp2 − 2yp+ ax = 0

y − 2px = tan−1(xp2)

x2
(
dy

dx

)4

+ 2x
dy

dx
− y = 0

x− yp = ap2
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First Order Differential Equations Equations not of first degree

Equations solvable for x

Differentiate equation (1), wrt y, to obtain a differential equation of first order
in p and y that has solution of the form φ(y, p, c) = 0. The elimination p from
this solution and equation (1) gives the desired solution.

Questions

y = 3px+ 6p2y2

p3 − 4xyp+ 8y2 = 0

y = 2px+ p2y

y2 log y = xyp+ p2

(BBSBEC, FGS) B.Tech. (First Year) 16 / 34



First Order Differential Equations Clairaut’s equation

Clairaut’s equation

Definition

An equation of the form y = px+ f(p) is called Clairaut’s equation.

Solution

Differente the equation wrt x, and obtain the solution by putting p = c in the
given equation.

Questions

y = xp+
a

p

y = px+
√
a2p2 + b2

p = sin(y − px)

p = log(px− y)
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Higher Order Differential Equation

Linear Differential Equations

Definition

A linear differential equation is that in which the dependent variable and
its derivatives occur only in the first degree and are not multiplied together.
Thus, the general linear differential equation of the nth order is of the form

dny

dxn
+ a1

dn−1y

dxn−1
+ a2

dn−2y

dxn−2
+ · · ·+ an−1

dy

dx
+ any = X (2)
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Higher Order Differential Equation

Linear Differential Equations

Complementary Function (CF)

If all the roots of equation (2) are real and distint, CF is given by
y = c1e

m1x + c2e
m2x + · · ·+ cne

mnx

If two roots are equal, say m1 = m2, then CF is given by
y = (c1x+ c2)em1x + c3e

m3x + · · ·+ cne
mnx

If two roots are imaginary, say m1 = α+ ιβ, m2 = α− ιβ, then CF is
given by y = eαx(c1 cosβx+ c2 sinβx) + c3e

m3x + · · ·+ cne
mnx

It two pairs of imaginary roots are equal, say
m1 = m2 = α+ ιβ, m3 = m4 = α− ιβ, then CF is given by
y = eαx[(c1x+ c2) cosβx+ (c3x+ c4) sinβx] + c5e

m5x + · · ·+ cne
mnx
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Higher Order Differential Equation

Linear Differential Equations

Particular Integral (PI)

If X = eax, then PI is given by y =
1

f(D)
eax =

1

f(a)
eax, provided f(a) 6= 0.

If X = sin(ax+ b) or cos(ax+ b), then PI is given by

y =
1

f(D2)
sin(ax+ b) =

1

f(−a2)
sin(ax+ b). Likewise for cos(ax+ b).

If X = xm, where m is a positive integer, then PI is given by y =
1

(D)
xm.

Take out the lowest degree term from f(D) to make the first term unity and
then shift the remaining term to numerator and apply Binomial expansion
upto Dm. Operate term by term on xm.
If X = eaxV , where V is a function of x, then PI is given by

y =
1

f(D)
eaxV = eax

1

f(D + a)
V .

If X is any other function of x, then PI is obtained by resolving the f(D) into

linear factors and applying
1

D − a
X = eax

∫
e−axXdx
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Higher Order Differential Equation

Questions

(D2 + 4D + 5)y = −2 coshx

(D2− 4D + 3)y = sin 3x cos 2x

(D2 + 4)y = ex + sin 2x

(D2 +D)y = x2 + 2x+ 4

(D2 − 3D + 2)y = xe3x + sin 2x

(D2 − 4D + 4)y = 8x2e2x sin 2x

(D2 − 1)y = x sinx+ (1 + x2)ex

(D − 1)2(D + 1)2y = sin2 x

2
+ ex + x
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Higher Order Differential Equation LDE with Variable Coefficients

Cauchy’s Homogeneous Equation

Definition

An equation of the form

xn
dny

dxn
+ a1x

n−1 d
n−1y

dxn−1
+ a2x

n−2 d
n−2y

dxn−2
+ · · ·+ an−1x

dy

dx
+ any = X (3)

where ais are constants and X is a function of x is called Cauchy’s
Homegeneous Linear Equation.

Solution

The equation is reduced to an LDE with constant coefficients by putting
z = ex thereby generating an LDE in x and z that can be solved as explained
earlier and finally the solution of equation (3) is obtained by putting z = log x.
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Higher Order Differential Equation LDE with Variable Coefficients

Questions

x2
d2y

dx2
+ 9x

dy

dx
− 25y = 50

x4
d3y

dx3
+ 2x3

d2y

dx2
− x2 dy

dx
+ xy = 1

d2y

dx2
+

1

x

dy

dx
=

12 log x

x2

x2
d2y

dx2
− 3x

dy

dx
+ y = log x

sin(log x) + 1

x

(BBSBEC, FGS) B.Tech. (First Year) 23 / 34



Higher Order Differential Equation LDE with Variable Coefficients

Legendre’s Linear Equation

Definition

An equation of the form

(a+ bx)n
dny

dxn
+ a1(a+ bx)n−1

dn−1y

dxn−1
+ · · ·+ an−1(a+ bx)

dy

dx
+ any = X (4)

where ais, a and b are constants and X is a function of x is called Legendre’s
Linear Equation.

Solution

The equation is reduced to an LDE with constant coefficients by putting
a+ bx = ez thereby generating an LDE in x and z that can be solved as
explained earlier and finally the solution of equation (4) is obtained by putting
z = log(a+ bx).
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Higher Order Differential Equation LDE with Variable Coefficients

Questions

(1 + x)2
d2y

dx2
+ (1 + x)

dy

dx
+ y = 4 cos log(1 + x)

(1 + 2x)2
d2y

dx2
− 6(1 + 2x)

dy

dx
+ 16y = 8(1 + 2x)2

(3 + 2x)2
d2y

dx2
− 2(3 + 2x)

dy

dx
− 12y = 6x
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Higher Order Differential Equation variation of parameters

Variation of Parameters

This method is applicable for the second order differential equation of the

form
d2y

dx2
+ a1

dy

dx
+ a2y = X

Let the CF of this equation be

y = c1y1 + c2y2

. Then the PI of this equation is given by

y = uy1 + vy2

where

u = −
∫
y2X

W
dx

and

v =

∫
y1X

W
dx

where W is the Wronskian of y1, y2.
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Higher Order Differential Equation variation of parameters

Questions

d2y

dx2
+ 4y = 4 sec2 2x

d2y

dx2
+ y = cosec x

d2y

dx2
+ y = x sinx

y′′ − 2y′ + 2y = ex tanx
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Higher Order Differential Equation Series Solution

Series Solution

We discuss the method of solving equations of the form

P0(x)
d2y

dx2
+ P1(x)

dy

dx
+ P2(x)y = 0 (5)

where P0(x), P1(x) and P2(x) are polynomials in x, in terms of infinite
convergent series.

Solution

Divide equation (5) by P0(x) to get

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 (6)

where p(x) =
P1(x)

P0(x)
and q(x) =

P2(x)

P0(x)
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Higher Order Differential Equation Series Solution

Series Solution

Ordinary Point

x = 0 is called an ordinary point of equation (5) if P0(0) 6= 0.
In this casem the solution of equation (5), can be expressed as

y = a0 + a1x+ a2x
2 + · · · =

∞∑
k=0

akx
k

Singular Point

x = 0 is called a singular point of equation (5), if P0(0) = 0.
In this case, the solution of equation (5) can be expressed as

y = xm(a0 + a1x+ a2x
2 + · · · ) =

∞∑
k=0

akx
m+k
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Higher Order Differential Equation Series Solution

Solution when x = 0 is an ordinary point

Solution

Let y =

∞∑
k=0

akx
k be the solution of equation (5). Then, on differentiating

dy

dx
=

∞∑
k=1

kakx
k−1 and

d2y

dx2
=

∞∑
k=2

k(k − 1)akx
k−2.

1. Substitute the values of y, dydx ,
d2y
dx2 in equation (5).

2. Equate to zero the coefficients of various powers of x and find a2, a3, a4, . . .
in terms of a0 and a1.
3. Equate to zero the coefficient of xn. The relation so obtained is called the
recurrence relation.
4. Give different values to n in the recurrence relation to determine various ais
in terms of a0 and a1.
5. Substitute the values in the above mentioned series to obtain the solution
with a0 and a1 as arbitrary constants.
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Higher Order Differential Equation Series Solution

Questions

d2y

dx2
+ xy = 0

y′′ − xy′ + x2y = 0

(2− x2)y′′ + 2xy′ − 2y = 0
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Higher Order Differential Equation Series Solution

Solution when x = 0 is a regular singular
point I

Let y =

∞∑
k=0

akx
m+k be the solution of equation (5). Then, on differentiating

dy

dx
=

∞∑
k=0

(m+ k)akx
m+k−1 and

d2y

dx2
=

∞∑
k=0

(m+ k)(m+ k − 1)akx
m+k−2.

1. Substitute the values of y, dydx ,
d2y
dx2 in equation (5).

2. Equate to zero the coefficients of lowest powers of x. This gives a quadratic
equation in m, which in known as indicial equation.
3. Equate to zero the coefficients of other powers of x to find a1, a2, a3, a4, . . .
in terms of a0.
4. Substitute the values of a1, a2, a3, . . . in above said solutionto get the series
solution of (5) having a0 as the arbitrary constant. Though, it is not the
complete solution as the same should have two arbitrary constants.
5. The method of complete solution depends on the nature of roots of the
indicial equation.
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Higher Order Differential Equation Series Solution

Solution when x = 0 is a regular singular
point II

Case I When the roots m1,m2 are distinct and not differing by an
integer. Then the complete solution is given by

y = c1(y)m1
+ c2(y)m2

Case II When the roots m1,m2 are equal. Then the complete solution is
given by

y = c1(y)m1
+ c2

(
∂y

∂m

)
m1

Case III When the roots m1 < M2 are distinct and differ by an integer.
Then th ecomplete solution is given by

y = c1(y)m1 + c2

(
∂y

∂m

)
m1
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Higher Order Differential Equation Series Solution

Questions

2x2
d2y

dx2
+ (2x2 − x)

dy

dx
+ y = 0

x2
d2y

dx2
+ x

dy

dx
+ (x2 − 4)y = 0

2x(1− x)
d2y

dx2
+ (1− x)

dy

dx
+ 3y = 0
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Complex Functions

Complex Function

Definition (Complex Function)

A Complex Function is a function f whose domain and range are subsets of
the set C of complex numbers.
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Complex Functions

Complex Functions as Mappings

Graphs are used extensively to investigate the properties of real functions.
However, the graph of a complex function lies in four-dimensional space
and so we cannot use the graphs to study complex functions.

So we discuss the concept of complex mapping.

Every complex function describes a correspondence between points in two
copies of the complex plane. Specifically, the point z in the z−plane is
associated with the unique point w = f(z) in the w-plane.

The term complex mapping is used in place of complex functions when
considering the function as this correspondence between points in the
z-plane and the points in the w-plane.

The geometric representation of a complex function w = f(z) consists of
two figures: the first, a subset S of the points in the z-plane and, the
second, the set S′ of the images of the points in S under w = f(z) in the
w-plane.
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Complex Functions

Complex Functions as Mappings

If w = f(z) is a complex function, then both z and w lie in a complex plane.
Moreover, treating the complex numbers as two-tuple points say (x, y) and
(u, v) respectively for z and w, then the complex mapping maps the point
z = (x, y) of the x− y plane into the point w = (u, v) of the u− v plane.
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Complex Functions

Example - z2

Now w = f(z) = z2 = (x+ ιy)2

Thus,

f(x, y) = (x2 − y2, 2xy)

Thus the function f(z) = z2 is equivalent to the real system of equations given
by

u = x2 − y2

v = 2xy
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Complex Limits

Complex Limits

A complex limit is, in essence, the same as a real limit except that it is
based on a notion of “close” in the complex plane. Because the distance
in the complex plane between two points z1 and z2 is given by the
modulus of the difference of z1 and z2, the precise defintion of a complex
limit will involve z2 − z1.

The phrase “f(z) can be made arbitrarily close to the complex number
L” can be stated precisely as: for every ε > 0, z can be so chosen that
|f(z)− L| < ε.

Since the modulus of a complex number is a real number, both ε and δ
represent small positive real numbers in the following definition of
complex limit.
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Complex Limits

Complex Limits

Limit of a Complex Function

Suppose that a complex function w = f(z) is defined in a deleted
neighbourhood of z0 and suppose that L is a complex number. The limit of f
as z tends to z0 exists and is equal to L, written as lim

z→z0
f(z) = L, if for every

ε > 0 there exists a δ > 0 such that |f(z)− L| < ε whenever 0 < |z − z0| < δ.

That is, f maps the deleted neighbourhood 0 < |z − z0| < δ in the z-plane into
the neighbourhood |w − L| < ε in the w-plane.
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Complex Limits

Geometrical Interpretation

In figure (a), the deleted
neighbourhood of z0 shown in
colour is mapped onto the set
shown in dark gray in figure (b).

As required by the definition,
the image lies within the
ε-neighbourhood of L shown in
light gray in figure (b).
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Complex Limits

Complex Limits

In particular, if we write

f(z) = u(x, y) + ιv(x, y)

L = L1 + ιL2

z0 = x0 + ιy0

then lim
z→z0

f(z) = L ⇔ lim
(x,y)→(x0,y0)

u(x, y) = L1 and lim
(x,y)→(x0,y0)

v(x, y) = L2

Thus, the limit of a complex function can be viewed as a system of limits of
real functions.
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Complex Limits

Example - limit does not exist

Example Show that lim
z→0

z

z̄
does not exist.

Consider two different paths of letting z approach 0.
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Complex Limits

Continuity of complex functions

A complex function f is said to be continuous at a point z0 if the limit of f as
z approaches z0 exists and is same as the value of f at z0. That is,

Continuity of complex function

A complex function f is continuous at a point z0 if

lim
z→z0

f(z) = f(z0)

Analogous to the real functions, if a complex function is continuous, the
following three conditions must be met.

f is defined at z0

the limit lim
z→z0

f(z) exists

lim
z→z0

f(z) = f(z0)
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Complex Limits

Example-continuity

Example Check the continuity of the function f(z) = z2 − ιz + 2 at the point
z0 = 1− ι.

(BBSBEC, FGS) Functions of Complex Variables 12 / 107



Differentiability

Differentiability and Analyticity

Suppose z = x+ ιy and z0 = x0 + ιy0; then the change in z0 is the difference
∆z = z − z0 or ∆z = (x− x0) + ι(y − y0) = ∆x+ ι∆y. If a complex function
w = f(z) is defined at z and z0, then the corresponding change in the function is
the difference ∆w = f(z + z0)− f(z0). The derivative of the function f is
defined in terms of a limit of the difference quotient ∆w/∆z as ∆z → 0.

Derivative of a complex function

Suppose the complex function f is defined in a neighbourhood of a point z0.
The derivative of f at z0, denoted by f ′(z0), is

f ′(z0) = lim
∆z→0

f(z0 + ∆z)− f(z0)

∆z

provided the limit exists regardless how ∆z approaches 0. This implies that in
complex analysis, the requirement of differentiability of a function f(z) at a
point z0 is a far greater demand than in real calculus of functions f(x) where we
can approach a real number x0 on the number line from only two directions.

If a complex function is made up by specifying its real and imaginary parts u
and v, such as f(z) = x+ 4ιy, there is a good chance that it is not
differentiable.

(BBSBEC, FGS) Functions of Complex Variables 13 / 107



Differentiability

Derivative

If w = f(z) = u(x, y) + ιv(x, y) then

f ′(z0) =
dw

dz
= lim

∆z→0

∆w

∆z

= lim
∆z→0

[
∆u+ ι∆v

∆x+ ι∆y

]
(1)

The limit above is independent of the path in which ∆z tends to zero.

This is much more stronger than the concept of directional derivative of
the real-valued function of several real variables.

If the directional derivatives were to exist in every direction, all that is
needed is that in each direction the limit exists and that the limit could
be different in different directions.

However, in the definition above, the limit must exist no matter what
direction ∆z approaches zero and the value of the limit is same.
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Differentiability

Derivative of a Complex Function

Now the emphasis is that not only the limit as mentioned in eq. (1) exists but be
the same in all the directions and that imposes some strong conditions on ∆u and
∆v.
Lets talk in particular about two directions.

Case I If ∆y ≡ 0 (y is constant). Then

f ′(z0) = lim
∆x→0

[
∆u

∆x
+ ι

∆v

∆x

]
=

[
∂u

∂x
+ ι

∂v

∂x

]
z0=(x0,y0)

Case II If ∆x ≡ 0 (x is constant). Then

f ′(z0) = lim
∆y→0

[
∆u

ι∆y
+ ι

∆v

ι∆y

]
=

[
∂v

∂y
− ι∂u

∂y

]
z0=(x0,y0)

Since the two limits must be equal, that is, the respective real and imaginary parts
must be equal. We get

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
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Differentiability

Example-continuous but not differentiable

Example. f(z) = z̄ is continuous at z = 0 but not differentiable.

(BBSBEC, FGS) Functions of Complex Variables 16 / 107



Analytic Functions

Analytic Functions

Even though the requirement of differentiability is a stringent demand, there
is a class of functions that is of great importance whose members satisfy even
more severe requirements. These functions are called Analytic Functions.

Analyticity at a point

A complex function is said to be analytic at a point z0 if f is differentiable at
z0 and at every point in some neighbourhood of z0.

A function f is said to be analytic in a domain D if it is analytic at every
point in D. Such a function is called holomorphic or regular.
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Analytic Functions

Analytic Functions

Analyticity at a point is not the same as differentiability at a point.

Analyticity at a point is a neighbourhood property; in other words,
analyticity is a property defined on an open set.

(BBSBEC, FGS) Functions of Complex Variables 18 / 107



Analytic Functions

Example. |z|2 is not analytic.

Example. |z|2 is not analytic even when it is differentiable at z = 0.
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Analytic Functions

Entire Functions

Entire Functions

A function that is analytic at every point z in the complex plane is said to be
an Entire Function.

Theorem

1 A polynomial function p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0, where n
is a nonnegative integer, is an entire function.

2 A rational function f(z) =
p(z)

q(z)
, where p and q are polynomial functions,

is analytic in any domain D that contains no point z0 for which q(z0) = 0.
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Analytic Functions

Necessary Condition for Analyticity

If a function f(z) = u(x, y) + ιv(x, y) is differentiable at a point z, then the
functions u and v must satisfy a pair of equations that relate their first-order
partial derivatives.

Theorem (Cauchy-Riemann Equations)

Suppose f(z) = u(x, y) + ιv(x, y) is differentiable at a point z = x+ ιy, then at
z the first-order partial derivatives of u and v exist and satisfy the
Cauchy-Riemann Equations.

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

The theorem states that C-R equations hold at z as a necessary consequence
of f being differentiable at z, we cannot use the theorem to help us to
determine where f is differentiable. But it is important to realize that the
theorem tells us where a function f does not possess derivative.
If the C-R equations are not satisfied at a point z, then f cannot be
differentiable at z.
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Analytic Functions

Example not differentiable at any z

f(z) = x+ 4ιy is not differentiable at any point z.
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Analytic Functions

Criterion for Non-analyticity

Criterion for Non-analyticity

If the Cauchy-Riemann equations are not satisfied at every point z in a
domain D, then the function f(z) = u(x, y) + ιv(x, y) cannot be analytic in D.
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Analytic Functions

Example - z2 is analytic
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Analytic Functions

Example

Example. For the function f(z) =
x

x2 + y2
− ι y

x2 + y2
, the real functions

u(x, y) =
x

x2 + y2
and v(x, y) = − y

x2 + y2
are continuous except at the point

where x2 + y2 = 0, that is, at z = 0.
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Analytic Functions

Example- CR equations satisfied but not
differentiable

Example. The function

f(x) =


x3(1 + ι)− y3(1− ι)

x2 + y2
when z 6= 0

0 when z = 0

satisfies the CR equations at z = 0 but f ′(0) does not exist.
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Analytic Functions

Sufficient Condition for Analyticity

By themselves, the Cauchy-Riemann equations do not ensure analyticity
of a function f(z) = u(x, y) + ιv(x, y) at a point z = x+ ιy.

It is possible for the C-R equations to be satisfied at z and yet f(z) may
not be differentiable at z, or f(z) may be differentiable at z but nowhere
else. In either case, f is not analytic at z.

However, when we add the condition of continuity to u and v and to the

four partial derivatives
∂u

∂x
,
∂u

∂y
,
∂v

∂x
,
∂v

∂y
, it can be shown that the C-R

equations are not only necessary but also sufficient to guarantee
analyticity of f(z) = u(x, y) + ιv(x, y) at z.
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Analytic Functions

Sufficient Condition for Analyticity

Theorem (Sufficient Condition for Analyticity)

Suppose the real function u(x, y) and v(x, y) are continuous and have
continuous first-order partial derivatives in a domain D. If u and v satisfy the
C-R equations at all points of D, then the complex function
f(z) = u(x, y) + ιv(x, y) is analytic in D and

f ′(z) = ux + ιvx = vy − ιvx
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Analytic Functions

Example

Example. Using C-R equations, verify the analyticity of
(1).f(z) = |z|2, (2).f(z) = z̄.
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Exponential and Logarithmic Functions

Exponential and Logarithmic Functions

If x is a fixed positive real number, then there is a single solution to the
equation x = ey, namely the value y = loge x.

However, when z is a fixed nonzero complex number then there are
infinitely many solutions to the equation z = ew. Therefore, the complex
logarithmic function is a “multiple valued function”.

The principal value of the complex logarithm will be defined to be a
single-valued function that assigns to the complex input z which is the
inverse function of the exponential function ez defined on a suitably
restricted domain of the complex plane.
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Exponential and Logarithmic Functions

Example

Take a > 0 and not equal to 1. Then the function defined as

f : R→ R

given by
f(x) = ax

is called an exponential function with base a.
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Exponential and Logarithmic Functions

The number e

We try to calculate the derivative of the exponential function f(x) = ax.

d

dx
[f(x)] = lim

h→0

f(x+ h)− f(x)

h

d

dx
[ax] = lim

h→0

ax+h − ax

h

= lim
h→0

axah − ax

h

= lim
h→0

ax(ah − 1)

h

= ax lim
h→0

ah − 1

h

Now, lim
h→0

ah − 1

h
is a contant depending on the value of the base a. It can be

proved that there is a unique value of a, such that the limit is equal to 1. This
very special value of a is e. So,

lim
h→0

eh − 1

h
= 1
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Exponential and Logarithmic Functions

The number e as a limit

The expression

lim
h→0

eh − 1

h
= 1

means that for very small values of h

eh − 1 is approximately h
⇐⇒ eh is approximately h+ 1
⇐⇒ e is approximately (1 + h)1/h

So,
e = lim

h→0
(1 + h)1/h = 2.71828...

Or if we say that t = 1/h, then

e = lim
t→∞

(1 + 1/t)t = 2.71828...
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Exponential and Logarithmic Functions

Complex Exponential Function

Complex Exponential Function

The function ez defined by

ez = ex cos y + ιex sin y

is called the Complex Exponential Function.

When z is real, the function agrees with the real exponential function.

(BBSBEC, FGS) Functions of Complex Variables 34 / 107



Exponential and Logarithmic Functions

Analyticity of ez

Analyticity of ez

The exponential function ez is entire and its derivative is given by :

d

dz
ez = ez

.

Note that the real and imaginary parts of the complex exponential function
u = ex cos y and v = ex sin y are continuous real functions and have continuous
first-order partial derivatives for all (x, y). In addition, the Cauchy-Riemann
equations in u and v are easily verified:

∂u

∂x
= ex cos y =

∂v

∂y
and

∂u

∂y
= −ex sin y = −∂v

∂x

Therefore, the complex exponential function is an entire function and it’s
derivative is given by

d

dz
ez =

∂u

∂x
+ ι

∂v

∂x
= ex cos y + ιex sin y = ez
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Trigonometric Functions

Complex Trigonometric Functions

The formulas for real sine and cosine functions can be used to define complex
sine and cosine functions by replacing the real variable x with the complex
variable z.

Complex Sine and Cosine Functions

The complex sine and cosine functions are defined by :

cos z =
eιz + e−ιz

2
and sin z =

eιz − e−ιz

2ι
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Trigonometric Functions

Modulus of Complex Sine Function

sin z = sin(x+ ιy) = sinx cosh y + ι cosx sinh y
Thus,

| sin z| =

√
sin2 x cosh2 y + cos2 x sinh2 y

=

√
sin2 x+ sinh2 y (2)

It may be recalled that the real hyperbolic function sinhx is unbounded on
the real line. The expression in eq (2) can be made arbitrarily large by
choosing y to be arbitrarily large. Thus, the complex sine function is not
bounded on the complex plane, i.e., there does not exist a real constant M so
that | sin z| < M for all z ∈ C, which of course is different from the situation
for the real sine function for which | sinx| ≤ 1 for all real x.
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Trigonometric Functions

Analyticity of sin z

Let z = x+ ιy. Then sin z = sinx cosh y + ι cosx sinh y = u(x, y) + ιv(x, y)
Therefore, ux = sinx cosh y, vy = cosx sinh y

ux = cosx cosh y = vy, uy = sinx sinh y = −vx
Since, the CR equations are satisfied for all (x, y) and the frst order partial
derivatives of u(x, y), v(x, y) are continuous everywhere, the given function is
analytic for all z in the finite z−plane. We obtain

d

dz
sin z = ux + ιvx = cosx cosh y − ι sinx sinh y = cos z
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Trigonometric Functions

Analyticity of cos z

Let z = x+ ιy. Then cos z = cosx cosh y − ι sinx sinh y = u(x, y) + ιv(x, y)
Therefore, ux = cosx cosh y, vy = − sinx sinh y

ux = − sinx cosh y = vy, uy = cosx sinh y = −vx
Since, the CR equations are satisfied for all (x, y) and the frst order partial
derivatives of u(x, y), v(x, y) are continuous everywhere, the given function is
analytic for all z in the finite z−plane. We obtain

d

dz
cos z = ux + ιvx = − sinx cosh y − ι cosx sinh y = − sin z
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Harmonic Functions

Harmonic Functions

It is known that when a complex function f(z) = u(x, y) + ιv(x, y) is analytic at a
point z, then all the derivatives of f : f ′(z), f ′′(z), f ′′′(z), · · · are also analytic at
z. As a consequence of this fact, we can conclude that all partial derivatives of the
real functions u(x, y) and v(x, y) are continuous at z. From the continuity of
partial derivatives we then know that the second-order mixed partial derivatives
are equal. This fact, together with the C-R equations, demonstrates that there is a
connection between the real and imaginary parts of an analytic function f(z) and
the second-order partial differential equation.

∂2φ

∂x2
+
∂2φ

∂y2
= 0

This equation is known as Laplace’s equation in two variables.

Definition (Harmonic Function)

A real-valued function φ(x, y) of two variables x and y that has continuous first
and second order partial derivatives in a domain D and satisfies Laplace’s equation
is said to be be harmonic in D.

Theorem (Harmonic Functions)

Suppose the complex function f(z) = u(x, y) + ιv(x, y) is analytic in a domain D.
Then the functions u(x, y) and v(x, y) are harmonic in D.
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Harmonic Functions

Example - Harmonic Function

Example. The function f(z) = z2 = x2 − y2 + 2xyι is entire. The functions
u(x, y) = x2 − y2 and v(x, y) = 2xy are necessarily harmonic in any domain D
of the complex plane.
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Harmonic Functions

Harmonic Conjugate Functions

If a function f(z) = u(x, y) + ιv(x, y) is analytic in a domain D, then its real
and imaginary parts u and v are necessarily harmonic in D.
Now suppose u(x, y) is a given real function that is known to be harmonic in
D. If it is possible to find another real harmonic function v(x, y) so that u and
v satisfy the C-R equations throughout the domain D, then the function
v(x, y) is called a harmonic conjugate of u(x, y).
By combining the functions as u(x, y) + ιv(x, y) we obtain a function that is
analytic in D.
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Harmonic Functions

Applications of Harmonic Functions

A wide variety of problems in engineering and physics involve harmonic
functions, which are real or the imaginary part of an analytic function. The
standard applications are

two dimensional steady state temperatures

electrostatics

fluid flows

complex potentials

And a more recent one is to the robotics.
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Harmonic Functions

Applications to Flow Problems

The complex potential w(z) canbe taken to represent any other type of
2-dimensional steady flow. In electrostatics and gravitational fields, the curves
φ(x, y) = c and ψ(x, y) = c′ are equipotential lines and lines of force. In the
heat flow problems, the curves φ(x, y) = c and ψ(x, y) = c′ are known as
isothermals and heat flow lines respectively.

Given φ(x, y), we can find ψ(x, y) and vice versa.
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Harmonic Functions

Example. Find harmonic conjugate of
u = x3 − 3xy2 − 5y
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Transformations

Some Standard Transformations

Here, it will be shown that every nonconstant complex linear mapping can be
described as a composition of three basic types of motions :

1 a translation

2 a rotation

3 a magnification

4 a reciprocal (or an inversion)
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Transformations

Translation

Definition (Translation)

A complex linear function

T (z) = z + b, b 6= 0 (3)

is called a translation. If we set z = x+ ιy and b = x0 + ιy0 in (3), then we
obtain

T (x+ ιy) = x+ x0 + ι(y + y0)

From image, we see that if we
plot (x, y) and (x+ x0, y + y0)
in the same copy of the complex
plane, then the vector
originating at (x, y) and
terminating at (x+ x0, y+ y0) is
(x0, y0), which is the vector
representation of the complex
number b, the mapping T (z) is
also called the translation by b.
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Transformations

Example. Image of a Square under
translation

Find the image S′ of the square S with vertices at 1 + ι, 2 + ι, 2 + 2ι, 1 + 2ι
under the linear mapping T (z) = z + 2− ι.
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Transformations

Rotation

Definition (Rotation)

A complex linear function
R(z) = az, |a| = 1 (4)

is called a rotation.

The condition |a| = 1 is not a major requirement. If α is any nonzero complex number, then

a = α/|α| is a complex number for which |a| = 1 and in that case R(z) =
α

|α|
z is a rotation.

If we write a = eιθ and z = reιφ in (4),
we obtain R(z) = reι(θ+φ). Modulus of
R(z) is same as z i.e. r. From the
image, it is clear that both the points
lie on a circle centred at 0 and radius
r. Clearly, the mapping R(z) = az can
be visualized in a single copy of the
complex plane as the process of
rotating the point z counterclockwise
or clockwise through an angle of θ
radians about the origin to the point
R(z) if Arg(a) > 0 or Arg(z) < 0
respectively. Thus, θ = Arg(a) is
called the angle or rotation of R.
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Transformations

Example. Image of a Line under Rotation

Find the image of the real axis y = 0 under the linear mapping

R(z) =

(
1

2

√
2 +

1

2

√
2ι

)
z
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Transformations

Magnification

Definition (Magnification)

A complex linear function
M(z) = az, a > 0 (5)

is called a magnification. If z = x+ ιy, then M(z) = az = ax+ ιay and so the image
of the point (x, y) is the point (ax, ay). Using the exponential form, we can express eq
(5) as

M(z) = a(reιθ) = (ar)eιθ (6)

Assuming a > 1, we know that both z
and M(z) have same argument θ but
different moduli. Plotting z and M(z)
in the same copy of complex plane,
then M(z) is the unique point on the
ray emanating from 0 and containing z
whose distance from 0 is ar. The point
M(z) is a times farther or closer from
the origin than z depending on
whether a > 1 or 0 < a < 1
respectively. a is called the
magnification factor of M .(BBSBEC, FGS) Functions of Complex Variables 51 / 107



Transformations

Example. Image of a Circle under
Magnification

Find the image of a circle C given by z = 2 under the mapping M(z) = 3z.
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Transformations

Reciprocal (or Inversion)

Definition (Reciprocal)

The function 1/z, whose domain is the set of all nonzero complex numbers, is
called the reciprocal function. Given z 6= 0, if we set z = reιθ, then we
obtain

w =
1

z
=

1

reιθ
=

1

r
e−ιθ (7)

Thus, the modulus of w is the
reciprocal of the modulus of z and
argument of w is negative of argument
of z. Hence, the reciprocal function
maps a point in the z-plane with the
polar co-ordinates (r, θ) onto a point
in the w-plane with the polar
co-ordinates (1/r,−θ). it is clear from
the image, that the reciprocal function
is a composition of inversion in the
unit circle followed by reflection across
the real axis.
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Transformations

Inversion in the Unit Circle

Definition (Inversion in the Unit Circle)

The function

g(z) =
1

z
eιθ (8)

whose domain is the set of all nonzero complex numbers, is called inversion in
the unit circle.

We will describe this mapping by considering separately the images of the
points

on the unit circle

outside the unit circle

inside the unit circle
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Transformations

Point on the Unit Circle

Consider a point on the unit circle. Then

z = 1.eιθ

Thus from (8), it is clear that

g(z) =
1

1
eιθ = z

Therefore, each point on the unit circle is mapped onto itself by g.
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Transformations

Point not on the Unit Circle

If, on the other hand, z is a nonzero complex number that does not lie on the
unit circle, then we can write z as z = reιθ with r 6= 1.

Case I When r > 1, (i.e. when z is outside of the unit circle), we have

|g(z)| =
∣∣∣∣1r eιθ

∣∣∣∣ =
1

r
< 1

So the image under g of a point z outside the unit circle is a point
inside the unit circle.

Case II If r < 1, (i.e. when z is inside the unit circle), then

|g(z)| = 1

r
> 1

and we conclude that image under g of a point z inside the unit
circle is a point outside the unit circle.
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Transformations

Example. Image of Semicircle
|z| = 2, 0 ≤ arg (z) ≤ π under w = 1/z
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Transformations

Example. Image of x = 1 under w = 1/z
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Conformal Transformations

Conformal Transformations

In previous sections, we saw nonconstant linear mapping acts by rotating,
magnifying and translating points in the complex plane. As a result, the angle
between any two intersecting arcs in the z-plane is equal to the angle between
the images of the arcs in the w-plane under a linear mapping. Complex
mappings that have this angle-preserving property are called Conformal
Transformations.
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Conformal Transformations

Example. NonConformal Transformations

Consider two smooth curves C1 and C2 given by z1(t) = t+ (2t− t2)ι and
z2(t) = 1 + 1

2 (t2 + 1)ι, 0 ≤ t ≤ 2, respectively. These curves intersect at
z0 = z1(1) = z2(1) = 1 + ι. Under the transformation w = z̄, the images C ′1 and
C ′2 in the w-plane are given by w1(t) = t− (2t− t2)ι and w2(t) = 1− 1

2 (t2 + 1)ι
and intersect at the point w0 = f(z0) = 1− ι.

Tangent vectors in z-plane are
z′1 = 1, z′2 = 1 + ι. Moreover, the
angle between C1 and C2 at z0 is
θ = π/4.
Tangent vectors in w-plane are
w′1 = 1, w′2 = 1− ι. Also, the
angle between C ′1 and C ′2 at w0 is
φ = π/4.
Thus, the angles are equal in
magnitude.
However, the rotation in z-plane
is counterclockwise whereas in
w-plane it is clockwise, thus θ and
φ are not same in sense.(BBSBEC, FGS) Functions of Complex Variables 60 / 107



Conformal Transformations

Conformal Transformations

Definition

Let w = f(z) be a complex mapping defined in a domain D and let z0 be a
point in D. Then we say that w = f(z) is conformal at z0 if for every pair of
smooth oriented curves C1 and C2 in D intersecting at z0 the angle between
C1 and C2 at z0 is equal to the angle between the image curves C ′1 and C ′2 at
f(z0) in both magnitude and sense.
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Bilinear Transformations

Bilinear Transformations

In many applications that involve boundary-value problems associated with
Laplace’s equation, it is necessary to find a conformal mapping that maps a
disk onto the half-plane v ≥ 0. Such a mapping would have to map the
circular boundary of the disk to the boundary line of the half-plane. An
important class of elementary conformal mappings that map circles to lines
(and vice versa) are the linear fractional transformations or Mobius
transformations or bilinear transformations.
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Bilinear Transformations

Bilinear Transformations

Definition (Bilinear Transformation)

If a, b, c, d are complex constants with ad− bc 6= 0, then the complex function
defined by

T (z) =
az + b

cz + d
(9)

is called a Bilinear transformation.

If c = 0, then the transformation given by (9) is a linear mapping and so a
linear mapping is a special case of a bilinear transformation.
If c 6= 0, then we can write

T (z) =
az + b

cz + d
=
bc− ad

c

1

cz + d
+
a

c
(10)

It is clear from (10) is a combination of all the basic transformations studied
earlier.

(BBSBEC, FGS) Functions of Complex Variables 63 / 107



Bilinear Transformations

Bilinear Transformations

The domain of a bilinear transformation T given by (9) is the set of all
complex z such that z 6= −d/c. Furthermore, since

T ′(z) =
ad− bc

(cz + d)2

where ad− bc 6= 0, linear transformations are conformal on their domains.
Also that T is a one-to-one function on its domain.
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Bilinear Transformations

Cross Ratio

In applications we often need to find a conformal mapping from a domain D
that is bounded by circles onto a domain D′ that is bounded by lines. Bilinear
transformations are particularly well-suited for such applications. However, in
order to use them, we must determine a general method to construct a
bilinear transformation w = T (z), which maps three given distinct points
z1, z2, z3 on the boundary of D to three given distict points w1, w2, w3 on the
boundary of D′. This is accomplished using the cross-ratio.
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Bilinear Transformations

Cross-Ratio

Definition

The cross-ratio of the complex numbers z, z1, z2, z3 is the complex number

z − z1

z − z3

z2 − z3

z2 − z1
(11)

When computing a cross-ratio, we must be careful with the order of the
complex numbers.
The cross-ratio of ∞, z1, z2, z3 is defined as the limit as given below:

lim
z→∞

z − z1

z − z3

z2 − z3

z2 − z1
(12)
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Bilinear Transformations

Cross-Ratios and Bilinear Transformations

Theorem

If w = T (z) is a bilinear transformation that maps the distint points z1, z2, z3

onto the distinct points w1, w2, w3 respectively, then

z − z1

z − z3

z2 − z3

z2 − z1
=
w − w1

w − w3

w2 − w3

w2 − w1
(13)

for all z.
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Bilinear Transformations

Example. Bilinear Transformation

Construct a bilinear transformation that maps the points 1, ι,−1 on the unit
circle |z| = 1 onto the points −1, 0, 1 on the real axis. Determine the image of
the interior of |z| < 1 under this transformation.
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Bilinear Transformations

Example. Bilinear Transformation

Construct a bilinear transformation that maps the points −ι, 1,∞ on the line
y = x− 1 onto the points 1, ι,−1 on the real axis.
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Complex Integrals

Curves Revisited

Suppose the continuous real-valued functions x = x(t), y = y(t), a ≤ t ≤ b are
parametric equations of a curve C in the complex plane. If we use these
equations as the real and imaginary parts in z = x+ ιy then we can describe
the points z on C by means of a complex-valued function of a real variable t
called a parametrization of C:

z(t) = x(t) + ιy(t), a ≤ t ≤ b (14)

For example, the parametric equations x = cos t, y = sin t, 0 ≤ t ≤ 2π,
describe a unit circle centered at origin. A parametrization of this circle is
z(t) = cos t+ ι sin t or z(t) = eιt, 0 ≤ t ≤ 2π.

The point z(a) = x(a) + ιy(a) or
A = (x(a), y(a)) is called the initial
point of C and z(b) = x(b) + ιy(b) or
B = (x(b), y(b)) is called the terminal
point of C. z(a) and Z(b) are
interpreted as position vectors. As t
varies from t = a to t = b we can
envision the curve C being traced out
by the moving arrowhead of z(t).
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Complex Integrals

Contours

Supppose the derivative of (14) is z′(t) = x′(t) + ιy′(t). We say a curve C in the complex
plane is smooth if z′(t) is continuous and never zero in the interval a ≤ t ≤ b, as shown in
Figure (a), the vector z′(t) is tangent to C at P . Thus, a smooth curve has continuously
turning tangent, i.e. a smooth curve can have no sharp corners or cusps.

A piecewise smooth curve C has a
continuously turning tangent,
except possibly at the points
where the component smooth
curves C1, C2, · · · , Cn are joined
together.
A curve C is said to be simple if
z(t1) 6= z(t2), t1 6= t2, except
possibly for t = a and t = b.
C is called a closed curve if
z(a) = z(b).
C is called a simple closed curve if
z(t1) 6= z(t2), t1 6= t2 and
z(a) = z(b).
In complex analysis, a piecewise
smooth curve C is called a
contour or path.
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Complex Integrals

Complex Integral

Definition (Complex Integral)

An integral of a function f of a complex variable z that is defined on a

contour C is denoted by

∫
C

f(z)dz and is called a complex integral.
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Complex Integrals

Evaluation of a Contour Integral

If f is continuous on a smooth curve C given by the parametrization
z(t) = x(t) + ιy(t), a ≤ t ≤ b then∫

C

f(z)dz =

∫ b

a

f(z(t))z′(t)dt (15)
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Complex Integrals

Example. Evaluating a Contour Integral

Example. Evaluate
∫
C
z̄dz, where C is given by x = 3t, y = t2, −1 ≤ t ≤ 4.

Solution. The parametrization of C is z(t) = 3t+ ιt2.
Thus, we have f(z) = z̄ = 3t− ιt2.
Also, z′(t) = 3 + 2ιt and thus the integral becomes,∫

C

z̄dz =

∫ 4

−1

(3t− ιt2)(3 + 2ιt)dt =

∫ 4

−1

[2t3 + 9t+ 3t2ι]dt

=

(
1

2
t4 +

9

2
t2
) ∣∣4
−1 + ιt3

∣∣4
−1

= 195 + 65ι (16)
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Complex Integrals

Properties of Contour Integrals

Theorem (Properties of Contour Integrals)

Suppose the functions f and g are continous in domain D and C is smooth
curve lying entirely in D. Then∫

c

kf(z)dz = k

∫
C

f(z)dz, k is a complex constant.∫
c

[f(z) + g(z)]dz =

∫
C

f(z)dz +

∫
C

g(z)dz∫
c

f(z)dz =

∫
C1

f(z)dz +

∫
C2

f(z)dz, where C consists of the smooth

curves C1 and C2 joined end to end.∫
−c
f(z)dz = −

∫
C

f(z)dz, where −C denotes the curve having opposite

orientation of C.
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Complex Integrals

Example. Contour Integration

Example. Evaluate I =

∫
C

(x2 + ιy2)dz, where C is the contour shown in

figure.
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Complex Integrals

Simply and Multiply Connected Domains

Definition

A domain D is simply connected if every simple closed contour C lying
entirely in D can be shrunk to a point without leaving D.

A simply connected domain has no “holes” in it. The entire complex plane is
an example of a simply connected domain; the annulus defined by 1 < |z| < 2
is not simply connected.

Definition

A domain that is not simply connected is called a multiply connected domain;
that is, a multiply connected domain has “holes” in it.

A domain with one “hole” is called doubly connected, a domain with two
holes is called triply connected and so on.
The open disc defined by |z| < 2 is a simply connected domain; the open
circular annulus defined by 1 < |z| < 2 is a doubly connected domain.
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Complex Integrals

Cauchy’s Theorem

Theorem (Cauchy’s Theorem)

If f(z) is an analytic function and f ′(z) is continuous at each point within

and on a closed curve C, then

∫
C

f(z)dz = 0.
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Complex Integrals

Cauchy-Goursat Theorem

In 1883, the French mathematician Edouard Goursat proved that the
assumption of continuity of f ′ is not necessary to reach the conclusion of
Cauchy’s theorem. The resulting modified version of Cauchy’s theorem is
known today as the Cauchy-Goursat Theorem.

Theorem (Cauchy-Goursat Theorem)

Suppose that a function f is analytic in a simply connected domain D. Then

for every simple closed contour C in D,

∮
C

f(z)dz = 0.
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Complex Integrals

Observation

If C,C1, C2 are simple closed contours as shown in figure (a) and if f is
analytic on each of the three contours as well as at each point interior to C
but exterior to both C1 and C2, then by introducing crosscuts between C1 and
C and between C2 and C, as illustrated in figure (b), it follows from the
theorem that

∮
C

f(z)dz+

∮
C1

f(z)dz+

∮
C2

f(z)dz = 0

and so

∮
C

f(z)dz =

∮
C1

f(z)dz +

∮
C2

f(z)dz
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Complex Integrals

Consequences of Cauchy-Goursat Theorem

The most significant consequences of Cauchy-Goursat Theorem are:

The value of an analytic function f at any point Z0 in a simply connected
domain can be represented by a contour integral.

An analytic function f in a simply connected domain possesses
derivatives of all orders.
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Complex Integrals

Cauchy’s Integral Formula

Theorem (Cauchy’s Integral Formula)

If f(z) is analytic within and on a closed curve and if z0 is any point within
C, then

f(z0) =
1

2πι

∮
C

f(z)

z − z0
dz (17)
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Complex Integrals

Corollary

Differentiating both the sides of (17) w.r.t. z0, we get

f ′(z0) =
1

2πι

∮
C

∂

∂z0

[
f(z)

z − z0

]
dz =

1

2πι

∮
C

f(z)

(z − z0)2
dz(18)

Similarly f ′′(z0) =
2!

2πι

∮
C

f(z)

(z − z0)3
dz (19)

In general f (n)(z0) =
n!

2πι

∮
C

f(z)

(z − z0)n+1
dz (20)

Thus, it follows from the results (17) to (20) that if a function f(z) is
known to be analytic on the simple closed curve C then the values of the
function and all its derivatives can be found at any point of C.

Incidently, a remarkable fact is established that an analytic function
possesses derivatives of all orders and these are themselves all analytic.
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Complex Integrals

Example

Example. Evaluate I =

∮
C

(z − a)−1dz, where C is a simple closed curve and

the point z = a is (i) outside C, (ii) inside C.
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Complex Integrals

Example

Example. Evaluate

∮
C

dz

(z − a)n
dz, n = 2, 3, 4, · · · where C is a closed curve

containing the point z = a.
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Complex Integrals

Example

Example. Use Cauchy’s integral formula to evaluate I =

∮
C

3z2 + 7z + 1

z + 1
dz,

where C is |z| = 1

2
.
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Complex Integrals

Example

Example. Use Cauchy’s integral formula to evaluate I =

∮
C

2z + 1

z2 + z
dz, where

C is |z| = 1

2
.
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Complex Integrals

Example

Example. Use Cauchy’s integral formula to evaluate I =

∮
C

ez

(z + 1)2
dz, where

C is |z − 1| = 3.
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Complex Integrals

Example

Example. Use Cauchy’s integral formula to evaluate f(2) and f(3) where

f(a) =

∮
C

2z2 − z − 2

z − a
dz and C is |z| = 2.5.

(BBSBEC, FGS) Functions of Complex Variables 89 / 107



Series of Complex Terms

Taylor’s Series

Theorem (Taylor’s Series)

If f(z) is analytic inside a circle C with centre at z0, then for any z inside C,

f(z) = f(z0)+f ′(z0)(z−z0)+
f ′′(z0)

2!
(z−z0)2+· · ·+ f (n)(z0)

n!
(z−z0)n+· · · (21)
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Series of Complex Terms

Laurent’s Series

Theorem (Laurent’s Series)

If f(z) is analytic in the ring-shaped region R bounded by two concentric
circles C and C1 of radii r and r1 (r > r1) and with centre at z0, then for all
z in R,

f(z) = a0+a1(z−z0)+a2(z−z0)2+· · ·+a−1(z−z0)−1+a−2(z−z0)−2+· · · (22)

where an =
1

2πι

∫
Γ

f(t)

(t− z0)n+1
dt

Γ being any curve in R, encircling C1
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Series of Complex Terms

Example. Taylor Series

Example. Expand the function f(z) =
1

z
about z = 2 in Taylor’s series.

Obtain its radius of convergence.
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Series of Complex Terms

Example. Taylor Series

Example. Obtain the Taylor series expansion of f(z) =
1

z2 + (1 + 2ι)z + 2ι
about z = 0. Also find its radius.
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Series of Complex Terms

Zeros of an Analytic Function

Definition (Zeros of an Analytic Function)

A zero of an analytic function f(z) is that value of z for which f(z) = 0. If
f(z) is analytic in the neighbourhood of the point z = a, then by Taylor’s
theorem

f(z) = a0 +a1(z−a) +a2(z−a)2 + · · ·+an(z−a)n+ · · · , where an =
f (n)(a)

n!

If a0 = a1 = · · · = am−1 = 0 but am 6= 0, then f(z) is said to have a zero of
order m at z = a. When m = 1, the zero is said to be simple.
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Series of Complex Terms

Singularities of an Analytic Function

Definition (Singularities of an Analytic Function)

A singular point of a function is the point at which the function ceases to be
analytic.

Definition (Isolated Singularity)

If z = a is a singularity of f(z) such that f(z) is analytic at each point in its
neighbourhood (i.e. there exists a circle with centre a which has no other
singularity), then z = a is caled an isolated singularity. In such a case, f(z)
can be expanded in a Laurent’s series around z = a, giving

f(z) = a0 +a1(z−a)+a2(z−a)2 + · · ·+a−1(z−a)−1 +a−2(z−a)−2 + · · · (23)
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Series of Complex Terms

Singularities of an Analytic Function

Definition (Removable Singularity)

If all the negative powers of z − a in (23) are zero, then f(z) =
∞∑
n=0

an(z − a)n.

Here, the singularity can be removed by defining f(z) at z = a in such a way
that it becomes analytic at z = a. Such a singularity is called removable
singularity.
Thus is lim

z→a
f(z) exists finitely, then z = a is a removable singularity.

Definition (Poles)

If all the negative powers of z − a in (23) after the nth are missing, then the
singularity at z = a is called a pole of order n. A pole of first order is called a
simple pole.

Definition (Essential Singularity)

If the number of negative powers of z − a is (23) is infinite, then z = a is called
an essential singularity. In this case, lim

z→a
f(z) does not exist.

(BBSBEC, FGS) Functions of Complex Variables 96 / 107



Residues and Residue Theorem

Residues and Residue Theorem

If a complex function f has an isolated singularity at a point z0, then f has a
Laurent series representation

f(z) =

∞∑
k=−∞

ak(z − z0)k = · · ·+ a−2

(z − z0)2
+

a−1

z − z0
+ a0 + a1(z − z0) + · · ·

which converges for all z near z0.

Definition (Residue)

The coefficient a−1 of 1/(z − z0) in the Laurent series given above is called the
residue of the function f at the isolated singularity z0. We shall use the
notation

a−1 = Res(f(z), z0)

to denote the residue of f at z0.
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Residues and Residue Theorem

Example

Consider the function f(z) =
1

(z − 1)2(z − 3)
.
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Residues and Residue Theorem

Residue at Pole or order 1 or n

Definition (Residue at a Simple Pole)

If f has a simple pole at z = z0, then

Res(f(z), z0) = lim
z→z0

(z − z0)f(z) (24)

Definition (Residue at a Pole of order n)

If f has a pole of order n at z = z0, then

Res(f(z), z0) =
1

(n− 1)!
lim
z→z0

dn−1

dzn−1
(z − z0)nf(z) (25)
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Residues and Residue Theorem

Example. Residue at a pole

Example. Consider the function f(z) =
1

(z − 1)2(z − 3)
has a simple pole at

z = 3 and a pole of order 2 at z = 1.
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Residues and Residue Theorem

Cauchy’s Residue Theorem

Theorem (Cauchy’s Residue Theorem)

Let D be a simply connected domain and C a simple closed contour lying
entirely within D. If a function f is analytic on and within C, except at a
finite number of isolated singular points z1, z2, · · · , zn within C, then∮

C

f(z)dz = 2πι

n∑
k=1

Res(f(z), zk) (26)
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Residues and Residue Theorem

Example.

Example. Evaluate

∮
C

1

(z − 1)2(z − 3)
dz, where

(a) the contour C is the rectangle defined by x = 0, x = 4, y = −1, y = 1
(b) the contour C is the circle |z| = 2.
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Residues and Residue Theorem

Example.

Example. Evaluate

∮
C

2z + 6

z2 + 4
dz, where the contour C is the circle |z − ι| = 2.
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Residues and Residue Theorem

Example.

Example. Evaluate∮
C

ez

z4 + 5z3
dz, where C : |z| = 2.∮

C

tan zdz, where C : |z| = 2.∮
C

1

z sin z
dz, where C : |z − 2ι| = 1.
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Evaluation of Real Integrals

Evaluation of Real Integrals

The basic idea here is to convert a real trigonometric integral of form∫ 2π

0

F (cos θ, sin θ)dθ into a complex integral, where the contour C is the unit

circle |z| = 1 centered at the origin.

Put z = eιθ. Then dz = ιeιθdθ, cos θ =
eιθ + e−ιθ

2
, sin θ =

eιθ − e−ιθ

2ι
. Thus,

we may write dθ =
dz

ιz
, cos θ =

1

2
(z + z−1), sin θ =

1

2ι
(z − z−1). Thus, the

given integral can be written as∮
C

F

(
1

2
(z + z−1),

1

2ι
(z − z−1)

)
dz

ιz

where C is the unit circle |z| = 1.
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Evaluation of Real Integrals

Example

Example. Evaluate∫ 2π

0

1

(2 + cos θ)2
dθ∫ 2π

0

cos θ

3 + sin θ
dθ∫ 2π

0

sin2 θ

5 + 4 cos θ
dθ
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Evaluation of Real Integrals

THANK YOU!!
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