
BİL744 Derleyici Gerçekleştirimi  (Compiler Design) 1

Course Outline

• Introduction to Compiling

• Lexical Analysis

• Syntax Analysis
– Context Free Grammars

– Top-Down Parsing, LL Parsing

– Bottom-Up Parsing, LR Parsing

• Syntax-Directed Translation
– Attribute Definitions

– Evaluation of Attribute Definitions

• Semantic Analysis, Type Checking

• Run-Time Organization

• Intermediate Code Generation



BİL744 Derleyici Gerçekleştirimi  (Compiler Design) 2

COMPILERS

• A compiler is a program takes a program written in a source language 

and translates it into an equivalent program in a target language.

source program            COMPILER          target program

error messages

( Normally a program written in 

a high-level programming language)

( Normally the equivalent program in

machine code – relocatable object file)



BİL744 Derleyici Gerçekleştirimi  (Compiler Design) 3

Other Applications

• In addition to the development of a compiler, the techniques used in 

compiler design can be applicable to many problems in computer 

science.
– Techniques used in a lexical analyzer can be used in text editors, information retrieval 

system, and pattern recognition programs.

– Techniques used in a parser can be used in a query processing system such as SQL.

– Many software having a complex front-end may need techniques used  in compiler design.

• A symbolic equation solver which takes an equation as input. That program should parse           

the given input equation.

– Most of the techniques used in compiler design  can be used in Natural Language 

Processing (NLP) systems.



BİL744 Derleyici Gerçekleştirimi  (Compiler Design) 4

Major Parts of Compilers

• There are two major parts of a compiler: Analysis and Synthesis

• In analysis phase, an intermediate representation is created from the 

given source program. 
– Lexical Analyzer, Syntax Analyzer and Semantic Analyzer are the parts of this phase.

• In synthesis phase, the equivalent target program is created from this 

intermediate representation. 
– Intermediate Code Generator, Code Generator, and Code Optimizer are the parts of this 

phase.



BİL744 Derleyici Gerçekleştirimi  (Compiler Design) 5

Phases of A Compiler

Lexical 

Analyzer

Semantic 

Analyzer

Syntax 

Analyzer

Intermediate

Code Generator

Code 

Optimizer

Code

Generator

Target

Program
Source

Program

• Each phase transforms the source program from one representation 

into another representation.

• They communicate with error handlers.

• They communicate with the symbol table.



BİL744 Derleyici Gerçekleştirimi  (Compiler Design) 6

Lexical Analyzer

• Lexical Analyzer reads the source program character by character and 
returns the tokens of the source program.

• A token describes a pattern of characters having same meaning in the 
source program. (such as identifiers, operators, keywords, numbers, 
delimeters and so on)

Ex: newval := oldval + 12         =>   tokens:  newval  identifier

:= assignment operator

oldval identifier

+ add operator

12 a number

• Puts information about identifiers into the symbol table.

• Regular expressions are used to describe tokens (lexical constructs).

• A (Deterministic) Finite State Automaton can be used in the 
implementation of a lexical analyzer.



BİL744 Derleyici Gerçekleştirimi  (Compiler Design) 7

Syntax Analyzer

• A Syntax Analyzer creates the syntactic structure (generally a parse 

tree) of the given program.

• A syntax analyzer is also called as a parser.

• A parse tree describes a syntactic structure.

assgstmt

identifier := expression

newval expression     +        expression

identifier number

oldval                           12

• In a parse tree, all terminals are at leaves.

• All inner nodes are non-terminals in 

a context free grammar. 



BİL744 Derleyici Gerçekleştirimi  (Compiler Design) 8

Syntax Analyzer (CFG)

• The syntax of a language is specified by a context free grammar

(CFG).

• The rules in a CFG are mostly recursive.

• A syntax analyzer checks whether a given program satisfies the rules 

implied by a CFG or not.
– If it satisfies, the syntax analyzer creates a parse tree for the given program.

• Ex: We use BNF (Backus Naur Form) to specify a CFG

assgstmt     ->  identifier  := expression

expression  ->  identifier

expression  ->  number

expression  ->  expression  +  expression



BİL744 Derleyici Gerçekleştirimi  (Compiler Design) 9

Syntax Analyzer versus Lexical Analyzer

• Which constructs of a program should be recognized by the lexical 

analyzer, and which ones by the syntax analyzer?
– Both of them do similar things; But the lexical analyzer deals with simple non-recursive 

constructs of the language.

– The syntax analyzer deals with recursive constructs of the language.

– The lexical analyzer simplifies the job of the syntax analyzer.

– The lexical analyzer recognizes the smallest meaningful units (tokens) in a source program.

– The syntax analyzer works on the smallest meaningful units (tokens) in a source program to 

recognize meaningful structures in our programming language.



BİL744 Derleyici Gerçekleştirimi  (Compiler Design) 10

Parsing Techniques

• Depending on how the parse tree is created, there are different parsing 
techniques.

• These parsing techniques are categorized into two groups: 

– Top-Down Parsing, 

– Bottom-Up Parsing

• Top-Down Parsing:
– Construction of the parse tree starts at the root, and proceeds towards the leaves.

– Efficient top-down parsers can be easily constructed by hand.

– Recursive Predictive Parsing, Non-Recursive Predictive Parsing (LL Parsing).

• Bottom-Up Parsing:
– Construction of the parse tree starts at the leaves, and proceeds towards the root.

– Normally efficient bottom-up parsers are created with the help of some software tools.

– Bottom-up parsing is also known as shift-reduce parsing.

– Operator-Precedence Parsing – simple, restrictive, easy to implement 

– LR Parsing – much general form of shift-reduce parsing, LR, SLR, LALR



BİL744 Derleyici Gerçekleştirimi  (Compiler Design) 11

Semantic Analyzer

• A semantic analyzer checks the source program for semantic errors and 

collects the type information for the code generation.

• Type-checking is an important part of semantic analyzer.

• Normally semantic information cannot be represented by a context-free 

language used in syntax analyzers.

• Context-free grammars used in the syntax analysis are integrated with 

attributes (semantic rules)  
– the result is a syntax-directed translation, 

– Attribute grammars

• Ex:
newval  :=  oldval  +  12

• The type of the identifier newval must match with type of the expression (oldval+12)



BİL744 Derleyici Gerçekleştirimi  (Compiler Design) 12

Intermediate Code Generation

• A compiler may produce an explicit intermediate codes representing  

the source program.

• These intermediate codes are generally machine (architecture 

independent). But the level of intermediate codes is close to the level   

of machine codes.

• Ex:
newval  :=  oldval * fact + 1

id1  :=  id2 * id3 + 1

MULT  id2,id3,temp1 Intermediates Codes (Quadraples)

ADD temp1,#1,temp2

MOV temp2,,id1



BİL744 Derleyici Gerçekleştirimi  (Compiler Design) 13

Code Optimizer (for Intermediate Code Generator)

• The code optimizer optimizes the code produced by the intermediate 

code generator in the terms of time and space.

• Ex:

MULT  id2,id3,temp1

ADD temp1,#1,id1



BİL744 Derleyici Gerçekleştirimi  (Compiler Design) 14

Code Generator

• Produces the target language in a specific architecture.

• The target program is normally is a relocatable object file containing  

the machine codes.

• Ex:   

( assume that we have an architecture with instructions whose at least one of its operands is

a machine register)

MOVE id2,R1

MULT id3,R1

ADD #1,R1

MOVE R1,id1



Chapter 3

Lexical Analysis



Outline
 Role of lexical analyzer

 Specification of tokens

 Recognition of tokens

 Lexical analyzer generator

 Finite automata

 Design of lexical analyzer generator



The role of lexical analyzer

Lexical 
Analyzer

Parser
Source

program

token

getNextToken

Symbol
table

To semantic

analysis



Why to separate Lexical analysis 
and parsing
1. Simplicity of design 

2. Improving compiler efficiency

3. Enhancing compiler portability



Tokens, Patterns and Lexemes
 A token is a pair a token name and an optional token 

value

 A pattern is a description of the form that the lexemes 
of a token may take

 A lexeme is a sequence of characters in the source 
program that matches the pattern for a token



Example

Token Informal description Sample lexemes

if

else

comparison

id

number

literal

Characters i, f

Characters e, l, s, e

< or > or <= or >= or == or !=

Letter followed by letter and digits

Any numeric constant

Anything but “ sorrounded by “

if

else

<=, !=

pi, score, D2

3.14159, 0, 6.02e23

“core dumped”

printf(“total = %d\n”, score);



Attributes for tokens
 E = M * C ** 2

 <id, pointer to symbol table entry for E>
 <assign-op>
 <id, pointer to symbol table entry for M>
 <mult-op>
 <id, pointer to symbol table entry for C>
 <exp-op>
 <number, integer value 2>



Lexical errors
 Some errors are out of power of lexical analyzer to 

recognize:

 fi (a == f(x)) …

 However it may be able to recognize errors like:

 d = 2r

 Such errors are recognized when no pattern for tokens 
matches a character sequence



Error recovery
 Panic mode: successive characters are ignored until we 

reach to a well formed token

 Delete one character from the remaining input

 Insert a missing character into the remaining input

 Replace a character by another character

 Transpose two adjacent characters



Input buffering
 Sometimes lexical analyzer needs to look ahead some 

symbols to decide about the token to return

 In C language: we need to look after -, = or < to decide 
what token to return

 In Fortran: DO 5 I = 1.25

 We need to introduce a two buffer scheme to handle 
large look-aheads safely

E   =   M *  C * * 2 eof



Sentinels

Switch (*forward++) {

case eof:

if (forward is at end of first buffer) {

reload second buffer;

forward = beginning of second buffer;

}

else if {forward is at end of second buffer) {

reload first buffer;\

forward = beginning of first buffer;

}

else /* eof within a buffer marks the end of input */

terminate lexical analysis;

break;

cases for the other characters;

}

E   =   M eof *  C * * 2 eof eof



Specification of tokens
 In theory of compilation regular expressions are used 

to formalize the specification of tokens

 Regular expressions are means for specifying regular 
languages

 Example:
 Letter_(letter_ | digit)*

 Each regular expression is a pattern specifying the 
form of strings



Regular expressions
 Ɛ is a regular expression, L(Ɛ) = {Ɛ}

 If a is a symbol in ∑then a is a regular expression, L(a) 
= {a}

 (r) | (s) is a regular expression denoting the language 
L(r) ∪ L(s)

 (r)(s) is a regular expression denoting the language 
L(r)L(s)

 (r)* is a regular expression denoting (L9r))*

 (r) is a regular expression denting L(r)



Regular definitions
d1 -> r1

d2 -> r2

…

dn -> rn

 Example:

letter_ -> A | B | … | Z | a | b | … | Z | _

digit -> 0 | 1 | … | 9

id -> letter_ (letter_ | digit)*



Extensions
 One or more instances: (r)+

 Zero of one instances: r?

 Character classes: [abc]

 Example:

 letter_  -> [A-Za-z_]

 digit     -> [0-9]

 id          -> letter_(letter|digit)*



Recognition of tokens
 Starting point is the language grammar to understand 

the tokens:

stmt -> if expr then stmt

|  if expr then stmt else stmt

| Ɛ

expr -> term relop term

|  term

term -> id

|  number



Recognition of tokens (cont.)
 The next step is to formalize the patterns:

digit -> [0-9]

Digits -> digit+

number -> digit(.digits)? (E[+-]? Digit)?

letter  -> [A-Za-z_]

id -> letter (letter|digit)*

If -> if

Then -> then

Else -> else

Relop -> < | > | <= | >= | = | <>

 We also need to handle whitespaces:

ws -> (blank | tab | newline)+



Transition diagrams
 Transition diagram for relop



Transition diagrams (cont.)
 Transition diagram for reserved words and identifiers



Transition diagrams (cont.)
 Transition diagram for unsigned numbers



Transition diagrams (cont.)
 Transition diagram for whitespace



Architecture of a transition-
diagram-based lexical analyzer

TOKEN getRelop()

{

TOKEN retToken = new (RELOP)

while (1) { /* repeat character processing until a

return or failure occurs */

switch(state) {

case 0: c= nextchar();

if (c == ‘<‘) state = 1;

else if (c == ‘=‘) state = 5;

else if (c == ‘>’) state = 6;

else fail(); /* lexeme is not a relop */

break;

case 1: …

…

case 8: retract();

retToken.attribute = GT;

return(retToken);

}



Lexical Analyzer Generator - Lex

Lexical 
Compiler

Lex Source program

lex.l
lex.yy.c

C
compiler

lex.yy.c a.out

a.outInput stream Sequence 

of tokens



Structure of Lex programs

declarations

%%

translation rules

%%

auxiliary functions

Pattern    {Action}



Example
%{

/* definitions of manifest constants

LT, LE, EQ, NE, GT, GE,

IF, THEN, ELSE, ID, NUMBER, RELOP */

%}

/* regular definitions

delim [ \t\n]

ws {delim}+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?(E[+-]?{digit}+)?

%%

{ws} {/* no action and no return */}

if {return(IF);}

then {return(THEN);}

else {return(ELSE);}

{id} {yylval = (int) installID(); return(ID); }

{number} {yylval = (int) installNum(); return(NUMBER);}

…

Int installID() {/* funtion to install the 
lexeme, whose first character is 
pointed to by yytext, and whose 
length is yyleng, into the symbol 
table and return a pointer thereto 
*/

}

Int installNum() { /* similar to 
installID, but puts numerical 
constants into a separate table */

}



26

Finite Automata
 Regular expressions = specification

 Finite automata = implementation

 A finite automaton consists of

 An input alphabet 

 A set of states S

 A start state n

 A set of accepting states F  S

 A set of transitions  state input state



27

Finite Automata
 Transition

s1 
a s2

 Is read

In state s1 on input “a” go to state  s2

 If end of input

 If in accepting state => accept, othewise => reject

 If no transition possible => reject



28

Finite Automata State Graphs
 A state

• The start state

• An accepting state

• A transition
a



29

A Simple Example
 A finite automaton that accepts only “1”

 A finite automaton accepts a string if we can follow 
transitions labeled with the characters in the string 
from the start to some accepting state

1



30

Another Simple Example
 A finite automaton accepting any number of 1’s 

followed by a single 0

 Alphabet: {0,1}

 Check that “1110” is accepted but “110…” is not 

0

1



31

And Another Example
 Alphabet {0,1}

 What language does this recognize?

0

1

0

1

0

1



32

And Another Example
 Alphabet still { 0, 1 }

 The operation of the automaton is not completely 
defined by the input

 On input “11” the automaton could be in either state 

1

1



33

Epsilon Moves
 Another kind of transition: -moves



• Machine can move from state A to state B 
without reading input

A B



34

Deterministic and 
Nondeterministic Automata
 Deterministic Finite Automata (DFA)

 One transition per input per state

 No -moves

 Nondeterministic Finite Automata (NFA)

 Can have multiple transitions for one input in a given 
state

 Can have -moves

 Finite automata have finite memory

 Need only to encode the current state



35

Execution of Finite Automata
 A DFA can take only one path through the state graph

 Completely determined by input

 NFAs can choose

 Whether to make -moves

 Which of multiple transitions for a single input to take



36

Acceptance of NFAs
 An NFA can get into multiple states

• Input:

0

1

1

0

1 0 1

• Rule: NFA accepts if it can get in a final state



37

NFA vs. DFA (1)
 NFAs and DFAs recognize the same set of languages 

(regular languages)

 DFAs are easier to implement

 There are no choices to consider



38

NFA vs. DFA (2)
 For a given language the NFA can be simpler than the 

DFA

0
1

0

0

0
1

0

1

0

1

NFA

DFA

• DFA can be exponentially larger than NFA



39

Regular Expressions to Finite 
Automata
 High-level sketch

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven 
Implementation of DFA



40

Regular Expressions to NFA (1)
 For each kind of rexp, define an NFA

 Notation: NFA for rexp A        

A

• For 


• For input a
a



41

Regular Expressions to NFA (2)
 For AB

A B


• For A | B

A

B











42

Regular Expressions to NFA (3)
 For A*

A








43

Example of RegExp -> NFA 
conversion
 Consider the regular expression

(1 | 0)*1

 The NFA is



1
C E

0
D F




B





G







A H
1

I J



44

Next

Regular
expressions

NFA

DFA

Lexical
Specification

Table-driven 
Implementation of DFA



45

NFA to DFA. The Trick
 Simulate the NFA

 Each state of resulting DFA 

= a non-empty subset of states of the NFA

 Start state 

= the set of NFA states reachable through -moves from 
NFA start state

 Add a transition S a S’ to DFA iff

 S’ is the set of NFA states reachable from the states in S 
after seeing the input a

 considering -moves as well



46

NFA -> DFA Example

1

0
1

 













A B
C

D

E

F
G H I J

ABCDHI

FGABCDHI

EJGABCDHI

0

1

0

1
0 1



47

NFA to DFA. Remark
 An NFA may be in many states at any time

 How many different states ?

 If there are N states, the NFA must be in some subset 
of those N states

 How many non-empty subsets are there?

 2N - 1 = finitely many, but exponentially many



48

Implementation
 A DFA can be implemented by a 2D table T

 One dimension is “states”

 Other dimension is “input symbols”

 For every transition Si 
a Sk define T[i,a] = k

 DFA “execution”

 If in state Si and input a, read T[i,a] = k and skip to state 
Sk

 Very efficient



49

Table Implementation of a DFA

S

T

U

0

1

0

1
0 1

0 1

S T U

T T U

U T U



50

Implementation (Cont.)
 NFA -> DFA conversion is at the heart of tools such as 

flex or jflex

 But, DFAs can be huge

 In practice, flex-like tools trade off speed for space in 
the choice of NFA and DFA representations



Readings
 Chapter 3 of the book



 One or more non terminal symbols
◦ Lexically distinguished, e.g. upper case

 Terminal symbols are actual characters in the 
language
◦ Or they can be tokens in practice

 One non-terminal is the distinguished start 
symbol.



 Non-terminal ::= sequence
◦ Where sequence can be non-terminals or terminals

 At least some rules must have ONLY 
terminals on the right side



 S ::= (S) 

 S ::= <S>

 S ::= (empty)

 This is the language D2, the language of two 
kinds of balanced parens
◦ E.g. ((<<>>))

 Well not quite D2, since that should allow 
things like (())<>



 So add the rule
◦ S ::= SS

 And that is indeed D2

 But this is ambiguous
◦ ()<>() can be parsed two ways

◦ ()<> is an S and () is an S

◦ () is an S and <>() is an S

 Nothing wrong with ambiguous grammars



 Properly attributed to Sanskrit scholars

 An extension of CFG with
◦ Optional constructs in []

◦ Sequences {} = 0 or more

◦ Alternation |

 All these are just short hands



 IF ::= if EXPR then STM [else STM] fi
◦ IF ::= if EXPR then STM fi
◦ IF ::= if EXPR then STM else STM fi

 STM ::= IF | WHILE
◦ STM ::= IF
◦ STM ::= WHILE

 STMSEQ ::= STM {;STM}
◦ STMSEQ ::= STM
◦ STMSEQ ::= STM ; STMSEQ



 Expressed as a CFG where the grammar is 
closely related to the semantics

 For example
◦ EXPR ::= PRIMARY {OP | PRIMARY}
◦ OP ::= + | *

 Not good, better is
◦ EXPR ::= TERM | EXPR + TERM
◦ TERM ::= PRIMARY | TERM * PRIMARY

 This implies associativity and precedence



 No point in using BNF for tokens, since no 
semantics involved
◦ ID ::= LETTER | LETTER ID

 Is actively confusing since the BC of ABC is 
not an identifier, and anyway there is no tree 
structure here

 Better to regard ID as a terminal symbol. In 
other words grammar is a grammar of 
tokens, not characters



 A Grammar with a starting symbol naturally 
indicates a tree representation of the 
program

 Non terminal on left is root of tree node

 Right hand side are descendents

 Leaves read left to right are the terminals that 
give the tokens of the program



 Given a grammar of tokens

 And a sequence of tokens

 Construct the corresponding parse tree

 Giving good error messages



 Not known to be easier than matrix 
multiplication
◦ Cubic, or more properly n**2.71.. (whatever that 

unlikely constant is)

◦ In practice almost always linear

◦ In any case not a significant amount of time

◦ Hardest part by far is to give good messages



 Table driven parsers
◦ Given a grammar, run a program that generates a 

set of tables for an automaton

◦ Use the standard automaton with these tables to 
generate the trees.

◦ Grammar must be in appropriate form (not always 
so easy)

◦ Error detection is tricky to automate



 Hand Parser
◦ Write a program that calls the scanner and 

assembles the tree

◦ Most natural way of doing this is called recursive 
descent.

◦ Which is a fancy way of saying scan out what you 
are looking for 



 Each rule generates a procedure to scan out 
the procedure.
◦ This procedure simply scans out its right hand side 

in sequence

 For example
◦ IF ::= if EXPR then STM fi;

◦ Scan “if”, call EXPR, scan “then”, call STM, scan “fi” 
done.



 For an alternation we have to figure out which 
way to go (how to do that, more later, could 
backtrack, but that’s exponential)

 For optional stuff, figure out if item is present 
and scan if it is

 For a {repeated} construct program a loop 
which scans as long as item is present



 Left recursion is a problem
◦ STMSEQ ::= STMSEQ STM | STM

 If you go down the left path, you are quickly 
stuck in an infinite recursive loop, so that will 
not do.

 Change to a loop
◦ STMSEQ ::= STM {STM}



 If two alternatives
◦ A ::= B | C

 Then which way to go
◦ If set of initial tokens possible for B (called First(B)) 

is different from set of initial tokens of C, then we 
can tell

◦ For example
 STM ::= IFSTM | WHILESTM

 If next token “if” then IFSTM, else if next token is 
“while then WHILESTM



 Suppose FIRST sets are not disjoint
◦ IFSTM ::= IF_SIMPLE | IF_ELSE
◦ IF_SIMPLE ::= if EXPR then STM fi
◦ IF_ELSE ::= if EXPR then STM else STM fi

 Factor left side
◦ IFSTM ::= IFCOMMON IFTAIL
◦ IFCOMMON ::= if EXPR then STM
◦ IFTAIL ::= fi | else STM fi

 Last alternation is now distinguished



 If you don’t find what you are looking for, you 
know exactly what you are looking for so you 
can usually give a useful message

 IFSTM ::= if EXPR then STM fi;
◦ Parse if a > b then b := g ;

◦ Missing FI!



 Don’t need much formalism here

 You know what you are looking for

 So scan it in sequence

 Called recursive just because rules can be 
recursive, so naturally maps to recursive 
language

 Really not hard at all, and not something that 
requires a lot of special knowledge



 There are parser generators that can be used 
as black boxes, e.g. bison

 But you really need to know how they work

 And that we will look at next time


