
Database Management

Systems II (DBMS II)

BCSE1-730

Database System Concepts And

Architecture

Topics to be covered

1 Data Models

1A. History of data Models

1B. Network Data Model

1C. Hierarchical Data Model

2 Schemas versus Instances

3 Database Schema vs. Database State

4 Three-Schema Architecture

5 Data Independence

6 DBMS Languages

7 DBMS Interfaces

8 Database System Environment

9 Classification of DBMSs

Data Models

Data Model: A set of concepts to describe the

structure of a database, and certain constraints that

the database should obey.

Data Model Operations: Operations for specifying

database retrievals and updates by referring to the

concepts of the data model. Operations on the data

model may include basic operations and user-

defined operations.

Categories of data models:

- Conceptual (high-level, semantic) data models:

Provide concepts that are close to the way many users

perceive data. (Also called entity-based or object-based

data models.)

- Physical (low-level, internal) data models: Provide

concepts that describe details of how data is stored in the

computer.

- Implementation (representational) data models:

Provide concepts that fall between the above two, balancing

user views with some computer storage details.

HISTORY OF DATA MODELS

• Relational Model: proposed in 1970 by E.F. Codd (IBM), first

commercial system in 1981-82.

• Network Model: the first one to be implemented by Honeywell in

1964-65 (IDS System). Later implemented in a large variety of

systems -DMS 1100 (Unisys), IMAGE (H.P.), VAX -DBMS

(Digital Equipment Corp.).

• Hierarchical Data Model: a joint effort by IBM and North

American Rockwell around 1965. Resulted in the IMS family of

systems. The most popular model.

• Object-oriented Data Model(s): comprises models of persistent O-

O Programming Languages such as C++

• Object-Relational Models: Most Recent Trend. Started with

Informix Universal Server. Exemplified in the latest versions of

Oracle-10i, DB2, and SQL Server etc. systems.

HIERARCHICAL MODEL

ADVANTAGES:

• Hierarchical Model is simple to construct and operate on

• Corresponds to a number of natural hierarchically

organized domains - e.g., assemblies in manufacturing,

personnel organization in companies

• Language is simple

DISADVANTAGES:

• Navigational and procedural nature of processing

• Database is visualized as a linear arrangement of records

• Little scope for "query optimization"

NETWORK MODEL

ADVANTAGES:

• Network Model is able to model complex relationships and represents

semantics of add/delete on the relationships.

• Can handle most situations for modeling using record types and

relationship types.

• Language is navigational; uses constructs like FIND, FIND member,

FIND owner, FIND NEXT within set, GET etc. Programmers can do

optimal navigation through the database.

DISADVANTAGES:

• Navigational and procedural nature of processing

• Database contains a complex array of pointers that thread through a

set of records.

• Little scope for automated "query optimization"

Transaction Processing

Concepts

Topics to be covered

⚫ Introduction to Transaction Processing

⚫ Transaction and System Concepts

⚫ Desirable Properties of Transactions

⚫ Schedules and Recoverability

⚫ Serializability of Schedules.

Introduction to Transaction Processing

Single-User System: At most one user at a time can use the system.

Multiuser System: Many users can access the system concurrently.

– Interleaved processing: concurrent execution of processes is interleaved

in a single CPU

– Parallel processing: processes are concurrently executed in multiple

CPUs

•A Transaction: logical unit of database processing that includes one or

more access operations (read -retrieval, write - insert or update, delete).

 A transaction (set of operations) may be standalone specified in a

high level language like SQL submitted interactively, or may be embedded

within a program.

 Transaction boundaries: Begin and End transaction.

An application program may contain several transactions separated by the

Begin and End transaction boundaries.

Introduction to Transaction Processing

SIMPLE MODEL OF A DATABASE (for purposes of discussing

transactions):

 A database - collection of named data items

 Granularity of data - a field, a record , or a whole disk block

(Concepts are independent of granularity)

•Basic operations are read and write

– read_item(X): Reads a database item named X into a program

variable. To simplify our notation, we assume that the program variable

is also named X.

– write_item(X): Writes the value of program variable X into the

database item named X.

READ AND WRITE OPERATIONS:

•Basic unit of data transfer from the disk to the computer main memory

is one block. In general, a data item (what is read or written) will be the

field of some record in the database, although it may be a larger unit such

as a record or even a whole block.

 read_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory (if that disk block

is not already in some main memory buffer).

3. Copy item X from the buffer to the program variable named X.

READ AND WRITE OPERATIONS (cont.):

 write_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory (if that disk block

is not already in some main memory buffer).

3. Copy item X from the program variable named X into its correct

location in the buffer.

4. Store the updated block from the buffer back to disk (either

immediately or at some later point in time).

Why Concurrency Control is needed:

•The Lost Update Problem.

This occurs when two transactions that access the same database items

have their operations interleaved in a way that makes the value of some

database item incorrect.

•The Temporary Update (or Dirty Read) Problem.

This occurs when one transaction updates a database item and then the

transaction fails for some reason. The updated item is accessed by

another transaction before it is changed back to its original value.

•The Incorrect Summary Problem .

If one transaction is calculating an aggregate summary function on a

number of records while other transactions are updating some of these

records, the aggregate function may calculate some values before they

are updated and others after they are updated.

Why recovery is needed:

1. A computer failure (system crash): A hardware or software error

occurs in the computer system during transaction execution. If the

hardware crashes, the contents of the computer’s internal memory may

be lost.

2. A transaction or system error : Some operation in the transaction

may cause it to fail, such as integer overflow or division by zero.

Transaction failure may also occur because of erroneous parameter

values or because of a logical programming error. In addition, the user

may interrupt the transaction during its execution.

3. Local errors or exception conditions detected by the transaction:

- certain conditions necessitate cancellation of the transaction. For

example, data for the transaction may not be found. A condition, such as

insufficient account balance in a banking database, may cause a

transaction, such as a fund withdrawal from that account, to be canceled.

- a programmed abort in the transaction causes it to fail.

4. Concurrency control enforcement: The concurrency control method

may decide to abort the transaction, to be restarted later, because it

violates serializability or because several transactions are in a state of

deadlock.

5. Disk failure: Some disk blocks may lose their data because of a read

or write malfunction or because of a disk read/write head crash. This

may happen during a read or a write operation of the transaction.

6. Physical problems and catastrophes: This refers to an endless list of

problems that includes power or airconditioning failure, fire, theft,

sabotage, overwriting disks or tapes by mistake, and mounting of a

wrong tape by the operator.

Transaction and System Concepts

A transaction is an atomic unit of work that is either completed in its

entirety or not done at all. For recovery purposes, the system needs to

keep track of when the transaction starts, terminates, and commits or

aborts.

Transaction states:

 Active state

• Partially committed state

 Committed state

 Failed state

•Terminated State

Recovery manager keeps track of the following operations:

 begin_transaction: This marks the beginning of transaction

execution.

 read or write: These specify read or write operations on the

database items that are executed as part of a transaction.

 end_transaction: This specifies that read and write transaction

operations have ended and marks the end limit of transaction execution.

At this point it may be necessary to check whether the changes

introduced by the transaction can be permanently applied to the database

or whether the transaction has to be aborted because it violates

concurrency control or for some other reason.

•commit_transaction: This signals a successful end of the transaction so

that any changes (updates) executed by the transaction can be safely

committed to the database and will not be undone.

 rollback (or abort): This signals that the transaction has ended

unsuccessfully, so that any changes or effects that the transaction may

have applied to the database must be undone.

Recovery techniques use the following operators:

 undo: Similar to rollback except that it applies to a

single operation rather than to a whole transaction.

 redo: This specifies that certain transaction

operations must be redone to ensure that all the operations

of a committed transaction have been applied successfully

to the database.

The System Log

• Log or Journal : The log keeps track of all transaction operations that

affect the values of database items. This information may be needed to

permit recovery from transaction failures. The log is kept on disk, so it is

not affected by any type of failure except for disk or catastrophic failure.

In addition, the log is periodically backed up to archival storage (tape) to

guard against such catastrophic failures.

 T in the following discussion refers to a unique transactionid that is

generated automatically by the system and is used to identify each

transaction:

Types of log record:

1. [start_transaction,T]: Records that transaction T has started execution.

2. [write_item,T,X,old_value,new_value]: Records that transaction T has

changed the value of database item X from old_value to new_value.

3. [read_item,T,X]: Records that transaction T has read the value of

database item X.

4. [commit,T]: Records that transaction T has completed successfully,

and affirms that its effect can be committed (recorded permanently) to

the database.

5. [abort,T]: Records that transaction T has been aborted

 protocols for recovery that avoid cascading rollbacks do not require

that read operations be written to the system log, whereas other protocols

require these entries for recovery.

•strict protocols require simpler write entries that do not include

new_value.

Recovery using log records:

If the system crashes, we can recover to a consistent database state by

examining the log and using some techniques.

1. Because the log contains a record of every write operation that

changes the value of some database item, it is possible to undo the

effect of these write operations of a transaction T by tracing

backward through the log and resetting all items changed by a write

operation of T to their old_values.

2. We can also redo the effect of the write operations of a transaction T

by tracing forward through the log and setting all items changed by

a write operation of T (that did not get done permanently) to their

new_values.

Commit Point of a Transaction:

•Definition: A transaction T reaches its commit point when all its

operations that access the database have been executed successfully and

the effect of all the transaction operations on the database has been

recorded in the log. Beyond the commit point, the transaction is said to

be committed, and its effect is assumed to be permanently recorded in

the database. The transaction then writes an entry [commit,T] into the

log.

 Roll Back of transactions: Needed for transactions that have a

[start_transaction,T] entry into the log but no commit entry [commit,T]

into the log.

Commit Point of a Transaction (cont):

 Redoing transactions: Transactions that have written their commit

entry in the log must also have recorded all their write operations in the

log; otherwise they would not be committed, so their effect on the

database can be redone from the log entries. (Notice that the log file must

be kept on disk. At the time of a system crash, only the log entries that

have been written back to disk are considered in the recovery process

because the contents of main memory may be lost.)

 Force writing a log: before a transaction reaches its commit point,

any portion of the log that has not been written to the disk yet must now

be written to the disk. This process is called force-writing the log file

before committing a transaction.

Desirable Properties of Transactions

ACID properties:

 Atomicity: A transaction is an atomic unit of processing; it is either

performed in its entirety or not performed at all.

 Consistency preservation: A correct execution of the transaction

must take the database from one consistent state to another.

 Isolation: A transaction should not make its updates visible to other

transactions until it is committed; this property, when enforced strictly,

solves the temporary update problem and makes cascading rollbacks of

transactions unnecessary .

 Durability or permanency: Once a transaction changes the

database and the changes are committed, these changes must never be

lost because of subsequent failure.

Characterizing Schedules based on

Recoverability

 Transaction schedule or history: When transactions are executing

concurrently in an interleaved fashion, the order of execution of

operations from the various transactions forms what is known as a

transaction schedule (or history).

 A schedule (or history) S of n transactions T1, T2, ..., Tn :

It is an ordering of the operations of the transactions subject to the

constraint that, for each transaction Ti that participates in S, the

operations of T1 in S must appear in the same order in which they occur

in T1. Note, however, that operations from other transactions Tj can be

interleaved with the operations of Ti in S.

Schedules classified on recoverability:

 Recoverable schedule: One where no transaction needs to be rolled

back.

A schedule S is recoverable if no transaction T in S commits until all

transactions T’ that have written an item that T reads have committed.

 Cascadeless schedule: One where every transaction reads only the

items that are written by committed transactions.

Schedules requiring cascaded rollback: A schedule in which

uncommitted transactions that read an item from a failed transaction

must be rolled back.

 Strict Schedules: A schedule in which a transaction can neither

read or write an item X until the last transaction that wrote X has

committed.

Characterizing Schedules based on Serializability

 Serial schedule: A schedule S is serial if, for every transaction T

participating in the schedule, all the operations of T are executed

consecutively in the schedule. Otherwise, the schedule is called

nonserial schedule.

 Serializable schedule: A schedule S is serializable if it is

equivalent to some serial schedule of the same n transactions.

 Result equivalent: Two schedules are called result equivalent if

they produce the same final state of the database.

 Conflict equivalent: Two schedules are said to be conflict

equivalent if the order of any two conflicting operations is the same in

both schedules.

 Conflict serializable: A schedule S is said to be conflict serializable

if it is conflict equivalent to some serial schedule S’.

 Being serializable is not the same as being serial

 Being serializable implies that the schedule is a correct schedule.

– It will leave the database in a consistent state.

– The interleaving is appropriate and will result in a state as if the

transactions were serially executed, yet will achieve efficiency due to

concurrent execution.

 Serializability is hard to check.

– Interleaving of operations occurs in an operating system through some

scheduler

– Difficult to determine beforehand how the operations in a schedule will

be interleaved.

Practical approach:

 Come up with methods (protocols) to ensure serializability.

 It’s not possible to determine when a schedule begins and when it

ends. Hence, we reduce the problem of checking the whole schedule to

checking only a committed project of the schedule (i.e. operations from

only the committed transactions.)

 Current approach used in most DBMSs:

– Use of locks with two phase locking

 View equivalence: A less restrictive definition of equivalence of

schedules

 View serializability: definition of serializability based on view

equivalence. A schedule is view serializable if it is view equivalent to a

serial schedule.

Two schedules are said to be view equivalent if the following three

conditions hold:

1. The same set of transactions participates in S and S’, and S and S’

include the same operations of those transactions.

2. For any operation Ri(X) of Ti in S, if the value of X read by the

operation has been written by an operation Wj(X) of Tj (or if it is the

original value of X before the schedule started), the same condition must

hold for the value of X read by operation Ri(X) of Ti in S’.

3. If the operation Wk(Y) of Tk is the last operation to write item Y in S,

then Wk(Y) of Tk must also be the last operation to write item Y in S’.

The premise behind view equivalence:

 As long as each read operation of a transaction reads the result of

the same write operation in both schedules, the write operations of each

transaction must produce the same results.

 “The view”: the read operations are said to see the the same view in

both schedules.

Characterizing Schedules based on Serializability

Relationship between view and conflict equivalence:

•The two are same under constrained write assumption which assumes

that if T writes X, it is constrained by the value of X it read; i.e., new X =

f(old X)

 Conflict serializability is stricter than view serializability. With

unconstrained write (or blind write), a schedule that is view serializable

is not necessarily conflict serialiable.

 Any conflict serializable schedule is also view serializable, but not

vice versa.

Consider the following schedule of three transactions

T1: r1(X), w1(X); T2: w2(X); and T3: w3(X):

Schedule Sa: r1(X); w2(X); w1(X); w3(X); c1; c2; c3;

In Sa, the operations w2(X) and w3(X) are blind writes, since T1 and T3

do not read the value of X.

Sa is view serializable, since it is view equivalent to the serial schedule

T1, T2, T3. However, Sa is not conflict serializable, since it is not

conflict equivalent to any serial schedule.

Testing for conflict serializability

Algorithm 17.1:

1. Looks at only read_Item (X) and write_Item (X) operations

2. Constructs a precedence graph (serialization graph) - a graph with

directed edges

3. An edge is created from Ti to Tj if one of the operations in Ti appears

before a conflicting operation in Tj

4. The schedule is serializable if and only if the precedence graph has no

cycles.

Other Types of Equivalence of Schedules

 Under special semantic constraints, schedules that are otherwise

not conflict serializable may work correctly. Using commutative

operations of addition and subtraction (which can be done in any order)

certain non-serializable transactions may work correctly

Example: bank credit / debit transactions on a given item are

separable and commutative. Consider the following schedule S for

the two transactions:

Sh : r1(X); w1(X); r2(Y); w2(Y); r1(Y); w1(Y); r2(X); w2(X);

Using conflict serializability, it is not serializable. However, if it came

from a (read,update, write) sequence as follows:

r1(X); X := X – 10; w1(X); r2(Y); Y := Y – 20;r1(Y);

Y := Y + 10; w1(Y); r2(X); X := X + 20; (X);

Sequence explanation: debit, debit, credit, credit. It is a correct

schedule for the given semantics

Concurrency Control Techniques

Topics to be covered

⚫ Locking Techniques for Concurrency
Control

⚫ Concurrency Control Based on Timestamp
Ordering

⚫ Validation Concurrency Control Techniques

⚫ Granularity of Data Items

⚫ Multiple Granularity Locking.

Database Concurrency Control

Purpose of Concurrency Control

• To enforce Isolation (through mutual exclusion) among conflicting

transactions.

• To preserve database consistency through consistency preserving

execution of transactions.

• To resolve read-write and write-write conflicts.

Example: In concurrent execution environment if T1 conflicts with T2

over a data item A, then the existing concurrency control decides if T1

or T2 should get the A and if the other transaction is rolled-back or

waits.

Two-Phase Locking Techniques

Locking is an operation which secures

(a) permission to Read or

(b) (b) permission to Write a data item for a transaction.

Example: Lock (X). Data item X is locked in behalf of the requesting

transaction.

Unlocking is an operation which removes these permissions from the

data item. Example: Unlock (X). Data item X is made available to

all other transactions.

Lock and Unlock are Atomic operations.

Two-Phase Locking Techniques: Essential components

Two locks modes (a) shared (read) and (b) exclusive (write).

Shared mode: shared lock (X). More than one transaction can apply

share lock on X for reading its value but no write lock can be applied on

X by any other transaction.

Exclusive mode: Write lock (X). Only one write lock on X can exist at

any time and no shared lock can be applied by any other transaction on

X.

Lock Manager: Managing locks on data items.

Lock table: Lock manager uses it to store the identify of

transaction locking a data item, the data item, lock mode

and pointer to the next data item locked. One simple way to

implement a lock table is through linked list.

Database requires that all transactions should be well formed.

A transaction is well-formed if:

• It must lock the data item before it reads or writes to it.

• It must not lock an already locked data items and it must not try to

unlock a free data item.

The following code performs the lock operation:

B: if LOCK (X) = 0 (*item is unlocked*)

then LOCK (X) ← 1 (*lock the item*)

else begin

wait (until lock (X) = 0) and

the lock manager wakes up the transaction);

goto B

end;

The following code performs the unlock operation:

LOCK (X) ← 0 (*unlock the item*)

if any transactions are waiting then

wake up one of the waiting the transactions;

The following code performs the read operation:

B: if LOCK (X) = “unlocked” then

begin LOCK (X) ← “read-locked”;

no_of_reads (X) ← 1;

end

else if LOCK (X) ← “read-locked” then

no_of_reads (X) ← no_of_reads (X) +1

else begin wait (until LOCK (X) = “unlocked” and

the lock manager wakes up the transaction);

go to B

end;

The following code performs the write lock operation:

B: if LOCK (X) = “unlocked” then

begin LOCK (X) ← “read-locked”;

no_of_reads (X) ← 1;

end

else if LOCK (X) ← “read-locked” then

no_of_reads (X) ← no_of_reads (X) +1

else begin wait (until LOCK (X) = “unlocked” and

the lock manager wakes up the transaction);

go to B

end;

The following code performs the unlock operation:

if LOCK (X) = “write-locked” then

begin LOCK (X) ← “unlocked”;

wakes up one of the transactions, if any

end

else if LOCK (X) ← “read-locked” then

begin

no_of_reads (X) ← no_of_reads (X) -1

if no_of_reads (X) = 0 then

begin

LOCK (X) = “unlocked”;

wake up one of the transactions, if any

end

end;

Lock conversion

Lock upgrade: existing read lock to write lock

if Ti has a read-lock (X) and Tj has no read-lock (X) (i ≠ j) then

convert read-lock (X) to write-lock (X)

else

force Ti to wait until Tj unlocks X

Lock downgrade: existing write lock to read lock

Ti has a write-lock (X) (*no transaction can have any lock on X*)

convert write-lock (X) to read-lock (X)

Two-Phase Locking Techniques: The algorithm

Two Phases: (a) Locking (Growing) (b) Unlocking (Shrinking).

Locking (Growing) Phase: A transaction applies locks (read or write)

on desired data items one at a time.

Unlocking (Shrinking) Phase: A transaction unlocks its locked data

items one at a time.

Requirement: For a transaction these two phases must be mutually

exclusively, that is, during locking phase unlocking phase must not start

and during unlocking phase locking phase must not begin.

Two-Phase Locking Techniques: The algorithm

T1 T2 Result

read_lock (Y); read_lock (X); Initial values: X=20;

Y=30

read_item (Y); read_item (X); Result of serial execution

unlock (Y); unlock (X); T1 followed by T2

write_lock (X); Write_lock (Y); X=50, Y=80.

read_item (X); read_item (Y); Result of serial execution

X:=X+Y; Y:=X+Y; T2 followed by T1

write_item (X); write_item (Y); X=70, Y=50

unlock (X); unlock (Y);

Two-phase policy generates two locking algorithms (a) Basic and

(b)Conservative.

Conservative: Prevents deadlock by locking all desired data items

before transaction begins execution.

Basic: Transaction locks data items incrementally. This may cause

deadlock which is dealt with.

Strict: A more stricter version of Basic algorithm where unlocking is

performed after a transaction terminates (commits or aborts and

rolledback).

This is the most commonly used two-phase locking algorithm.

Dealing with Deadlock and Starvation

Deadlock prevention

A transaction locks all data items it refers to before it begins execution.

This way of locking prevents deadlock since a transaction never waits for

a data item. The conservative two-phase locking uses this approach.

Deadlock detection and resolution

In this approach, deadlocks are allowed to happen. The scheduler

maintains a wait-for-graph for detecting cycle. If a cycle exists, then one

transaction involved in the cycle is selected (victim) and rolled back.

A wait-for-graph is created using the lock table. As soon as a transaction

is blocked, it is added to the graph. When a chain like: Ti waits for Tj

waits for Tk waits for Ti or Tj occurs, then this creates a cycle. One of

the transaction of the cycle is selected and rolled back.

Deadlock avoidance

There are many variations of two-phase locking algorithm. Some avoid

deadlock by not letting the cycle to complete. That is as soon as the

algorithm discovers that blocking a transaction is likely to create a cycle,

it rolls back the transaction. Wound-Wait and Wait-Die algorithms use

timestamps to avoid deadlocks by rolling-back victim.

Starvation

Starvation occurs when a particular transaction consistently waits or

restarted and never gets a chance to proceed further. In a deadlock

resolution it is possible that the same transaction may consistently be

selected as victim and rolled-back. This limitation is inherent in all

priority based scheduling mechanisms. In Wound-Wait scheme a younger

transaction may always be wounded (aborted) by a long running older

transaction which may create starvation.

Timestamp based concurrency control algorithm

Timestamp

A monotonically increasing variable (integer) indicating the age of an

operation or a transaction. A larger timestamp value indicates a more

recent event or operation.

Timestamp based algorithm uses timestamp to serialize the execution of

concurrent transactions.

Basic Timestamp Ordering

1. Transaction T issues a write_item(X) operation:

a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then

an younger transaction has already read the data item so

abort and roll-back T and reject the operation.

b. If the condition in part (a) does not exist, then execute

write_item(X) of T and set write_TS(X) to TS(T).

2. Transaction T issues a read_item(X) operation:

a. If write_TS(X) > TS(T), then an younger transaction has

alreadywritten to the data item so abort and roll-back T

and reject the operation.

b. If write_TS(X) ≤ TS(T), then execute read_item(X) of T

and set read_TS(X) to the larger of TS(T) and the current

read_TS(X).

Strict Timestamp Ordering

1. Transaction T issues a write_item(X) operation:

a. If TS(T) > read_TS(X), then delay T until the transaction

T’ that wrote or read X has terminated (committed or

aborted).

2. Transaction T issues a read_item(X) operation:

a. If TS(T) > write_TS(X), then delay T until the transaction

T’ that wrote or read X has terminated (committed or

aborted).

Thomas’s Write Rule

1. If read_TS(X) > TS(T) then abort and roll-back T and

reject the operation.

2. If write_TS(X) > TS(T), then just ignore the write

operation and continue execution. This is because the

most recent writes counts in case of two consecutive

writes.

3. If the conditions given in 1 and 2 above do not occur, then

execute write_item(X) of T and set write_TS(X) to TS(T).

Multiversion concurrency control techniques

Concept

This approach maintains a number of versions of a data item and

allocates the right version to a read operation of a transaction. Thus

unlike other mechanisms a read operation in this mechanism is never

rejected.

Side effect: Significantly more storage (RAM and disk) is required to

maintain multiple versions. To check unlimited growth of versions, a

garbage collection is run when some criteria is satisfied.

Validation (Optimistic) Concurrency Control Schemes

In this technique only at the time of commit serializability is checked and

transactions are aborted in case of non-serializable schedules.

Three phases:

Read phase: A transaction can read values of committed data items.

However, updates are applied only to local copies (versions) of the data

items (in database cache).

Validation phase: Serializability is checked before transactions write

their updates to the database.

This phase for Ti checks that, for each transaction Tj that is either

committed or is in its validation phase, one of the following conditions

holds:

1. Tj completes its write phase before Ti starts its read phase.

2. Ti starts its write phase after Tj completes its write phase, and the

read_set of Ti has no items in common with the write_set of Tj

3. Both the read_set and write_set of Ti have no items in common with

the write_set of Tj, and Tj completes its read phase.

When validating Ti, the first condition is checked first for each

transaction Tj, since (1) is the simplest condition to check. If (1) is false

then (2) is checked and if (2) is false then (3) is checked. If none of

these conditions holds, the validation fails and Ti is aborted.

Write phase: On a successful validation transactions’ updates are

applied to the database; otherwise, transactions are restarted.

Granularity of data items and Multiple Granularity

Locking

A lockable unit of data defines its granularity. Granularity can be coarse

(entire database) or it can be fine (a tuple or an attribute of a relation).

Data item granularity significantly affects concurrency control

performance. Thus, the degree of concurrency is low for coarse

granularity and high for fine granularity. Example of data item

granularity:

1. A field of a database record (an attribute of a tuple).

2. A database record (a tuple or a relation).

3. A disk block.

4. An entire file.

5. The entire atabase.

Granularity of data items and Multiple Granularity

Locking

The following diagram illustrates a hierarchy of granularity from

coarse (database) to fine (record).

To manage such hierarchy, in addition to read and write, three

additional locking modes, called intention lock modes are defined:

Intention-shared (IS): indicates that a shared lock(s) will be

requested on some descendent nodes(s).

Intention-exclusive (IX): indicates that an exclusive lock(s) will be

requested on some descendent nodes(s).

Shared-intention-exclusive (SIX): indicates that the current node is

locked in shared mode but an exclusive lock(s) will be requested on

some descendent nodes(s).

Database Concurrency Control

Granularity of data items and Multiple Granularity Locking

These locks are applied using the following compatibility

matrix:

The set of rules which must be followed for producing serializable

schedule are

1. The lock compatibility must adhered to.

2. The root of the tree must be locked first, in any mode..

3. A node N can be locked by a transaction T in S or IX mode only if the

parent node is already locked by T in either IS or IX mode.

4. A node N can be locked by T in X, IX, or SIX mode only if the parent

of N is already locked by T in either IX or SIX mode.

5. T can lock a node only if it has not unlocked any node (to enforce 2PL

policy).

6. T can unlock a node, N, only if none of the children of N are currently

locked by T.

Database Recovery Techniques

Topics to be covered

⚫ Recovery Concepts

⚫ Recovery Techniques Based on Deferred

Update

⚫ Recovery Techniques Based on Immediate

Update

⚫ Shadow Paging.

Purpose of Database Recovery

• To bring the database into the last consistent state, which

existed prior to the failure.

• To preserve transaction properties (Atomicity, Consistency,

Isolation and Durability).

Example: If the system crashes before a fund transfer transaction

completes its execution, then either one or both accounts may have

incorrect value. Thus, the database must be restored to the state before

the transaction modified any of the accounts.

Types of Failure

The database may become unavailable for use due to

• Transaction failure: Transactions may fail because of

incorrect input, deadlock, incorrect synchronization.

• System failure: System may fail because of addressing error,

application error, operating system fault, RAM failure, etc.

• Media failure: Disk head crash, power disruption, etc.

Transaction Log

For recovery from any type of failure data values prior to

modification (BFIM - BeFore Image) and the new value after

modification (AFIM – AFter Image) are required. These values and

other information is stored in a sequential file called Transaction log.

A sample log is given below. Back P and Next P point to the

previous and next log records of the same transaction.

Data Update

• Immediate Update: As soon as a data item is

modified in cache, the disk copy is updated.

• Deferred Update: All modified data items in the

cache is written either after a transaction ends its

execution or after a fixed number of transactions have

completed their execution.

• Shadow update: The modified version of a data item

does not overwrite its disk copy but is written at a

separate disk location.

• In-place update: The disk version of the data item is

overwritten by the cache version.

Data Caching

Data items to be modified are first stored into database cache by the

Cache Manager (CM) and after modification they are flushed (written)

to the disk. The flushing is controlled by Modified and Pin-Unpin

bits.

Pin-Unpin: Instructs the operating system not to flush the data item.

Modified: Indicates the AFIM of the data item.

Transaction Roll-back (Undo) and Roll-Forward (Redo)

To maintain atomicity, a transaction’s operations are redone or

undone.

Undo: Restore all BFIMs on to disk (Remove all AFIMs).

Redo: Restore all AFIMs on to disk.

Database recovery is achieved either by performing only Undos or

only Redos or by a combination of the two. These operations are

recorded in the log as they happen.

Roll-back

We show the process of roll-back with the help of the following

three transactions T1, and T2 and T3.

Write-Ahead Logging

When in-place update (immediate or deferred) is used then log is

necessary for recovery and it must be available to recovery manager.

This is achieved by Write-Ahead Logging (WAL) protocol. WAL

states that

For Undo: Before a data item’s AFIM is flushed to the database disk

(overwriting the BFIM) its BFIM must be written to the log and the log

must be saved on a stable store (log disk).

For Redo: Before a transaction executes its commit operation, all its

AFIMs must be written to the log and the log must be saved on a stable

store.

Checkpointing

Time to time (randomly or under some criteria) the database flushes its

buffer to database disk to minimize the task of recovery. The following

steps defines a checkpoint operation:

1. Suspend execution of transactions temporarily.

2. Force write modified buffer data to disk.

3. Write a [checkpoint] record to the log, save the log to disk.

4. Resume normal transaction execution.

During recovery redo or undo is required to transactions appearing after

[checkpoint] record.

Steal/No-Steal and Force/No-Force

Possible ways for flushing database cache to database disk:

Steal: Cache can be flushed before transaction commits.

No-Steal: Cache cannot be flushed before transaction commit.

Force: Cache is immediately flushed (forced) to disk.

No-Force: Cache is deferred until transaction commits.

These give rise to four different ways for handling recovery:

Steal/No-Force (Undo/Redo),

Steal/Force (Undo/No-redo),

No-Steal/No-Force (Redo/No-undo) and

No-Steal/Force (Noundo/ No-redo).

Recovery Scheme

Deferred Update (No Undo/Redo)

The data update goes as follows:

1. A set of transactions records their updates in the log.

2. At commit point under WAL scheme these updates are

saved on database disk.

After reboot from a failure the log is used to redo all the transactions

affected by this failure. No undo is required because no AFIM is

flushed to the disk before a transaction commits.

Deferred Update in a single-user system

There is no concurrent data sharing in a single user system. The data

update goes as follows:

1. A set of transactions records their updates in the log.

2. At commit point under WAL scheme these updates are

saved on database disk.

After reboot from a failure the log is used to redo all the transactions

affected by this failure. No undo is required because no AFIM is flushed

to the disk before a transaction commits.

Deferred Update with concurrent users

Two tables are required for implementing this protocol:

Active table: All active transactions are entered in this table.

Commit table: Transactions to be committed are entered in this table.

During recovery, all transactions of the commit table are redone and all

transactions of active tables are ignored since none of their AFIMs

reached the database. It is possible that a commit table transaction may

be redone twice but this does not create any inconsistency because of a

redone is “idempotent”, that is, one redone for an AFIM is equivalent to

multiple redone for the same AFIM.

Recovery Techniques Based on Immediate Update

Undo/No-redo Algorithm

In this algorithm AFIMs of a transaction are flushed to the database disk

under WAL before it commits. For this reason the recovery manager

undoes all transactions during recovery. No transaction is redone. It is

possible that a transaction might have completed execution and ready to

commit but this transaction is also undone.

Undo/Redo Algorithm (Single-user environment)

Recovery schemes of this category apply undo and also redo for

recovery. In a single-user environment no concurrency control is

required but a log is maintained under WAL. Note that at any time there

will be one transaction in the system and it will be either in the commit

table or in the active table. The recovery manager performs:

1. Undo of a transaction if it is in the active table.

2. Redo of a transaction if it is in the commit table.

Undo/Redo Algorithm (Concurrent execution)

Recovery schemes of this category applies undo and also redo to

recover the database from failure. In concurrent execution

environment a concurrency control is required and log is maintained

under WAL.

Commit table records transactions to be committed and active table

records active transactions. To minimize the work of the recovery

manager checkpointing is used. The recovery performs:

1. Undo of a transaction if it is in the active table.

2. Redo of a transaction if it is in the commit table.

Object Database Standards,

Languages, and Design

Slide 21- 105

Overview of the Object Model ODMG

The Object Definition Language DDL

The Object Query Language OQL

Object Database Conceptual Model

Summary

⚫ Discuss the importance of standards (e.g.,

portability, interoperability)

⚫ Introduce Object Data Management Group

(ODMG): object model, object definition

language (ODL), object query language

(OQL)

⚫ Present ODMG object binding to

programming languages (e.g., C++)

⚫ Present Object Database Conceptual Design

The Object Model of ODMG

⚫ Provides a standard model for object

databases

⚫ Supports object definition via ODL

⚫ Supports object querying via OQL

⚫ Supports a variety of data types and type

constructors

ODMG Objects and Literals

⚫ The basic building blocks of the object model are

– Objects

– Literals

⚫ An object has four characteristics

1. Identifier: unique system-wide identifier

2. Name: unique within a particular database and/or program;

it is optional

3. Lifetime: persistent vs. transient

4. Structure: specifies how object is constructed by the type

constructor and whether it is an atomic object

Slide 21- 109

ODMG Literals

⚫ A literal has a current value but not an

identifier

⚫ Three types of literals

1. atomic: predefined; basic data type values

(e.g., short, float, boolean,

char)

2. structured: values that are constructed by

type constructors (e.g., date, struct

variables)

3. collection: a collection (e.g., array) of values

4. or objects

Slide 21- 110

ODMG Interface Definition:

An Example

⚫ Note: interface is ODMG’s keyword for class/type

interface Date:Object {

enum

weekday{sun,mon,tue,wed,thu,fri,sat};

enum Month{jan,feb,mar,…,dec};

unsigned short year();

unsigned short month();

unsigned short day();

…

boolean is_equal(in Date other_date);

};

Slide 21- 111

Built-in Interfaces for

Collection Objects

⚫ A collection object inherits the basic

collection interface, for example:

– cardinality()

– is_empty()

– insert_element()

– remove_element()

– contains_element()

– create_iterator()

Slide 21- 112

Collection Types

⚫ Collection objects are further specialized

into types like a set, list, bag, array, and

dictionary

⚫ Each collection type may provide additional

interfaces, for example, a set provides:

– create_union()

– create_difference()

– is_subset_of(

– is_superset_of()

– is_proper_subset_of()

Object Inheritance Hierarchy

Atomic Objects

⚫ Atomic objects are user-defined objects and are defined

via keyword class

⚫ An example:

class Employee (extent all_emplyees key

ssn) {

attribute string name;

attribute string ssn;

attribute short age;

relationship Dept works_for;

void reassign(in string new_name);

}

Class Extents

⚫ An ODMG object can have an extent

defined via a class declaration

– Each extent is given a name and will contain

all persistent objects of that class

– For Employee class, for example, the

extent is called all_employees

– This is similar to creating an object of type

Set<Employee> and making it persistent

Class Key

⚫ A class key consists of one or more unique

attributes

⚫ For the Employee class, the key is ssn

– Thus each employee is expected to have a

unique ssn

⚫ Keys can be composite, e.g.,

– (key dnumber, dname)

Slide 21- 117

Object Factory

⚫ An object factory is used to generate
individual objects via its operations

⚫ An example:
interface ObjectFactory {

Object new ();

};

⚫ new() returns new objects with an
object_id

⚫ One can create their own factory interface
by inheriting the above interface

Interface and Class Definition

⚫ ODMG supports two concepts for

specifying object types:

– Interface

– Class

⚫ There are similarities and differences

between interfaces and classes

⚫ Both have behaviors (operations) and state

(attributes and relationships)

ODMG Interface

⚫ An interface is a specification of the

abstract behavior of an object type

– State properties of an interface (i.e., its

attributes and relationships) cannot be inherited

from

– Objects cannot be instantiated from an interface

ODMG Class

⚫ A class is a specification of abstract

behavior and state of an object type

– A class is Instantiable

– Supports “extends” inheritance to allow both

state and behavior inheritance among classes

– Multiple inheritance via “extends” is not

allowed

21.2 Object Definition Language

⚫ ODL supports semantics constructs of

ODMG

⚫ ODL is independent of any programming

language

⚫ ODL is used to create object specification

(classes and interfaces)

⚫ ODL is not used for database manipulation

ODL Examples (1)

A Very Simple Class

⚫ A very simple, straightforward class

definition

– (all examples are based on the university

schema presented in Chapter 4):

class Degree {

attribute string college;

attribute string degree;

attribute string year;

};

Slide 21- 123

ODL Examples (2)

A Class With Key and Extent

⚫ A class definition with “extent”, “key”, and

more elaborate attributes; still relatively

straightforward

class Person (extent persons key ssn) {

attribute struct Pname {string fname …}

name;

attribute string ssn;

attribute date birthdate;

…

short age();

}

Slide 21- 124

ODL Examples (3)

A Class With Relationships

⚫ Note extends (inheritance) relationship

⚫ Also note “inverse” relationship

class Faculty extends Person (extent faculty)
{

attribute string rank;

attribute float salary;

attribute string phone;

…

relationship Dept works_in inverse
Dept::has_faculty;

relationship set<GradStu> advises inverse
GradStu::advisor;

void give_raise (in float raise);

void promote (in string new_rank);

};

Slide 21- 125

Inheritance via “:” – An Example

interface Shape {

attribute struct point {…}

reference_point;

float perimeter ();

…

};

class Triangle: Shape (extent triangles)

{

attribute short side_1;

attribute short side_2;

…

};

Object Query Language

⚫ OQL is DMG’s query language

⚫ OQL works closely with programming

languages such as C++

⚫ Embedded OQL statements return objects

that are compatible with the type system of

the host language

⚫ OQL’s syntax is similar to SQL with

additional features for objects

Simple OQL Queries

⚫ Basic syntax: select…from…where…

– SELECT d.name

– FROM d in departments

– WHERE d.college = ‘Engineering’;

⚫ An entry point to the database is needed

for each query

⚫ An extent name (e.g., departments in the

above example) may serve as an entry point

Slide 21- 128

Iterator Variables

⚫ Iterator variables are defined whenever a

collection is referenced in an OQL query

⚫ Iterator d in the previous example serves as

an iterator and ranges over each object in

the collection

⚫ Syntactical options for specifying an

iterator:

– d in departments

– departments d

– departments as d

Data Type of Query Results

⚫ The data type of a query result can be any

type defined in the ODMG model

⚫ A query does not have to follow the
select…from…where… format

⚫ A persistent name on its own can serve as a

query whose result is a reference to the

persistent object. For example,

– departments; whose type is set<Departments>

Path Expressions

⚫ A path expression is used to specify a path

to attributes and objects in an entry point

⚫ A path expression starts at a persistent

object name (or its iterator variable)

⚫ The name will be followed by zero or more

dot connected relationship or attribute

names

– E.g., departments.chair;

Views as Named Objects

⚫ The define keyword in OQL is used to

specify an identifier for a named query

⚫ The name should be unique; if not, the

results will replace an existing named query

⚫ Once a query definition is created, it will

persist until deleted or redefined

⚫ A view definition can include parameters

Slide 21- 132

An Example of OQL View

⚫ A view to include students in a department

who have a minor:

define has_minor(dept_name) as

select s

from s in students

where

s.minor_in.dname=dept_name

⚫ has_minor can now be used in queries

Single Elements from Collections

⚫ An OQL query returns a collection

⚫ OQL’s element operator can be used to

return a single element from a singleton

collection that contains one element:
element (select d from d in departments

where d.dname = ‘Software Engineering’);

⚫ If d is empty or has more than one

elements, an exception is raised

Collection Operators

⚫ OQL supports a number of aggregate

operators that can be applied to query

results

⚫ The aggregate operators and operate over a

collection and include

– min, max, count, sum, avg

⚫ count returns an integer; others return the

same type as the collection type

An Example of an OQL

Aggregate Operator

⚫ To compute the average GPA of all seniors

majoring in Business:

avg (select s.gpa from s in

students

where s.class = ‘senior’ and

s.majors_in.dname =‘Business’);

Membership and Quantification

⚫ OQL provides membership and

quantification operators:

– (e in c) is true if e is in the collection c

– (for all e in c: b) is true if all e

elements of collection c satisfy b

– (exists e in c: b) is true if at least one

e in collection c satisfies b

An Example of Membership

⚫ To retrieve the names of all students who completed

CS101:

select s.name.fname s.name.lname

from s in students

where 'CS101' in

(select c.name

from c

in

s.completed_sections.section.of_course);

Ordered Collections

⚫ Collections that are lists or arrays allow

retrieving their first, last, and ith elements

⚫ OQL provides additional operators for

extracting a sub-collection and

concatenating two lists

⚫ OQL also provides operators for ordering

the results

An Example of Ordered Operation

⚫ To retrieve the last name of the faculty

member who earns the highest salary:

first (select struct

(faculty: f.name.lastname,

salary f.salary)

from f in faculty

ordered by f.salary desc);

Grouping Operator

⚫ OQL also supports a grouping operator called group by

⚫ To retrieve average GPA of majors in each department

having >100 majors:

select deptname, avg_gpa:

avg (select p.s.gpa from p in partition)

from s in students

group by deptname: s.majors_in.dname

having count (partition) > 100

4. C++ Language Binding

⚫ C++ language binding specifies how ODL

constructs are mapped to C++ statements

and include:

– a C++ class library

– a Data Manipulation Language (ODL/OML)

– a set of constructs called physical pragmas (to

allow programmers some control over the

physical storage concerns)

Slide 21- 142

Class Library

⚫ The class library added to C++ for the
ODMG standards uses the prefix d_ for

class declarations

⚫ d_Ref<T> is defined for each database

class T

⚫ To utilize ODMG’s collection types,

various templates are defined, e.g.,
d_Object<T> specifies the operations to

be inherited by all objects

Slide 21- 143

Template Classes

⚫ A template class is provided for each type

of ODMG collections:

– d_Set<T>

– d_List<T>

– d_Bag<t>

– d_Varray<t>

– d_Dictionary<T>

⚫ Thus a programmer can declare:

– d_Set<d_Ref<Student>>

Data Types of Attributes

⚫ The data types of ODMG database

attributes are also available to the C++

programmers via the d_ prefix, e.g.,
d_Short, d_Long, d_Float

⚫ Certain structured literals are also available,
e.g., d_Date, d_Time, d_Intreval

Specifying Relationships

⚫ To specify relationships, the prefix Rel_ is

used within the prefix of type names

– E.g., d_Rel_Ref<Dept, has_majors>

majors_in;

⚫ The C++ binding also allows the creation of

extents via using the library class d_Extent:

– d_Extent<Person>

All_Persons(CS101)

Object Database

Conceptual Design

⚫ Object Database (ODB) vs. Relational

Database (RDB)

– Relationships are handled differently

– Inheritance is handled differently

– Operations in OBD are expressed early on since

they are a part of the class specification

Relationships: ODB vs. RDB (1)

⚫ Relationships in ODB:

– relationships are handled by reference attributes

that include OIDs of related objects

– single and collection of references are allowed

– references for binary relationships can be

expressed in single direction or both directions

via inverse operator

Relationships: ODB vs.. RDB (2)

⚫ Relationships in RDB:

– Relationships among tuples are specified by

attributes with matching values (via foreign

keys)

– Foreign keys are single-valued

– M:N relationships must be presented via a

separate relation (table)

Inheritance Relationship

in ODB vs. RDB

⚫ Inheritance structures are built in ODB (and
achieved via “:” and extends operators)

⚫ RDB has no built-in support for inheritance

relationships; there are several options for

mapping inheritance relationships in an

RDB (see Chapter 7)

Early Specification of Operations

⚫ Another major difference between ODB and

RDB is the specification of operations

– ODB:

⚫ Operations specified during design (as part of class

specification)

– RDB:

⚫ Operations specification may be delayed until

implementation

Mapping EER Schemas

to ODB Schemas

⚫ Mapping EER schemas into ODB schemas

is relatively simple especially since ODB

schemas provide support for inheritance

relationships

⚫ Once mapping has been completed,

operations must be added to ODB schemas

since EER schemas do not include an

specification of operations

Mapping EER to ODB Schemas

Step 1

⚫ Create an ODL class for each EER entity

type or subclass

– Multi-valued attributes are declared by sets,

bags or lists constructors

– Composite attributes are mapped into tuple

constructors

Mapping EER to ODB Schemas

Step 2

⚫ Add relationship properties or reference

attributes for each binary relationship into

the ODL classes participating in the

relationship

– Relationship cardinality: single-valued for 1:1

and N:1 directions; set-valued for 1:N and M:N

directions

– Relationship attributes: create via tuple

constructors

Mapping EER to ODB Schemas

Step 3

⚫ Add appropriate operations for each class

– Operations are not available from the EER

schemas; original requirements must be

reviewed

– Corresponding constructor and destructor

operations must also be added

Mapping EER to ODB Schemas

Step 4

⚫ Specify inheritance relationships via
extends clause

– An ODL class that corresponds to a sub-class in

the EER schema inherits the types and methods

of its super-class in the ODL schemas

– Other attributes of a sub-class are added by

following Steps 1-3

Mapping EER to ODB Schemas

Step 5

⚫ Map weak entity types in the same way as

regular entities

– Weak entities that do not participate in any

relationships may alternatively be presented as

composite multi-valued attribute of the

owner entity type

Mapping EER to ODB Schemas

Step 6

⚫ Map categories (union types) to ODL

– The process is not straightforward

– May follow the same mapping used for EER-

to-relational mapping:

⚫ Declare a class to represent the category

⚫ Define 1:1 relationships between the category and

each of its super-classes

Mapping EER to ODB Schemas

Step 7

⚫ Map n-ary relationships whose degree is

greater than 2

– Each relationship is mapped into a separate

class with appropriate reference to each

participating class

Summary

⚫ Proposed standards for object databases

presented

⚫ Various constructs and built-in types of the

ODMG model presented

⚫ ODL and OQL languages were presented

⚫ An overview of the C++ language binding

was given

⚫ Conceptual design of object-oriented

database discussed

References : Elmasri & Navathe “ Fundamentals

of Database Systems”, Fifth edition

