
Introduction to ARM
Processors

2

OUTLINE

-Background
-ARM Microprocessor

•ARM Architecture,
•Assembly Language Programming
•Instruction Set

3

BACKGROUND

• Architectural features of embedded processor
• General rules (with exceptions):

1. Designed for efficiency (vs. ease of programming)
2. Huge variety of processors (resulting from 1.)
3. Harvard architecture
4. Heterogeneous register sets
5. Limited instruction-level parallelism or VLIW ISA
6. Different operation modes (saturating arithmetic, fixed point)
7. Specialised microcontroller & DSP instructions (bit-field

addressing, multiply/accumulate, bit-reversal, modulo addressing)
8. Multiple memory banks

• 9. No “fat”(MMU, caches, memory protection, target buffers,
complex pipeline logic, ...)

• These features have to be known to the compiler!

4

ARM Concept

•What is ARM?
–Advanced RISC Machine
–Acorn and VLSI Technology built in 1990/11
–RISC
– IP Core
–T.I. ，PHILIPS，INTEL……
–RISC Microcontroller

•ARM7、ARM9、ARM9E-S、StrongARM
ARM10…..

ARM的產品是 IP Core, 業務是銷
售晶片系統的核心技術IP，全球有
許多大型IT公司採用ARM的技術，

如TI, Intel。

ARM的專利收入主要來
自專利授權金以及按比例
收取產品的專利使用費

5

ARM Concept

•Why ARM?
–Low power、Low cost、Tiny
–8/16/32 bit microprocessor
–Thumb mode
–Namely

•T：Thumb Mode
•D：Debug interface (JTAG)
•M：Multiplier
•I：ICE interface (Trace、Break point)

6

Why ARM here?

•ARM is one of the most licensed and thus
widespread processor cores in the world

•Used especially in portable devices due to low
power consumption and reasonable
performance (MIPS / watt)

•Several interesting extensions available or in
development like Thumb instruction set and
Jazelle Java machine
–http://www.arm.com/armtech/jazelle?OpenDocument

7

ARM processor

•ARM is a family of RISC architectures.
•“ARM”is the abbreviation of “Advanced RISC

Machines”.
•ARM does not manufacture its own VLSI devices.

–linceses
•ARM7- von Neuman Architecture
•ARM9 –Harvard Architecture

8

ARM vs. SoC

•Architecture of ARM and SoC
ARM核心就是個CPU，
SoC則是把系統要的功
能全放到CPU內，可以
提供特定用途的單晶片
IC。以個人電腦為例，
將一部電腦除了電源
外，皆轉變到一顆IC

中。

Ex:
LAN controller，
LCD controller

9

10

Intel Xscale

11

ARM single-cycle instruction 3-
stage pipeline operation

fetch decode execute

time

1

fetch decode execute

fetch decode execute

2

3
instruction

12

ARM busses

•AMBA:
–Open standard.
–Many external

devices.
•Two varieties:

–AMBA High-
Performance Bus
(AHB).

–AMBA Peripherals
Bus (APB).

CPU

br
id

ge

memory I/O

AHB APB

13

ARM instruction set

•ARM processor (operating) states
•ARM memory organization.
•ARM programming model.
•ARM assembly language.
•ARM data operations.
•ARM flow of control.
•C to assembly examples
•Exceptions
•Coprocessor instructions
•Summary

14

Processor Operating States

•The ARM7TDMI processor has two
operating states:
–ARM - 32-bit, word-aligned ARM instructions

are executed in this state.
–Thumb -16-bit, halfword-aligned Thumb

instructions are executed in this state.

15

•The operating state of the ARM7TDMI
core can be switched between ARM state
and Thumb state using the BX (branch
and exchange) instructions

16

The Memory System

•4 G address space
–8-bit bytes, 16-bit half-words, 32-bit words
–Support both little-endian and big-endian

half-word4

word16

0123

4567

891011

byte0
byte

12131415

16171819

20212223

byte1byte2

half-word14

byte3

byte6

address

bit 31 bit 0

half-word12

word8

17

Operating Modes
• The ARM7TDMI processor has seven modes of operations:

–User mode(usr)
- Normal program execution mode

–Fast Interrupt mode(fiq)
- Supports a high-speed data transfer or channel process.

– Interrupt mode(irq)
- Used for general-purpose interrupt handling.

–Supervisor mode(svc)
- Protected mode for the operating system.

–Abort mode(abt)
- implements virtual memory and/or memory protection

–System mode(sys)
- A privileged user mode for the operating system. (runs OS
tasks)

–Undefined mode(und)
- supports a software emulation of hardware coprocessors

• Except user mode, all are known as privileged mode.

18

ARM programming model

r0
r1
r2
r3
r4
r5
r6
r7

r8
r9
r10
r11
r12
r13
r14

r15 (PC)

CPSR

31 0

N Z C V

CPSR: Current Program Status Register
SPSR: Saved Program Status Register

19

Registers
•37 registers

– 31 general 32 bit registers, including PC
– 6 status registers
– 15 general registers (R0 to R14), and one status registers and program

counter are visible at any time –when you write user-level programs
•R13 (SP)
•R14 (LR)
•R15 (PC)

•The visible registers depend on the processor mode
•The other registers (the banked registers) are switched

in to support IRQ, FIQ, Supervisor, Abort and Undefined
mode processing

20

ARM Registers (1)

r13_und
r14_undr14_irq

r13_irq

SPSR_und

r14_abtr14_svc

user mode
fiq

mode
svc

mode
abort
mode

irq
mode

undefined
mode

usable in user mode

system modes only

r13_abtr13_svc

r8_fiq
r9_fiq

r10_fiq
r11_fiq

SPSR_irqSPSR_abtSPSR_svcSPSR_fiqCPSR

r14_fiq
r13_fiq
r12_fiq

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13
r14
r15 (PC)

21

Registers
•R0 to R15 are directly accessible
•R0 to R14 are general purpose
•R13: Stack point (sp) (in common)

–Individual stack for each processor mode
•R14: Linked register (lr)
•R15 holds the Program Counter (PC)
•CPSR - Current Program Status Register contains

condition code flags and the current mode bits
•5 SPSRs (Saved Program Status Registers) which

are loaded with CPSR when an exceptions occurs

22

The Program Counter (R15)
• When the processor is executing in ARM state:

–All instructions are 32 bits in length
–All instructions must be word aligned
–Therefore the PC value is stored in bits [31:2] with bits [1:0]

equal to zero (as instruction cannot be halfword or byte aligned).
• R14 is used as the subroutine link register (LR) and stores the return

address when Branch with Link (BL) operations are performed,
calculated from the PC.

• Thus to return from a linked branch
MOV r15,r14
MOV pc,lr

23

Program Status Registers

•The ARM contains a Current Program Status Register
(CPSR), plus five Saved Program Status Registers
(SPSRs) for use by exception handlers.

•These register’s functions are:
–Hold information about the most recently performed

ALU operation.
–Control the enabling and disabling of interrupts.
–Set the processor operating mode

24

Program Status Registers
–The N, Z, C and V are condition code flags

•may be changed as a result of arithmetic and logical
operations in the processor

•may be tested by all instructions to determine if the
instruction is to be executed

•N : Negative. Z : Zero. C : Carry. V : oVerflow
–The I and F bits are the interrupt disable bits
–The T bit is thumb bit
–The M0, M1, M2, M3 and M4 bits are the mode bits

25

Program Counter (r15)

•When the processor is executing in ARM state:

–All instructions are 32 bits wide

–All instructions must be word aligned

–The PC value is stored in bits [31:2] with bits
[1:0] undefined

–Instructions cannot be halfword or byte
aligned

26

ARM Memory Organization

half-word4

word16

0123

4567

891011

byte0
byte

12131415

16171819

20212223

byte1byte2

half-word14

byte3

byte6

address

bit 31 bit 0

half-word12

word8

27

Big Endian and Little Endian
Big endian

Little endian

28

Exceptions

•Exceptions are
usually used to
handle unexpected
events which arise
during the execution
of a program 執行系統任務之

計算與處理工作

系統任務 (Task)

初始化處理 處理事件(Event)
或設定旗號(Flag)

中斷服務程式 (ISR)

自中斷服務程式返回

中斷信號處理
與啟動中斷服
務程式

系 統 運 作 中 斷 處 理

回復(繼續)
執行任務

From 黃悅民等嵌入式系統設計-以ARM 處理器為基礎之
SoC平台

29

Exception

•System Exception
–CPU在執行時，愈到特殊的狀況而產生的例
外，使用者完全無法對例外進行初始化、停
止、或啟動

•Interrupt Exception
–ARM CPU預留給系統建置者使用的中斷入口

30

Exception Groups
•Direct effect of executing an instruction

–SWI
–Undefined instructions
–Prefetch aborts (memory fault occurring during fetch)

•A side-effect of an instruction
–Data abort (a memory fault during a load or store data

access)
•Exceptions generated externally

–Reset
–IRQ
–FIQ

31

Exception Entry
•Change to the corresponding mode

•Save the address of the instruction following the
exception instruction in r14 of the new mode

•Save the old value of CPSR in the SPSR of the
new mode

•Disable IRQ

•If the exception is a FIQ, disables further FIQ

•Force PC to execute at the relevant vector
address

32

Exception Vector Addresses

Excepti o n Mo de Vector addres s
Reset SVC 0x00000000
Undefined instruction UND 0x00000004
Software interrupt (SWI) SVC 0x00000008
Prefetch abort (instruction fetch memory fault) Abort 0x0000000C
Data abort (data access memory fault) Abort 0x00000010
IRQ(normal interrupt) IRQ 0x00000018
FIQ(fast interrupt) FIQ 0x0000001C

Intel x86 –0x00000 ~ 0x003FF (4 x 256)
ARM –0x000000 ~ 0x00001F

33

Exception Return

•Any modified user registers must be restored

•Restore CPSR

•Resume PC in the correct instruction stream

34

Exception Priorities

•Reset
•Data abort
•FIQ
•IRQ
•Prefetch abort
•SWI, undefined instruction

Highest priority

35

Naming Rule of ARM
•ARM {x} {y} {z} {T} {D} {M} {I} {E} {J} {F} {-S}

–x: series
–y: memory management / protection unit
–z: cache
–T: Thumb decoder
–D: JTAG debugger
–M: fast multiplier
–I: support hardware debug
–E: enhance instructions (based on TDMI)
–J: Jazelle
–F: vector floating point unit
–S: synthesiable, suitable for EDA tools

Development of the ARM Architecture

SA-110

ARM7TDMI

4T

1
Halfword
and signed
halfword /
byte support

System
mode

Thumb
instruction
set

2

4

ARM9TDMI

SA-1110

ARM720T ARM940T

Improved
ARM/Thumb
Interworking

CLZ

5TE

Saturated maths

DSP multiply-
accumulate
instructions

XScale

ARM1020E

ARM9E-S

ARM966E-S

3

Early ARM
architectures

ARM9EJ-S

5TEJ

ARM7EJ-S

ARM926EJ-S

Jazelle

Java bytecode
execution

6

ARM1136EJ-S

ARM1026EJ-S

SIMD Instructions

Multi-processing

V6 Memory
architecture (VMSA)

Unaligned data
support

reference: http://www.intel.com/education/highered/modelcurriculum.htm

37

ARM assembly language

•Fairly standard assembly language:

LDR r0,[r8] ; a comment
label ADD r4,r0,r1

38

ARM data types

•32-bit word.
•Word can be divided into four 8-bit

bytes.
•ARM addresses can be 32 bits long.
•Address refers to byte.

–Address 4 starts at byte 4.

•Can be configured at power-up as
either little- or bit-endian mode.

39

Instruction Set

•The ARM processor is very easy to program at
the assembly level

•In this part, we will

–Look at ARM instruction set and assembly
language programming at the user level

40

Notable Features of ARM Instruction Set

•The load-store architecture

•3-address data processing instructions

•Conditional execution of every instruction

•The inclusion of every powerful load and store multiple
register instructions

•Single-cycle execution of all instruction

•Open coprocessor instruction set extension

41

Conditional Execution (1)

•One of the ARM's most interesting features is that each
instruction is conditionally executed

• In order to indicate the ARM's conditional mode to the
assembler, all you have to do is to append the
appropriate condition to a mnemonic

CMP r0, #5
BEQ BYPASS
ADD r1, r1, r0
SUB r1, r1, r2

BYPASS
…

CMP r0, #5
ADDNE r1, r1, r0
SUBNE r1, r1, r2

…

42

Conditional Execution (2)

•The conditional execution code is faster and
smaller
; if ((a==b) && (c==d)) e++;
;
; a is in register r0
; b is in register r1
; c is in register r2
; d is in register r3
; e is in register r4

CMP r0, r1
CMPEQ r2, r3
ADDEQ r4, r4, #1

43

The ARM Condition Code Field

cond

31 28 27 0

•Every instruction is conditionally executed

•Each of the 16 values of the condition field
causes the instruction to be executed or skipped
according to the values of the N, Z, C and V
flags in the CPSR

N: Negative Z: Zero C: Carry V: oVerflow

44

ARM Condition Codes
Opco de
[3 1 :2 8]

Mnemo ni c
ex tens i o n

Interpretat i o n Status f l ag s tate fo r
ex ecut i o n

0000 EQ Equal / equals zero Z set
0001 NE Not equal Z clear
0010 CS/HS Carry set / unsigned higher or same C set
0011 CC/LO Carry clear / unsigned lower C clear
0100 MI Minus / negative N set
0101 PL Plus / positive or zero N clear
0110 VS Overflow V set
0111 VC No overflow V clear
1000 HI Unsigned higher C set and Z clear
1001 LS Unsigned lower or same C clear or Z set
1010 GE Signed greater than or equal N equals V
1011 LT Signed less than N is not equal to V
1100 GT Signed greater than Z clear and N equals V
1101 LE Signed less than or equal Z set or N is not equal to V
1110 AL Always any
1111 NV Never (do not use!) none

45

Condition Field
• In ARM state, all instructions are conditionally executed

according to the CPSR condition codes and the
instruction’s condition field

•Fifteen different conditions may be used

•“Always”condition

–Default condition

–May be omitted

•“Never”condition

–The sixteen (1111) is reserved, and must not be used

–May use this area for other purposes in the future

46

ARM Instruction Set

•Data processing instructions

•Data transfer instructions

•Control flow instructions

•Writing simple assembly language
programs

47

ARM Instruction Set

•Data processing instructions

•Data transfer instructions

•Control flow instructions

•Writing simple assembly language
programs

48

Data processing instructions
•Enable the programmer to perform arithmetic and

logical operations on data values in registers

•The applied rules
–All operands are 32 bits wide and come from registers or are

specified as literals in the instruction itself

–The result, if there is one, is 32 bits wide and is placed in a
register

(An exception: long multiply instructions produce a 64 bits result)

–Each of the operand registers and the result register are
independently specified in the instruction

(This is, the ARM uses a ‘3-address’format for these instruction)

49

ADD r0, r1, r2 ; r0 := r1 + r2

Simple Register Operands

The semicolon here indicates that everything to the right of
it is a comment and should be ignored by the assembler

The values in the register may be considered to be
unsigned integer or signed 2’s-complement values

50

Arithmetic Operations

•These instructions perform binary arithmetic on two 32-
bit operands

•The carry-in, when used, is the current value of the C bit
in the CPSR

r0 := r2 –r1 + C –1RSC r0, r1, r2

r0 := r2 –r1RSB r0, r1, r2

r0 := r1 –r2 + C –1SBC r0, r1, r2

r0 := r1 –r2SUB r0, r1, r2

r0 := r1 + r2 + CADC r0, r1, r2

r0 := r1 + r2ADD r0, r1, r2

51

Bit-Wise Logical Operations

•These instructions perform the specified boolean logic
operation on each bit pair of the input operands

r0 := r1 AND (NOT r2)BIC r0, r1, r2

r0 := r1 XOR r2EOR r0, r1, r2

r0 := r1 OR r2ORR r0, r1, r2

r0 := r1 AND r2AND r0, r1, r2

r0[i] := r1[i] OPlogic r2[i] for i in [0..31]

•BIC stands for ‘bit clear’
•Every ‘1’in the second operand clears the corresponding
bit in the first operand

52

Example: BIC Instruction

•r1 = 0x11111111

r2 = 0x01100101

BIC r0, r1, r2

•r0 = 0x10011010

53

Register Movement Operations

•These instructions ignore the first operand, which is
omitted from the assembly language format, and simply
move the second operand to the destination

r0 := NOT r2MVN r0, r2

r0 := r2MOV r0, r2

The ‘MVN’mnemonic stands for ‘move negated’

54

Comparison Operations

•These instructions do not produce a result, but just set
the condition code bits (N, Z, C, and V) in the CPSR
according to the selected operation

test equal

bit test

compare negated

compare

set cc on r1 XOR r2TEQ r1, r2

set cc on r1 AND r2TST r1, r2

set cc on r1 + r2CMN r1, r2

set cc on r1 –r2CMP r1, r2

55

Immediate Operands

• If we wish to add a constant to a register, we can replace
the second source operand with an immediate value

ADD r3, r3, #1 ; r3 := r3 + 1
AND r8, r7, #&ff ; r8 := r7[7:0]

A constant preceded by ‘#’

A hexadecimal by putting ‘&’after the ‘#’

56

Shifted Register Operands (1)
•These instructions allows the second register operand

to be subject to a shift operation before it is combined
with the first operand

•They are still single ARM instructions, executed in a
single clock cycle

•Most processors offer shift operations as separate
instructions, but the ARM combines them with a general
ALU operation in a single instruction

ADD r3, r2, r1, LSL #3 ; r3 := r2 + 8 * r1

57

Shifted Register Operands (2)

A synonym for LSLarithmetic shift leftASL

LSL Fill the vacated bits at the LSB
of the word with zeros

logical shift left by 0 to 31

XXXXX

00000

031

LSL #5

58

Shifted Register Operands (3)

LSR Fill the vacated bits at the MSB
of the word with zeros

logical shift right by 0 to 32

XXXXX

00000

031

LSR #5

59

Shifted Register Operands (4)

Fill the vacated bits at the
MSB of the word with zero
(source operand is positive)

arithmetic shift right by 0 to 32ASR

0

00000 0

031

ASR #5 ;positive operand

60

Shifted Register Operands (5)

Fill the vacated bits at the
MSB of the word with one
(source operand is negative)

arithmetic shift right by 0 to 32ASR

1

11111 1

031

ASR #5 ;negative operand

61

Shifted Register Operands (6)

The bits which fall off the LSB of the
word are used to fill the vacated bits
at the MSB of the word

Rotate right by 0 to 32ROR

031

ROR #5

62

Shifted Register Operands (7)

The vacated bit (bit 31) is filled
with the old value of the C flag
and the operand is shifted one
place to the right

Rotate right extended by 1
place

RRX

C

031

RRX

C

C

63

Shifted Register Operands (8)

• It is possible to use a register value to specify the
number of bits the second operand should be shifted by

•Ex:

•Only the bottom 8 bits of r2 are significant

ADD r5, r5, r3, LSL r2 ; r5:=r5+r3*2^r2

64

Setting the Condition Codes

•Any data processing instruction can set the condition
codes (N, Z, C, and V) if the programmer wishes it to

•Ex: 64-bit addition

r0r1

r2r3+

r2r3

ADDS r2, r2, r0 ; 32-bit carry out->C
ADC r3, r3, r1 ; C is added into

; high word

Adding ‘S’to the opcode, standing for ‘Set
condition codes’

65

Multiplies (1)

•A special form of the data processing instruction
supports multiplication

•Some important differences
– Immediate second operands are not supported

–The result register must not be the same as the first source
register

– If the ‘S’bit is set, the C flag is meaningless

MUL r4, r3, r2 ; r4 := (r3 x r2)[31:0]

66

Multiplies (2)
•The multiply-accumulate instruction

• In some cases, it is usually more efficient to use a short
series of data processing instructions

•Ex: multiply r0 by 35

MLA r4, r3, r2, r1 ; r4 := (r3 x r2 + r1)[31:0]

ADD r0, r0, r0, LSL #2 ; r0’ := 5 x r0
RSB r0, r0, r0, LSL #3 ; r0’’:= 7 x r0’

; move 35 to r1
MUL r3, r0, r1 ; r3 := r0 x 35

OR

67

ARM Instruction Set

•Data processing instructions
•Data transfer instructions
•Control flow instructions
•Writing simple assembly language

programs

68

Addressing mode

•The ARM data transfer instructions are all based
around register-indirect addressing
–Based-plus-offset addressing
–Based-plus-index addressing

LDR r0, [r1] ; r0 := mem32[r1]
STR r0, [r1] ; mem32[r1] := r0

Register-indirect addressing

69

Data Transfer Instructions

•Move data between ARM registers and memory

•Three basic forms of data transfer instruction

–Single register load and store instructions

–Multiple register load and store instructions

–Single register swap instructions

70

Single Register Load / Store Instructions (1)

•These instructions provide the most flexible way
to transfer single data items between an ARM
register and memory

•The data item may be a byte, a 32-bit word, 16-
bit half-word

LDR r0, [r1] ; r0 := mem32[r1]
STR r0, [r1] ; mem32[r1] := r0

Register-indirect addressing

71

Single Register Load / Store Instructions (2)

Mem8[address] ←RdStore a byte in register into memorySTRB

Rd ←signExtend(mem16[address])Load a signed half-word into registerLDRSH

Rd ←signExtend(mem8[address])Load a signed byte into registerLDRSB

Mem16[address] ←RdStore a half-word in register into memorySTRH

Rd ←mem16[address]Load a half-word into registerLDRH

Rd ←mem8[address]Load a byte into registerLDRB

Mem32[address] ←RdStore a word in register into memorySTR

Rd ←mem32[address]Load a word into registerLDR

72

Base-plus-offset Addressing (1)

•Pre-indexed addressing mode
–It allows one base register to be used to access a

number of memory locations which are in the same
area of memory

LDR r0, [r1, #4] ; r0 := mem32[r1 + 4]

73

Base-plus-offset Addressing (2)

•Auto-indexing (Preindex with writeback)
–No extra time

–The time and code space cost of the extra instruction
are avoided

LDR r0, [r1, #4]! ; r0 := mem32[r1 + 4]
; r1 := r1 + 4

The exclamation “!”mark indicates that the instruction should
update the base register after initiating the data transfer

74

Base-plus-offset Addressing (3)

•Post-indexed addressing mode
–The exclamation “!”is not needed

LDR r0, [r1], #4 ; r0 := mem32[r1]
; r1 := r1 + 4

75

Application

ADR r1, table
LOOP LDR r0, [r1], #4 ; r0 := mem32[r1]

; r1 := r1 + 4
;do some operation on r0
…

ADR r1, table
LOOP LDR r0, [r1] ; r0 := mem32[r1]

ADD r1, r1, #4 ; r1 := r1 + 4
;do some operation on r0
…

76

Multiple Register Load / Store Instructions (1)

•Enable large quantities of data to be transferred
more efficiently

•They are used for procedure entry and exit to
save and restore workspace registers

•Copy blocks of data around memory

LDMIA r1, {r0, r2, r5} ; r0 := mem32[r1]
; r2 := mem32[r1 + 4]
; r5 := mem32[r1 + 8]

The base register r1 should be word-aligned

77

Multiple Register Load / Store Instructions (2)

Store multiple registersSTM

Load multiple registersLDM

Rn-4

Rn

Rn+4*N

Rn+4*N-4

End address Rn!Starting addressDescriptionAddressing mode

Rn+4*NRn+4Increment
Before

IB

Rn-4*NRn-4*Rn+4Decrement
After

DA

Rn-4*N

Rn

Decrement
Before

Increment
After

DB

IA

Rn-4*N

Rn+4*N

Addressing mode for multiple register load and store instructions

78

Example (1)

LDMIA r0, {r1, r2, r3}
OR
LDMIA r0, {r1-r3}

r1 := 10
r2 := 20
r3 := 30

r0 := 0x100

79

Example (2)

LDMIA r0!, {r1, r2, r3}

r1 := 10
r2 := 20
r3 := 30

r0 := 0x10C

80

Example (3)

LDMIB r0!, {r1, r2, r3}

r1 := 20
r2 := 30
r3 := 40

r0 := 0x10C

81

Example (4)

LDMDA r0!, {r1, r2, r3}

r1 := 40
r2 := 50
r3 := 60

r0 := 0x108

82

Example (5)

LDMDB r0!, {r1, r2, r3}

r1 := 30
r2 := 40
r3 := 50

r0 := 0x108

83

Application

; r9 begin address of source data
; r10 begin address of target
; r11 end address of source data

LOOP
LDMIA r9! , {r0-r7}
STMIA r10!, {r0-r7}
CMP r9 , r11
BNE LOOP

Low address

High address

r10

r9

r11

Copy

Copy a block of memory

84

Application: Stack Operations

•ARM use multiple load-store instructions to
operate stack

–POP: multiple load instructions

–PUSH: multiple store instructions

85

The Stack (1)

•Stack grows up or grows down

–Ascending, ‘A’

–Descending, ‘D’

•Full stack, ‘F’: sp points to the last used address
in the stack

•Empty stack, ‘E’: sp points to the first unused
address in the stack

86

The Stack (2)

STMDASTMEDLDMIBLDMED遞減空ED

STMIASTMEALDMDBLDMEA遞增空EA

STMDBSTMFDLDMIALDMFD遞減滿FD

STMIBSTMFALFMFALDMFA遞增滿FA

=STMPUSH=LDMPOP說明Addressing
mode

The mapping between the stack and block copy views of
the multiple load and store instructions

87

Single Register Swap Instructions (1)

•Allow a value in a register to be exchanged with
a value in memory

•Effectively do both a load and a store operation
in one instruction

•They are little used in user-level programs

•Atomic operation

•Application

–Implement semaphores (multi-threaded /
multi-processor environment)

88

Single Register Swap Instructions (2)

tmp = mem8[Rn]
mem8[Rn] = Rm
Rd = tmp

Byte exchangeSWPB

tmp = mem32[Rn]
mem32[Rn] = Rm
Rd = tmp

WORD exchangeSWP

SWP{B} Rd, Rm, [Rn]

89

Example

SWP r0, r1, [r2]

90

Load an Address into Register (1)

•The ADR (load address into register) instruction
to load a register with a 32-bit address

•Example
–ADR r0,table
–Load the contents of register r0 with the 32-bit

address "table"

91

Load an Address into Register (2)

•ADR is a pseudo instruction

•Assembler will transfer pseudo instruction into a
sequence of appropriate normal instructions

•Assembler will transfer ADR into a single ADD,
or SUB instruction to load the address into a
register.

92

93

ARM Instruction Set

•Data processing instructions
•Data transfer instructions
•Control flow instructions
•Writing simple assembly language

programs

94

Control Flow Instructions

•Determine which instructions get executed next
B LABEL
…
…

LABEL …

MOV r0, #0 ; initialize counter
LOOP …

ADD r0, r0, #1 ; increment loop counter
CMP r0, #10 ; compare with limit
BNE LOOP ; repeat if not equal
… ; else fall through

95

Branch Conditions
Branch Interpretat i o n No rmal us es
B
BAL

Unconditional
Always

Always take this branch
Always take this branch

BEQ Equal Comparison equal or zero result
BNE Not equal Comparison not equal or non-zero result
BPL Plus Result positive or zero
BMI Minus Result minus or negative
BCC
BLO

Carry clear
Lower

Arithmetic operation did not give carry-out
Unsigned comparison gave lower

BCS
BHS

Carry set
Higher or same

Arithmetic operation gave carry-out
Unsigned comparison gave higher or same

BVC Overflow clear Signed integer operation; no overflow occurred
BVS Overflow set Signed integer operation; overflow occurred
BGT Greater than Signed integer comparison gave greater than
BGE Greater or equal Signed integer comparison gave greater or equal
BLT Less than Signed integer comparison gave less than
BLE Less or equal Signed integer comparison gave less than or equal
BHI Higher Unsigned comparison gave higher
BLS Lower or same Unsigned comparison gave lower or same

96

Branch Instructions

PC=label, T=1
PC=Rm & 0xfffffffe, T=Rm & 1
LR = BLX後面的第一道指令的位址

帶返回的跳躍並
切換狀態

BLX

PC=Rm & 0xfffffffe, T=Rm & 1跳躍並切換狀態BX

PC=label
LR=BL後面的第一道指令的位址

帶返回的跳躍BL

PC=label跳躍B

97

Branch and Link Instructions (1)

•BL instruction save the return address into r14 (lr)

BL subroutine ; branch to subroutine
CMP r1, #5 ; return to here
MOVEQ r1, #0
…

subroutine ; subroutine entry point
…
MOV pc, lr ; return

98

Branch and Link Instructions (2)

•Problem
–If a subroutine wants to call another subroutine, the

original return address, r14, will be overwritten by the
second BL instruction

•Solution
–Push r14 into a stack

–The subroutine will often also require some work
registers, the old values in these registers can be
saved at the same time using a store multiple
instruction

99

Branch and Link Instructions (3)

BL SUB1 ; branch to subroutine SUB1
…

SUB1
STMFD r13!, {r0-r2,r14} ; save work & link register
BL SUB2
…
LDMFD r13!, {r0-r2, pc} ; restore work register and

; return

SUB2
…
MOV pc, r14 ; copy r14 into r15 to return

100

Jump Tables (1)

•A programmer sometimes wants to call one of a set of
subroutines, the choice depending on a value computed
by the program

BL JUMPTAB
..

JUMPTAB
CMP r0, #0
BEQ SUB0
CMP r0, #1
BEQ SUB1
CMP r0, #2
BEQ SUB2
..

Note: slow when the list is
long, and all subroutines
are equally frequent

101

Jump Tables (2)

•“DCD”directive instructs the assembler to reserve a
word of store and to initialize it to the value of the
expression to the right
BL JUMPTAB
..

JUMPTAB
ADR r1, SUBTAB
CMP r0, #SUBMAX
LDRLS pc, [r1, r0, LSL #2]
B ERROR

SUBTAB
DCD SUB0
DCD SUB1
DCD SUB2
..

102

Supervisor Calls

•SWI: SoftWare Interrupt

•The supervisor calls are implemented in system software

–They are probably different from one ARM system to
another

–Most ARM systems implement a common subset of
calls in addition to any specific calls required by the
particular application

; This routine sends the character in the bottom
; byte of r0 to the use display device

SWI SWI_WriteC ; output r0[7:0]

103

Processor Actions for SWI (1)

•Save the address of the instruction after the SWI
in r14_svc

•Save the CPSR in SPSR_svc
•Enter supervisor mode
•Disable IRQs
•Set the PC to 0x8

104

Processor Actions for SWI (2)

...
ADD r0, r1, r2
SWI 0x6
ADD r1, r2, r2
...

Reset
Undef instr.
SWI
Prefetch abort
Data abort
Reserved
IRQ
FIQ

0x00
0x04
0x08
0x0c
0x10
0x14
0x18
0x1c

SWI handler
...

User Program Vector Table
SWI handler

105

Processor Actions for SWI (3)

...
ADD r0, r1, r2
SWI 0x6
ADD r1, r2, r2
...

Reset
Undef instr.
SWI
Prefetch abort
Data abort
Reserved
IRQ
FIQ

0x00
0x04
0x08
0x0c
0x10
0x14
0x18
0x1c

switch (rn) {
case 0x1: …
case 0x6:
...
}

User Program Vector Table SWI handler

106

ARM Instruction Set

•Data processing instructions
•Data transfer instructions
•Control flow instructions
•Writing simple assembly language

programs

107

Writing Simple Assembly Language Programs
(ARM ADS)

AREA HelloW, CODE, READONLY
SWI_WriteC EQU &0
SWI_Exit EQU &11

ENTRY
START ADR r1, TEXT
LOOP LDRB r0, [r1], #1

CMP r0, #0
SWINE SWI_WriteC
BNE LOOP
SWI SWI_Exit

TEXT = "Hello World",&0a,&0d,0
END

AREA: chunks of data or code
that are manipulated by the
linker

ENTRY: The first instruction to be executed within an application is
marked by the ENTRY directive. An application can contain only a
single entry point.

EQU: give a symbolic name to a
numeric constant (*)

DCB: allocate one or more bytes of
memory and define initial runtime
content of memory (=)

108

General Assembly Form (ARM ADS)

•The three sections are separated by at least one
whitespace character (a space or a tab)

• Actual instructions never start in the first column,
since they must be preceded by whitespace,
even if there is no label

•All three sections are optional

label <whitespace> instruction <whitespace> ;comment

109

GNU GAS Basic Format (1)

.section .text

.global main

.type main,%function
main:

MOV r0, #100
ADD r0, r0, r0
.end

•Assemble the following code
into a section
•Similar to “AREA”in armasm

Filename: test.s

110

GNU GAS Basic Format (2)

.section .text

.global main

.type main,%function
main:

MOV r0, #100
ADD r0, r0, r0
.end

•“.global”makes the symbol
visible to ld
•Similar to “EXPORT”in
armasm

Filename: test.s

111

GNU ARM Basic Format (3)

.section .text

.global main

.type main,%function
main:

MOV r0, #100
ADD r0, r0, r0
.end

•This sets the type of symbol
name to be either a function
symbol or an object symbol

•“.end”marks the end of the
assembly file
•Assembler does not process
anything in the file past the
“.end”directive

Filename: test.s

112

GNU ARM Basic Format (4)

.section .text

.global main

.type main,%function
main:

MOV r0, #100
ADD r0, r0, r0
.end

•LABEL透過”:”來做識別
•armasm則是透過指令和保留
字的縮排來做識別

Filename: test.s

•Comments
•/* …your comments... */
•@ your comments (line comment)

113

Thumb Instruction Set
•Thumb addresses code density

–A compressed form of a subset of the ARM instruction
set

•Thumb maps onto ARMs

–Dynamic decompression in an ARM instruction
pipeline

–Instructions execute as standard ARM instructions
within the processor

•Thumb is not a complete architecture

•Thumb is fully supported by ARM development tools

•Design for processor / compiler, not for programmer

114

Thumb-ARM Differences (1)

•All Thumb instructions are 16-bits long

–ARM instructions are 32-bits long

•Most Thumb instructions are executed
unconditionally

–All ARM instructions are executed
conditionally

115

Thumb-ARM Differences (2)

•Many Thumb data processing instructions use a
2-address format (the destination register is the
same as one of the source registers)

–ARM use 3-address format

•Thumb instruction are less regular than ARM
instruction formats, as a result of the dense
encoding

116

Thumb Applications
•Thumb properties

–Thumb requires 70% space of the ARM code

–Thumb uses 40% more instructions than the ARM
code

–With 32-bit memory, the ARM code is 40% faster
than the Thumb code

–With 16-bit memory, the Thumb code is 45%
faster than the ARM code

–Thumb uses 30% less external memory power
than ARM code

117

DSP Extensions

•DSP Extensions “E”
–16bit Multiply and Multiply-Accumulate instructions

–Saturated, signed arithmetic

–Introduced in v5TE

–Available in ARM9E, ARM10E and Jaguar families

118

ARM Java Extensions - JazelleTM

•Direct execution of Java ByteCode

•8x Performance of Software JVM
(Embedded CaffeineMark3.0)

•Over 80% power reduction for Java Applications

•Single Processor for Java and existing OS/applications

•Supported by leading Java Run-time environments and
operating systems

•Available in ARM9, ARM10 & Jaguar families

119

ARM Media Extensions (ARM v6)
•Applications

–Audio processing
–MPEG4 encode/decode
–Speech Recognition
–Handwriting Recognition
–Viterbi Processing
–FFT Processing

• Includes
–8 & 16-bit SIMD operations
–ADD, SUB, MAC, Select

•Up to 4x performance for no extra power
• Introduced in ARM v6 architecture, Available in Jaguar

120

ARM Architectures

THUMBTM DSP JazelleTM Media

•Enhance performance through innovation
– THUMBTM: 30% code compression

–DSP Extensions: Higher performance for fixed-point DSP

– JazelleTM: up to 8x performance for java

–Media Extensions up to 4x performance for audio & video

•Preserve Software Investment through compatibility

Architecture
v4T

v5TE
v5TEJ

v6

Feature Set

121

Outline

•Introduction

•Programmers model

•Instruction set

•System design

•Development tools

122

Example ARM-based System

AMBA

B
ri

d
g

e

Timer

On-chip
RAM

ARM

Interrupt
Controller

Remap/
Pause

TIC

Arbiter

Bus InterfaceExternal
ROM

External
RAM

Reset

System Bus Peripheral Bus

• AMBA
– Advanced Microcontroller Bus

Architecture
• ADK

– Complete AMBA Design Kit

• ACT
– AMBA Compliance Testbench

• PrimeCell
– ARM’s AMBA compliant

peripherals

AHB or ASB APB

External
Bus

Interface

Decoder

reference: http://www.intel.com/education/highered/modelcurriculum.htm

124

ARM Coprocessor Interface
•ARM supports a general-purpose extension of

its instructions set through the addition of
hardware coprocessor

•Coprocessor architecture

–Up to 16 logical coprocessors

–Each coprocessor can have up to 16 private
registers (any reasonable size)

–Using load-store architecture and some
instructions to communicate with ARM
registers and memory.

125

ARM7TDMI Coprocessor Interface

•Based on “bus watching”technique

•The coprocessor is attached to a bus where the
ARM instruction stream flows into the ARM

•The coprocessor copies the instructions into an
internal pipeline

•A “hand-shake”between the ARM and the
coprocessor confirms that they are both
ready to execute coprocessor instructions

126

Outline

•Introduction

•Programmers model

•Instruction set

•System design

•Development tools

127

Development Tools (1)

•Commercial

–ARM

–IAR

–…

•Open source

–GNU

Best code quality

128

Development Tools (2)

binutilsfromelfFormat
converter

Simulator in GDBARMulatorSimulator

GDB, InsightArmsd, AXDDebugger

newlibC libraryC library

binutilsarmlinkLinker

binutilsarmasmAssembler

gccarmccCompiler

GNUARM ADS

129

The Structure of ARM Cross-
Development Toolkit

as semblerC compiler

C source asm source

.aof

C libraries

linker

.axf

ARMsd

debug

ARMulator
development

system model

board

object
libraries

130

ADS-Assembler

•Compiler：產生Object
•Linker：產生ELF 可執行碼

131

ADS- Pre-assembler

•Pre-assembler
–Pseudo code -> assembler -> Object

132

Example

•Example of pr-compiler

133

Example

•Example of pr-compiler

