Introduction to ARM
Processors

OUTLINE

-Background

-ARM Microprocessor
« ARM Architecture,
« Assembly Language Programming
* |nstruction Set

BACKGROUND

Architectural features of embedded processor
General rules (with exceptions):

1.

NOoOORWDN

© o

Designed for efficiency (vs. ease of programming)

Huge variety of processors (resulting from 1.)

Harvard architecture

Heterogeneous register sets

Limited instruction-level parallelism or VLIW ISA

Different operation modes (saturating arithmetic, fixed point)
Specialised microcontroller & DSP instructions (bit-field
addressing, multiply/accumulate, bit-reversal, modulo addressing)
Multiple memory banks

. No “fat” (MMU, caches, memory protection, target buffers,

complex pipeline logic, ...)

These features have to be known to the compiler!

ARM Concept

ARMpJF}P Ei_IP Core, H 5kl

FE| | SR NG e P 4\:?]
rﬂ\ﬂIT“fIH" '|ARMF U 5
ITl, Intel -

 What is ARM?
— Advanced RISC Machine
— Acorn and VLSI Technology built in 1990/11
— RISC ARMIE A © = e
— IP Core E';ﬁg} [Ei}ﬁgﬁ?ﬂ
—T.I. » PHILIPS » INTEL......

— RISC Microcontroller
« ARM7 - ARM9 - ARM9E-S - StrongARM

ARM Concept

 Why ARM?
— Low power -~ Low cost ~ Tiny
— 8/16/32 bit microprocessor
— Thumb mode

— Namely
T : Thumb Mode
* D : Debug interface (JTAG)
« M : Multiplier
| : ICE interface (Trace ~ Break point)

Why ARM here?

e ARM is one of the most licensed and thus
widespread processor cores in the world

e Used especially in portable devices due to low
power consumption and reasonable
performance (MIPS / watt)

e Several interesting extensions available or in
development like Thumb instruction set and
Jazelle Java machine

— http://www.arm.com/armtech/jazelle?OpenDocument

ARM processor

ARM is a family of RISC architectures.

“"ARM" is the abbreviation of "Advanced RISC
Machines”.

ARM does not manufacture its own VLSI devices.
— linceses

ARM7- von Neuman Architecture
ARM9 — Harvard Architecture

ARM vs. SoC

 Architecture of ARM and SoC

: ARM#S CBERLHCPU +
| e e SOCH[R 5B
” fis = WEICPUL > '))
: ?ﬁﬁﬂj %“J%Ff‘@“@%ﬁﬁ
LT || IC - '}t ~ LR -
Controller~ f; }[;/ {gg] %{F
. i s% - HiIC
NN “' -
S
Other f’“
Controllers. > f:
EX: 0¢
LAN controller >)
CD controll

‘ ‘ Cache Size Tightly Memory | AHB Bus [Thumb | DSP | Jazelle Clock
{(Inst/Dhata) Coupled Manage Interface MHz =%
Memory -ment
RMTTDMI | No | No No Yes* | | No | No | 133
ARMTTDMIS | MNo | No | No D YYes® | Yes | No | No | 100-133
RMTEJ-S | MNo | No | No \/ Yes* | Yes | Yes | Yes | 100-133
ARMO66E-S | Na Lo Yes N MNo T Yes | Yes | Yes | No | 230250
ARMI40T | AR AR | No I mMPU [ves* | Yes | No | No | 180
ARMY4GE-S | Variable | Yes | MPU | Yes | Yes | Yes | MNo | 180-210
ARMI026F)-S | Variable | Yes |MMU+MPU | dual AHB | Yes | Yes | Yes | 266-325
Platform Cores
ARMT20T | BK unified | No COMMU | Yes | Yes | No | No | 100
ARMO20T | 16K 16K | No | MMU | Yes® | Yes | No | MNo | 250
ARM922T | RS K | No | MMU | Yes* | Yes | No | No | 250
ARMO2GEI-S | Variable | Yes | MMU | dual AHB | Yes | Yes | Yes | 220-250
ARMIOZOE | S2K/EZK | No O MMU [dual AHE | Yes | Yes | No | 325
A | 16K 16K | No . MMU [dual AHB | Yes | Yes | No | 325
| Variahle | Yes MMU+MPU | dual AHB | Yes | Yes | Yes | 266-325
Secure Applications
| N | No . MPU | No | Yes | MNo | No | 80
| No | No . MPL | No | Yes | No | No | 80
| Optional | No | MPU | No | Yes | Yes | Yes | 110
| Optional | No | MPU | No | Yes | Yes | Yes | 110
_-__ _
| 16K SK MM -E|-

<....H1.3=-33_ EpT R | No | MWL | NiA | Yes Yes@

9

Intel Xscale

ARMNMF Architecture Version STE ISA compliant.
— ARMNM® Thumb Instruction Support

— ARM=*= DSP Enhanced Instructions

[Low power consumption and high performance
Intel™ Media Processing Technology

—— Enhanced 16-bit Multiply

— 4i-bi1it Accumulator

32-KBvte Instruction Cache

3Z2-KBvte Data Cache

Z-KBwvte Mini Data Cache

Z-KBvte Mini Instruction Cache

Instruction and Data Memory Management Units
Branch Target Bufter

Debug Capabihity via JTAG Port

10

ARM single-cycle instruction 3-
stage pipeline operation

1 fetch | decode| execute I

2 fetch | decode

execute‘

3 =

Jecode

executel

11

ARM busses

e AMBA:
— Open standard.
— Many external
devices.
e Two varieties:

— AMBA High-
Performance Bus
(AHB).

— AMBA Peripherals
Bus (APB).

CPU

memory

AHB

bridge

1/0

APB

12

ARM Instruction set

ARM processor (operating) states
ARM memory organization.

ARM programming model.

ARM assembly language.

ARM data operations.

ARM flow of control.

C to assembly examples
Exceptions

Coprocessor instructions
Summary

13

Processor Operating States

e The ARM7TDMI processor has two
operating states:

— ARM - 32-bit, word-aligned ARM instructions
are executed in this state.

— Thumb -16-bit, halfword-aligned Thumb
Instructions are executed In this state.

14

e The operating state of the ARM7TDMI
core can be switched between ARM state
and Thumb state using the BX (branch
and exchange) instructions

BK‘{ = Cond = } =R =

where:

<conds= [s the condition under which the instruction 1s executed. The conditions are defined in The
condition field on page A3-5. If <cond> is omitted, the AL (always) condition 1s used.

<Rm> Holds the value of the branch target address. Bit[0] of Rm 1s 0 to select a target ARM

instruction, or | to select a target Thumb instruction.

15

The Memory System

e 4 G address space
— 8-bit bytes, 16-bit half-words, 32-bit words
— Supp*qrgitl:ggth ittle&teon_d*i:an and big-endian

23

22

21

20

19

18

17

wordl16

16

15

14
half-word14

13

12
half-word12

11

10

9

word8

8

-

6
byte6

5

4

half-word4

3 2 1 0
bytes _byte2 bytel byteQ

-

byte
address

16

Operating Modes

e The ARM7TDMI processor has seven modes of operations:

User mode(usr) _
- Normal program execution mode

Fast Interrupt mode(fiq)
- Supports a high-speed data transfer or channel process.

Interrupt mode(irq)
- Used for general-purpose interrupt handling.

Supervisor mode(svc)
- Protected mode for the operating system.

Abort mode(abt)
- implements virtual memory and/or memory protection

System mode(sys)
- A privileged user mode for the operating system. (runs OS
tasks)

Undefined mode(und) _
- supports a software emulation of hardware coprocessors

e EXxcept user mode, all are known as privileged mode.

17

ARM programming model

ro

rl

r8

r2

ro

r3

r10

31 0

r4

rll

S

rl2

CPSR

re

rl3

r/

rl4

r15 (PC)

CPSR: Current Program Status Register
SPSR: Saved Program Status Register

NZCV

18

Registers

37 registers
— 31 general 32 bit registers, including PC
— 6 status registers

— 15 general registers (RO to R14), and one status registers and program
counter are visible at any time — when you write user-level programs
« R13(SP)
« R14 (LR)
« R15 (PC)
The visible registers depend on the processor mode

The other registers (the banked registers) are switched

In to support IRQ, FIQ, Supervisor, Abort and Undefined
mode processing

19

ARM Registers (1)

H usable in user mode

|| system modes only

rlB_irqE rl3 und|]

r14_irq ' r14 und
]

r13 abtl
r14 abt]

I
SPSR irg &—‘SPSR_und 1

T

!

'SPSR vl SPSR_abt
I J

abort
mode

ro
rl
r2
r3
r4
rs
ré
r7 _
8 r8 fig
9 r9 fig
10 r10_fig
11 il fig
r2 :ig{:q r13 svc
ri3 — r14 svcl
14 rl4 fig =17
r15 (PC)

CPSR | SPSR fiq

SvC

user mode mode

irq undefined
mode mode

20

Registers

RO to R15 are directly accessible

RO to R14 are general purpose

R13: Stack point (sp) (in common)

— Individual stack for each processor mode
R14: Linked register (Ir)

R15 holds the Program Counter (PC)

CPSR - Current Program Status Register contains
condition code flags and the current mode bits

5 SPSRs (Saved Program Status Registers) which
are loaded with CPSR when an exceptions occurs

21

The Program Counter (R15)

 When the processor is executing in ARM state:
— All instructions are 32 bits in length
— All instructions must be word aligned

— Therefore the PC value is stored in bits [31:2] with bits [1:0]
equal to zero (as instruction cannot be halfword or byte aligned).

 R14 is used as the subroutine link register (LR) and stores the return
address when Branch with Link (BL) operations are performed,
calculated from the PC.

 Thus to return from a linked branch
MOV r15,r14
MOV pc, |r

22

Program Status Registers

e The ARM contains a Current Program Status Register
(CPSR), plus five Saved Program Status Registers
(SPSRs) for use by exception handlers.

e These register’s functions are:

— Hold information about the most recently performed
ALU operation.

— Control the enabling and disabling of interrupts.
— Set the processor operating mode

23

Program Status Registers

The N, Z, C and V are condition code flags

e may be changed as a result of arithmetic and logical
operations in the processor

e may be tested by all instructions to determine if the

Instruction is to be executed
e N : Negative. Z: Zero. C: Carry. V :oVerflow

The | and F bits are the interrupt disable bits
The T bit is thumb bit

The MO. M1. M2. M3 and M4 bits are the mode bits

Condition
code flags Fasarvad Cantral bits
| | |
| | | I I
31 30 29 28 27 286 25 24 23 H g 5 4 3 2 1 0
MlZlc|v]=|=]=]+]- /- F | T [mad|ma|nz|mmo
L — [
Ovarflow l— Mode bils
— Cany ar bormow or axtend State bt
2o FIOQ disable
Magaltve or less than IRQ di=able

24

Program Counter (r15)

* When the processor Is executing in ARM state:

—A
—A
-T

| instructions are 32 bits wide

| instructions must be word aligned

ne PC value Is stored In bits [31:2] with bits

[1:0] undefined

— Instructions cannot be halfword or byte
aligned

§ bit 31
23

22

21

bit O _* :
20|

19

18

WOrd16

16

14

nalf-word14

12

half word12

11

10
WO

9
ras

8

7

6
byte6

5

4

half-word4

byted byte? bytel byted

ARM Memory Organization

byte

address

26

Big Endian and Little Endian

Big endian
Higher Address 31 24 23 16 15 7 a Word Address
8 9 10 11 8
4 5 6 [4
0 1 Z 3 0
Lower Address * Most significant byte is at lowest address
« Word is addressed by byte address of most significant byte
Little endian
Higher Address 31 24 23 16 15 7 a Waord Address
11 10 9 B i
7 B 3 4 4
3 2 1 0 0
Lower Addrass » Least significant byte is at lowest addrass

= Word is addressed by byte address of |least significant byte

27

Exceptions

Exceptions are
usually used to
handle unexpected
events which arise
during the execution
of a program

¥ e T

¥ E7pRFx 42 3¢ (ISR) J

%

Jed2 % % (Event)
£ 3% T 3(Flag)

y

B¢ ETIRFRAR N K W

LT R SR iE g2 w4 (4)
ﬂﬁ@—l 3 3{{!{‘,‘7552“
—

From F 5T 5k * A2k wt-l)

SoC* VF,\'

F

ARM R L

28

Exception

« System Exception

- CPUZH TR » AR TS % o]
b U RS S ST AT IS TR T

. HYEEE
1=~ F it

* Interrupt Exception
A B 2 o v T

— ARM CPU7

29

Exception Groups

* Direct effect of executing an instruction

— SWI

— Undefined instructions

— Prefetch aborts (memory fault occurring during fetch)
« A side-effect of an instruction

— Data abort (a memory fault during a load or store data
access)

« Exceptions generated externally
— Reset
— IRQ
— FIQ

30

Exception Entry

Change to the corresponding mode

Save the address of the instruction following the
exception instruction in r14 of the new mode

Save the old value of CPSR in the SPSR of the
new mode

Disable IRQ
f the exception is a FIQ, disables further FIQ

Force PC to execute at the relevant vector
address

31

Exception Vector Addresses

Exception Mode | Vector address
Reset SVC 0x00000000
Undefi nedinstruction UND 0x00000004
Software interrupt (SW) SVC 0x00000008
Prefetch abort (instruction fetch memory faut) Abort 0x0000000C
Dataabort (dataaccess memory faut) Abort 0x00000010
IRQ (normd interrupt) IRQ 0x00000018
FIQ (fast interrupt) FQ 0x0000001C

+Intel x86 — 0x0O0000 ~ OXO03FF (4 x 256)
+ARM — 0x000000 ~ Ox00001F

32

Exception Return

* Any modified user registers must be restored
 Restore CPSR

« Resume PC In the correct instruction stream

33

Exception Priorities

Reset

Data abort

F1Q

IRQ

Prefetch abort

SWI, undefined instruction

Highest priority

34

Naming Rule of ARM
* ARM {x} {y} {z} {T} {D} {M} {1} {E} {3} {F} {-S}

— X: series

— y: memory management / protection unit
— Z: cache

— T: Thumb decoder

— D: JTAG debugger

— M: fast multiplier

— |: support hardware debug

— E: enhance instructions (based on TDMI)
— J: Jazelle

— F: vector floating point unit

— S: synthesiable, suitable for EDA tools

35

Development of the ARM Architecture

: Improved : I

! Halfword : ARM/Thumb ; Jazelle
: and signed : Interworking : Java bytecode

halfword / i execution
: byte support i CLZ :
: System SA-110 Saturated maths | ARMOEJ-S ARM926EJ-S
 System | saa0] | 5
- : DSP multiply-
SA-1110 accumulate E ARM7EJ-S ARM1026EJ-S
i Instructions e ee e
Thumb ARM1020E SIMD Instructions
: instruction i Multi-processing
: set XScale :

Early ARM : V6 Memory

architectures ; :
| Arm7tOMI || ARMOTOMI |i | ARMOE-S ; architecture (VMSA)

: Unaligned data

i1 ARM720T ARM940T |i | ARM966E-S : support ARM1136EJ-S

o
j

reference: http://www.intel.com/education/highered/modelcurriculum.htm

ARM assembly language

e Fairly standard assembly language:

LDR r0,[r8] ; a comment
| abel ADD r4,r0,r1l

37

ARM data types

32-bit word.

Word can be divided into four 8-bit
bytes.

ARM addresses can be 32 bits long.

Address refers to byte.
— Address 4 starts at byte 4.

Can be configured at power-up as
either little- or bit-endian mode.

38

Instruction Set

 The ARM processor is very easy to program at
the assembly level

* In this part, we will

— Look at ARM instruction set and assembly
language programming at the user level

39

Notable Features of ARM Instruction Set

The load-store architecture
3-address data processing instructions
Conditional execution of every instruction

The inclusion of every powerful load and store multiple
register instructions

Single-cycle execution of all instruction

Open coprocessor instruction set extension

40

Conditional Execution (1)

One of the ARM's most interesting features is that each

Instruction is conditionally executed

In order to indicate the ARM's conditional mode to the
assembler, all you have to do is to append the
appropriate condition to a mnemonic

C\VP
BEQ
ADD
SUB
BYPASS

ro, #5
BYPASS
ri, rl,
ri, rl,

ro
r2

CwvP
ADDNE
SUBNE

ro, #5

ri,
ri,

ri, rO
ri1, r2

41

Conditional Execution (2)

 The conditional execution code is faster and

maller
I f ((a==b) && (c==d)) e++;

aisinregister r0
Is in register rl
IS In register r2
Is in register r3
IS in register r4

® QO O T

C\VP ro, rl
CMPEQ r2, r3
ADDEQ r4, r4, #1

The ARM Condition Code Field

* Every Instruction is conditionally executed

« Each of the 16 values of the condition field
causes the instruction to be executed or skipped
according to the values of the N, Z, Cand V
flags in the CPSR

31 28 27 0

cond |

N: Negative Z: Zero C: Carry V: oVerflow

43

ARM Condition Codes

Opcode Mnemonic Interpretation Status flag state for
[31:28] extension execution
0000 EQ Equal / equal s zero Z set
0001 NE Not equal Zclear
0010 CS/HS Carry set / unsignedhigher orsame C set
0011 CC/LO Carry clear / unsigned | ower Cclear
0100 M Minus / negative N set
0101 PL Plus / positiveor zero N clear
0110 VS Overflow V set
0111 VC No overflow V clear
1000 HI Unsigned higher Cset andZclear
1001 LS Unsigned | ower or same Cclear or Z set
1010 GE Signed greater than or equal N equal s V
1011 LT Signedless than Nis not equal to V
1100 GT Signed greater than Z clear and N equals V
1101 LE Signedless than or equal ZsetorNisnot equal toV
1110 AL Always any
1111 NV Never (do not use!) none

44

Condition Field

In ARM state, all instructions are conditionally executed
according to the CPSR condition codes and the
Instruction’s condition field

Fifteen different conditions may be used

“Always” condition

— Default condition

— May be omitted

“Never” condition

— The sixteen (1111) is reserved, and must not be used

— May use this area for other purposes in the future

45

ARM Instruction Set

Data processing instructions
Data transfer instructions
Control flow Instructions

Writing simple assembly language
programs

46

ARM Instruction Set

Data processing instructions
Data transfer instructions
Control flow Instructions

Writing simple assembly language
programs

47

Data processing instructions

* Enable the programmer to perform arithmetic and
logical operations on data values In registers

* The applied rules

— All operands are 32 bits wide and come from registers or are
specified as literals in the instruction itself

— The result, if there is one, is 32 bits wide and is placed in a
register

(An exception: long multiply instructions produce a 64 bits result)

— Each of the operand registers and the result register are
independently specified in the instruction

(This is, the ARM uses a ‘3-address’ format for these instruction)

48

Simple Register Operands

ADD rO, rl, r2 - r0 :=rl1 +r2

The semicolon here indicates that everything to the right of
It is acomment and should be ignored by the assembler

l

The values in the register may be considered to be
unsigned integer or signed 2’s-complement values

49

* These instructions perform binary arithmetic on two 32-

Arithmetic Operations

bit operands

« The carry-in, when used, is the current value of the C bit

In the CPSR

ADD 10, rl,r2 r0:=rl+r2

ADC 10,rl,r2 rn:=r1+r2+C
SUB 1r0,rl, r2 ro:=rl-r2

SBC 10,rl,r2 M =rl-r2+C-1
RSB 110, rl, r2 r0:=r2-rl

RSC 10,rl,r2 n=r2-r1+C-1

50

Bit-Wise Logical Operations

« These Iinstructions perform the specified boolean logic
operation on each bit pair of the input operands

rofi1] :=rl[1] OP g r2[i] for 1 in [0..31]
AND 10, rl,r2 rO :=rl AND r2

ORR 10,11, 12 rO:=r1 OR 2

EOR 10,rl,r2 roO :=rl1 XOR r2

BIC 10O, rl,r2 r0 :=rl AND (NOT r2)

* BIC stands for ‘bit clear’
* Every ‘1’ in the second operand clears the corresponding
bit in the first operand

51

Example: BIC Instruction

* 11 =0x11111111
r2 = 0x01100101
BIC rO, rl, r2

* 10 = 0x10011010

52

Register Movement Operations

* These instructions ignore the first operand, which is
omitted from the assembly language format, and simply
move the second operand to the destination

MOV 10, r2 ro :=r2
MVN 1O, r2 rO := NOT r2

The ‘"MVN’ mnemonic stands for ‘move negated’

Comparison Operations

* These Iinstructions do not produce a result, but just set
the condition code bits (N, Z, C, and V) in the CPSR
according to the selected operation

CMP 11,12 compare setcconrl—r2
CMN rl,r2 compare negated [setcconrl +r2
TST 11,12 bit test setcconrl AND r2
TEQ rl,r2 test equal setcconrl XOR r2

54

Immediate Operands

 If we wish to add a constant to a register, we can replace

the second source operand with an immediate value

r3 + 1
r77.0

7

ADD r3, r3, #1 - r3

AND r8, r7, #&ff r8 :
/

\

A constant preceded by ‘#

A hexadecimal by putting ‘&’ after the ‘#

55

Shifted Register Operands (1)

« These instructions allows the second register operand
to be subject to a shift operation before it is combined
with the first operand

ADD r3, r2, rl, LSL #3 - r3 :=r2 +8 *rl

* They are still single ARM instructions, executed in a
single clock cycle

* Most processors offer shift operations as separate
Instructions, but the ARM combines them with a general
ALU operation in a single instruction

56

Shifted Register Operands (2)

LSL | logical shift left by O to 31 | Fill the vacated bits at the LSB
of the word with zeros
ASL | arithmetic shift left A synonym for LSL

31

XXXXX

00000

LSL #5

57

Shifted Register Operands (3)

LSR

logical shift right by 0 to 32

Fill the vacated bits at the MSB
of the word with zeros

31

XXXXX

AN

00000

LSR #5

58

Shifted Register Operands (4)

ASR

arithmetic shift right by 0 to 32

Fill the vacated bits at the
MSB of the word with zero
(source operand is positive)

31

0

0

AN

00000 O

ASR #5 ;positive operand

59

Shifted Register Operands (5)

ASR

arithmetic shift right by 0 to 32

Fill the vacated bits at the
MSB of the word with one

(source operand is negative)

31

0

1

AN

111111

ASR #5 ;negative operand

60

Shifted Register Operands (6)

ROR | Rotate right by O to 32 | The bits which fall off the LSB of the
word are used to fill the vacated bits
at the MSB of the word

31

AN

ROR #5

61

Shifted Register Operands (7)

RRX | Rotate right extended by 1 | The vacated bit (bit 31) is filled
place with the old value of the C flag
and the operand is shifted one
place to the right
31 0

RRX

62

Shifted Register Operands (8)

It is possible to use a register value to specify the
number of bits the second operand should be shifted by

EX:
ADD r5, r5, r3, LSL r2 - r5:=r5+r3*2"r 2

Only the bottom 8 bits of r2 are significant

63

Setting the Condition Codes

* Any data processing instruction can set the condition
codes (N, Z, C, and V) if the programmer wishes it to

 EX: 64-bit addition

ri rO ADDS r2, r2, r0 ; 32-bit carry out->C
ADC\ r3, r3, r1; Cis added into
; high word
+ 3 | r2 \v
3) Adding ‘S’ to the opcode, standing for ‘Set
r r condition codes’

64

Multiplies (1)

« A special form of the data processing instruction
supports multiplication

« Some important differences

— Immediate second operands are not supported

— The result register must not be the same as the first source
register

— Ifthe ‘'S’ bitis set, the C flag is meaninaless

MJL rd, r3, r2 ;14 1= (r3 X r2)z5.q

65

Multiplies (2)

The multiply-accumulate instruction

MA 4, r3, r2, r1 ; rd = (r3 xr2 +rl)s.qg

In some cases, It is usually more efficient to use a short
series of data processing instructions

Ex: multiply rO by 35

- nove 35 to rl
MJL r3, rO, r1 :; r3 :=r0 x 35

OR

ADD ro, rO, rO, LSL #2 ; r0O’
RSB ro, r0O, rO, LSL #3 ; r0’’:

5xr0
7 X rQ’

66

ARM Instruction Set

Data processing instructions

Data transfer instructions
Control flow instructions

Writing simple assembly language
programs

67

Addressing mode

 The ARM data transfer instructions are all based
around register-indirect addressing

— Based-plus-offset addressing
— Based-plus-index addressing

LDR r0O, [r1] ; 10 1= mem,[rl]
STR r0, [r1] , mem,[rl] =710

Register-indirect addressing

68

Data Transfer Instructions

 Move data between ARM registers and memory
* Three basic forms of data transfer instruction

— Single register load and store instructions

— Multiple register load and store instructions

— Single register swap instructions

69

Single Register Load / Store Instructions (1)

* These Iinstructions provide the most flexible way
to transfer single data items between an ARM
register and memory

* The data item may be a byte, a 32-bit word, 16-
bit half-word

LDR r0O, [r1] ; 10 1= mem,[rl]
STR r0, [r1] , mem,[rl] =710

Register-indirect addressing

70

Single Register Load / Store Instructions (2)

LDR Load a word into register Rd <—mem32[address]

STR Store a word in register into memory Mem32[address] <—Rd

LDRB Load a byte into register Rd <—mema8[address]

STRB Store a byte in register into memory Mem8[address] <—Rd

LDRH Load a half-word into register Rd <—mem1l16[address]

STRH Store a half-word in register into memory | Meml16[address] <—Rd

LDRSB | Load a signed byte into register Rd <—signExtend(mem8[address])
LDRSH | Load a signed half-word into register Rd <—signExtend(mem16[address])

71

Base-plus-offset Addressing (1)

* Pre-indexed addressing mode

— It allows one base register to be used to access a
number of memory locations which are in the same
area of memory

LDR rO, [rl1, #4] , r0 = nmem,[rl + 4]

72

Base-plus-offset Addressing (2)

* Auto-indexing (Preindex with writeback)

— No extra time

— The time and code space cost of the extra instruction

are avoided

LDR r0, [rl, #4]! ;10

/ rl o

mem,[rl + 4]
rli + 4

/

The exclamation “!I” mark indicates that the instruction should
update the base register after initiating the data transfer

73

Base-plus-offset Addressing (3)

* Post-indexed addressing mode
— The exclamation “!” is not needed

LDR r0O, [rl1], #4 , ro0 :
; rl o

mem,[r 1]
ri + 4

74

Application

table Memory
—~—. | 0x100
Al1]

ADR rl, table

LOOP LDR 0, [r1] . 10 ;= memy[ri] AlZ]
ADD rl, rl, #4 crl :=rl1 + 4 A[3]
; do sone operation on r0
ADR rl, table

LOOP LDR r0, [rl1], #4 , 10 = memg,[rl]

;rl=rl1+ 4

; do sone operation on r0

75

Multiple Register Load / Store Instructions (1)

* Enable large quantities of data to be transferred
more efficiently

* They are used for procedure entry and exit to
save and restore workspace registers

* Copy blocks of data around memory

LDM A rl1, {r0, r2, rb5} , 10 1= memy,[r1l]
, 12 1= mem,[rl + 4]
, IS 1= nmem,[rl + 8]

The base register rl should be word-aligned

76

Multiple Register Load / Store Instructions (2)

LDM Load multiple registers

STM Store multiple registers

Addressing mode | Description | Starting address End address | Rn!

1A Increment | p, RN+4*N-4 RN+4*N
After

B increment | p g Rn+4*N RN+4*N
Before

DA Decrement | o axrn+a RN RN-4*N
After

DB Decrement | p 4N Rn-4 RN-4*N
Before

Addressing mode for multiple register load and store instructions

77

Example (1)

address data

r0O —» 0x100 10

0x104 20

LDMA rO0, {r1, r2, r3} 0x108 30
OR 0x10C 40
LDMA r0, {rl-r3} 0x200 50

@ 0x204 60

ri := 10
r2 = 20
r3 := 30
ro := 0x100

Example (2)

ro

LDM A | rO'} {rl1, r2, r3}
rl := 10
r2 .= 20
r3 := 30

ro :

0x10C

address

—P

0x100

0x104
0x108
0x10C
0x200
0x204

data
10
20
30
40
50
60

79

Example (3)

ro

LDM B rO!', {rl1, r2, r3}
ri1 := 20
r2 = 30
r3 := 40

ro :

0x10C

address

—P

0x100

0x104
0x108
0x10C
0x200
0x204

data
10
20
30
40
50
60

80

Example (4)

address

0x100

0x104

0x108

LDMDA rO!, {rl, r2, r3} 0x10C

0x200

@ 0 —» 0x204
rl := 40
r2 := 50
r3 : = 60

ro :

0x108

data
10
20
30
40
50
60

81

Example (5)

address

0x100

LDVDB rO!, {rl1, r2, r3}
g 0 —»
ri := 30
r2 = 40
r3 := 50

ro :

0x108

0x104
0x108
0x10C
0x200
0x204

data
10
20
30
40
50
60

82

Application

Copy a block of memory

High address

ril >

ro9 begin address of source data
r10 begi n address of target
rll end address of source data

LOCP
LDM A
STM A

BNE

rot , {r0-r7}
r10!, {rO0-r7}
ro , rlil
LOOP

ro >

Copy

rl1o0 >

Low address

83

Application: Stack Operations

 ARM use multiple load-store instructions to
operate stack

— POP: multiple load instructions

— PUSH: multiple store instructions

84

The Stack (1)

Stack grows up or grows down
— Ascending, ‘A’
— Descending, ‘D’

Full stack, ‘F': sp points to the last used address
In the stack

Empty stack, ‘E’: sp points to the first unused
address in the stack

85

The Stack (2)

The mapping between the stack and block copy views of

the multiple load and store instructions

Addressing

mode SN POP =LDM PUSH =STM
FA i@ﬁ?ﬁ'ﬂ LDMFA LFMFA STMFA STMIB
FD ﬁ@’ﬁ“ﬂfxﬂ] LDMFD LDMIA STMFD STMDB
EA PEIETd | LDMEA LDMDB STMEA STMIA
ED P&V | LDMED LDMIB STMED STMDA

86

Single Register Swap Instructions (1)

Allow a value In a register to be exchanged with
a value in memory

Effectively do both a load and a store operation
IN one instruction

They are little used In user-level programs
Atomic operation
Application

— Implement semaphores (multi-threaded /
multi-processor environment)

87

Single Register Swap Instructions (2)

SWP{ B}

Rd, Rm [Rn]

SWP

WORD exchange

tmp = mem32[Rn]
mem32[Rn] = Rm
Rd =tmp

SWPB

Byte exchange

tmp = mem8[Rn]
mem8[Rn] = Rm
Rd =tmp

88

Example

10: 123456 address data
| 0x100 10
r1: 111111 Ox104 20
r2: 0x108 0x108 30
SWP r0, rl, [r2]
0 30 address data
| 0x100 10
ri1: 111111 0x104 20

r2: 0x108 0x108 111111

Load an Address into Reqister (1)

 The ADR (load address into register) instruction

to load a register with a 32-bit address

« Example
— ADR rO,table

— Load the contents of register rO with the 32-bit
address "table"

r0

table

-4

Memory
0x100

90

Load an Address into Register (2)

 ADR Is a pseudo Instruction

« Assembler will transfer pseudo instruction into a
sequence of appropriate normal instructions

* Assembler will transfer ADR into a single ADD,

or SUB Instruction to load the address into a
register.

91

=~ ARM Debugger - E:\books\0OUF3ediARMYarm_test

File Edit Search Yiew Execute Opfions ‘Window Help

=2 DR e e) = L = = e

1 AREZA ABRMtest, CODE, READOMLY ;l 10

2 ENTEY rl

3 Start MOV r0,#:20 Tz

4 MOV 1, #0xFF T3

5 ADD rl.r0.rl T4

B ADD r3,r0,rl, L3L #4 5

7 ADD rl,rZ,#B65536 TG

& 7

e ADE r5.tablel &

10 ADE A tabled nals|

11 10

12 Stop MOV r0,#0x18 rll

13 LDE rl,=0x20026 rl2

14 SWI o 0x123456 rl3

15 rld

16 AREA =zv=z, DATA, READWRITE ¢l

17 tahlel DCB "test" CpST

15

19 :

20 AREA pgr. DATA, READWRITE wr Disassembly Window: 0x8080 (1)

21 tablez DCB Iltestzll t mDV rEI’#I:IX14

2e 008084 | mov rl,#0xff

23 0x00008088 add r2,r0,rl

24 END 0x0000808¢ add r3.r0.r1 1s] #4
Oxz00008090 add rl,r2,#0=10000
Oxz00008094 add o, e, #0218
0x00008098 add rh,pc,#lzc
Stop mory r0,#0x18
0xz000080a0 ldr rl1,.0x000080a8 :
0xz000080a4 swi 0x123456
0xz000080a8 andeg ri,r2.rb.lsr #32
tahles? ldrveht b, [r3].#-02574
0xz000080k0 andedq ri,r0,r2.lsr 0
HYZ ldrveht e, [r3].#-02574

jJJ .:J <| | | edata {andeq ri,r0,.r0

Dxz00000018 A|
Dxz00020026
0x00000113
Dxz00001004
Dxz00000000
Dx000080kh4
Oz000080ac
OzO0000000
OzO0000000
OzO0000000
DzO0000000
DzO0000000
DzOO0000000
DzO0000000
DzO0000000
Dxz000080a4
HHNZC0wvift_User32

|Program terminated normally

ARMulate | | |

ARM Instruction Set

Data processing instructions

Data transfer instructions

Control flow Instructions
Writing simple assembly language
programs

93

Control Flow Instructions

Determine which instructions get executed next

B LABEL
LABEL ...
MOV r0O, #0 Initialize counter
LOOP ..
ADD r0, r0O, #1 ; increnent |oop counter
CMVP ro, #10 conpare with limt
BNE LOOP repeat i f not equal

el se fall through

94

Branch Conditions

Branch Interpretation Normal uses
B Unconditional Alway s take this branch

AL Always Always take this branch
BEQ Equal Comparison equal or zero result
BNE Not equal Comparison not equal or non-zero result
BPL Plus Result positive or zero
BMI Minus Result minus or negative
BCC Carry clear Arithmetic operation did not give carry-out
BLO Lower Unsigned compari son gave | ower
BCS Carry set Arithmetic operation gave carry-out
BHS Higher or same Unsigned comparison gave higher or same
BVC Overflow clear Signedinteger operation; no overflow occurred
BVS Overflow set Signedinteger operation; overflow occurred
BGT Greater than Signedinteger comparison gave greater than
BGE Greater or equal Signedinteger comparison gave greater or equal
BLT Less than Signedinteger comparison gave less than
BLE Less or equal Signedinteger comparison gave | ess than or equal
BHI Higher Unsigned comparison gave higher
BLS Lower or same Unsigned comparison gave |l ower or same

95

Branch Instructions

B P PC=label
BL ﬁ»i’%[ﬂlﬁ@?}?lf% PC=label

LR=BL & [“1fN 3T~ ﬁ?ﬁ ?J NI
BX AT IEUE | PC=Rm & Oxfffffffe, T=Rm & 1
BLX PC=label, T=1

s

S

PC=Rm & Oxfffffffe, T=Rm & 1

LR = BLX& [IpYET- S 43 A9 A ik

96

Branch and Link Instructions (1)

* BL instruction save the return address into r14 (Ir)

BL subroutine ; branch to subroutine

C\VP rl, #5 - return to here
MOVEQ r1, #O

subrouti ne , subroutine entry point

MOV pc, Ir , return

Branch and Link Instructions (2)

* Problem

— If a subroutine wants to call another subroutine, the
original return address, r14, will be overwritten by the
second BL instruction

 Solution

— Push r14 into a stack

— The subroutine will often also require some work
registers, the old values in these registers can be
saved at the same time using a store multiple
Instruction

98

Branch and Link Instructions (3)

BL SUB1 : branch to subroutine SUB1

SUB1
STMFD ri3!, {r0-r2,r14} ; save work & link register
BL SuB2

LDVFD ri13!, {r0-r2, pc} ; restore work register and
return

SuUB2

MOV pc, rl14 ; copy rl4 into rl5 to return

99

Jump Tables (1)

* A programmer sometimes wants to call one of a set of

subroutines, the choice depending on a value computed

by the program

Note: slow when the list Is

long, and all subroutines
are equally frequent

BL
JUVPTAB
C\VP
BEQ
C\VP
BEQ

C\VP
BEQ

JUMPTAB

ro, #0
SUBO
ro, #1
SUB1
ro, #2
SuUB2

100

Jump Tables (2)

« “DCD’ directive instructs the assembler to reserve a
word of store and to initialize it to the value of the
expression to the right

BL JUMPTAB
. r1 SUBTAB
JUMPTAB
ADR rl, SUBTAB SUB1
CVP_ r0, #SUBNMAX 0 x4
LDRLS pc, [r1l, r0, LSL #2]
B ERROR SUB2
SUBTAB -
DCD SUBO
DCD SUBL SUB3
DCD SUB2

101

Supervisor Calls

« SWI: SoftWare Interrupt
« The supervisor calls are implemented in system software

— They are probably different from one ARM system to
another

— Most ARM systems implement a common subset of
calls in addition to any specific calls required by the

particular application

This routi ne sends the character in the bottom
byte of rO to the use display device

SW SW WiteC ; output rO[7:0]

102

Processor Actions for SWI (1)

Save the address of the instruction after the SWiI
INrl4 svc

Save the CPSR In SPSR_svc
Enter supervisor mode
Disable IRQs

Set the PC to 0x8

103

Processor Actions for SWI (2)

User Program

Vector Table

ADD rO, rl1, r2
SW 0x6

ADD rl, r2, r2 -—

0x00 | Reset SWI handler
0x04 |Undef instr.

0x08 | SW L SW handl er
OxO0c |Prefetch abort -

O0x10 |Data abort

Ox14 |Reserved

0x18 |1 RQ

Oxlc [FIQ

104

Processor Actions for SWI (3)

User Program

Vector Table

0x00 | Reset
Abbro, r1, r2 Ox04 |Undef instr.
SW 0x6 0x08 |SW
ADD rl, r2, r2 < 0xOc Prefetch abort
Ox10 |Data abort
Ox14 | Reserved
0x18 || RQ
Oxlc [FIQ

SWI handler

A 4

swtch (rn) {
case Ox1:
case 0x6:

105

ARM Instruction Set

Data processing instructions

Data transfer instructions

Control flow instructions

Writing simple assembly language
programs

106

Writing Simple Assembly Language Programs

AREA: chunks of data or code

Hel | oW CODE, READONLY || that are manipulated by the

linker

EQU: give a symbolic name to a
numeric constant (*)

DCB: allocate one or more bytes of
memory and define initial runtime
content of memory (=)

(ARM ADS)
AREA
SW WiteC EQU &0
SW _ Exit EQU &11
ENTRY
START ADR rl, TEXT
L OCOP L DRB ro, [rl], #1
C\VP ro, #0
SW NE SW WiteC
BNE L OOP
SW SW _ Exit
TEXT = "Hell o Worl d", &0a,
END

&0d, O

ENTRY: The first instruction to be executed within an application is
marked by the ENTRY directive. An application can contain only a

single entry point.

107

General Assembly Form (ARM ADS)

| abel <whitespace> instruction <whitespace> ; comrent

* The three sections are separated by at least one
whitespace character (a space or a tab)

e Actual Instructions never start in the first column,
since they must be preceded by whitespace,
even If there Is no label

 All three sections are optional

108

GNU GAS Basic Format (1)

.section .text

. gl obal main
.type nmain, % unction

MOV rO, #100
ADD rO, r0O, rO
. end

Filename: test.s

~

» Assemble the following code
Into a section

* Similar to “AREA” in armasm

109

GNU GAS Basic Format (2)

.section .text

. gl obal main

.type nmain, % unction

MOV rO, #100
ADD rO, r0O, rO
. end

« “.global” makes the symbol
visible to Id

 Similar to “EXPORT” in
armasm

Filename: test.s

110

GNU ARM Basic Format (3)

.section .text
. gl obal main

* This sets the type of symbol
name to be either a function
symbol or an object symbol

.type nmain, % unction
mai n

MOV r0O, #100

ADD r0, r0Q, rQO

.end

Filename: test.s

N

« “.end” marks the end of the
assembly file

« Assembler does not process
anything in the file past the
“.end” directive

111

GNU ARM Basic

.section .text

Format (4)

. gl obal main
.type nmain, % unction

MOV rO, #100
ADD rO, r0O, rO
. end

o LABEL# iE"." K faaih %

carmasmp| £ i dp £ friFx
F edEE R G

Filename: test.s

« Comments
e [*...your comments... */
* @ your comments (line comment)

112

Thumb Instruction Set

Thumb addresses code density

— A compressed form of a subset of the ARM Instruction
set

Thumb maps onto ARMs

— Dynamic decompression in an ARM instruction
pipeline

— Instructions execute as standard ARM instructions
within the processor

Thumb is not a complete architecture
Thumb is fully supported by ARM development tools
Design for processor / compiler, not for programmer

113

Thumb-ARM Differences (1)

* All Thumb instructions are 16-bits long
— ARM Iinstructions are 32-bits long

« Most Thumb Instructions are executed
unconditionally

— All ARM Instructions are executed
conditionally

114

Thumb-ARM Differences (2)

 Many Thumb data processing instructions use a
2-address format (the destination register Is the
same as one of the source reqgisters)

— ARM use 3-address format

« Thumb instruction are less regular than ARM
Instruction formats, as a result of the dense
encoding

115

Thumb Applications

Thumb properties
— Thumb requires 70% space of the ARM code

— Thumb uses 40% more instructions than the ARM
code

— With 32-bit memory, the ARM code is 40% faster
than the Thumb code

— With 16-bit memory, the Thumb code is 45%
faster than the ARM code

— Thumb uses 30% less external memory power
than ARM code

116

DSP Extensions

 DSP Extensions “E”
— 16Dbit Multiply and Multiply-Accumulate instructions

— Saturated, signed arithmetic
— Introduced in V5TE
— Available in ARM9E, ARM10E and Jaguar families

117

ARM Java Extensions - Jazelle™

Direct execution of Java ByteCode

8x Performance of Software JVM
(Embedded CaffeineMark3.0)

Over 80% power reduction for Java Applications
Single Processor for Java and existing OS/applications

Supported by leading Java Run-time environments and
operating systems

Available in ARM9, ARM10 & Jaguar families

118

ARM Media Extensions (ARM vb6)

* Applications
— Audio processing
— MPEG4 encode/decode
— Speech Recognition
— Handwriting Recognition
— Viterbi Processing
— FFT Processing
* Includes
— 8 & 16-bit SIMD operations
— ADD, SUB, MAC, Select
« Up to 4x performance for no extra power
* Introduced in ARM v6 architecture, Available in Jaguar

119

ARM Architectures

Feature Set
Architecture THUMB™ DSP Jazelle™ Media

VAT ~/
V5TE ~/ v
V5TEJ < J v
V6 v ~ v v
« Enhance performance through innovation
— THUMB™: 30% code compression

— DSP Extensions: Higher performance for fixed-point DSP
— Jazelle™: up to 8x performance for java

— Media Extensions up to 4x performance for audio & video

* Preserve Software Investment through compatibility

120

Outline

Introduction
Programmers model
Instruction set
System design

Development tools

121

Example ARM-based System

16-bit RAM 32-bit RAM

Interrupt
Controller

nlRQ nFIQ Peripherals /0

ARM Core

8-bit ROM

122

AMBA

TIC

External

ROM External
Bus

Interface

External
RAM

Interrupt
Controller

. AHB or ASB B APB N
System Bus Peripheral Bus
AMBA « ACT
— Advanced Microcontroller Bus — AMBA Compliance Testbench
Architecture _
ADK PrimecCell
— ARM’s AMBA compliant

— Complete AMBA Design Kit :
peripherals

reference: http://www.intel.com/education/highered/modelcurriculum.htm

ARM Coprocessor Interface

 ARM supports a general-purpose extension of
Its Instructions set through the addition of
hardware coprocessor

 Coprocessor architecture
— Up to 16 logical coprocessors

— Each coprocessor can have up to 16 private
registers (any reasonable size)

— Using load-store architecture and some
Instructions to communicate with ARM
registers and memory.

124

ARMT7TDMI Coprocessor Interface

Based on “bus watching” technique

The coprocessor Is attached to a bus where the
ARM instruction stream flows into the ARM

The coprocessor copies the instructions into an
Internal pipeline

A “hand-shake” between the ARM and the
coprocessor confirms that they are both
ready to execute coprocessor instructions

125

Outline

Introduction
Programmers model
Instruction set
System design

Development tools

126

Development Tools (1)

e« Commercial

— ARM
<— Best code quality
—1AR

 Open source
— GNU

©IAR

SYSTEMS

127

Development Tools (2)

ARM ADS GNU
Compiler armcc gcc
Assembler armasm binutils
Linker armlink binutils
cormal | fromelf binutils
C library C library newlib
Debugger Armsd, AXD GDB, Insight
Simulator ARMulator Simulator in GDB

128

The Structure of ARM Cross-
Development Toolkit

C source C libraries _ =/asm source
v o v
- J;/ 7
C compiler assembler
.aof
object

_ “9 libraries
linker =

D

system model

v / £ ;;
\ development

ARMulator T board w

w ARMsd

129

ADS-Assembler

« Compiler : % % Object

» Linker @ & & ELF [&= {iS

FHERES 2¢

FERES MY

Cibject file 2«

Object file M«

130

ADS- Pre-assembler

* Pre-assembler
— Pseudo code -> assembler -> Object

HEFESTER
L4
Pre-Assembler+ /_\
Assembler+
Assemble

Object Code+

(Machine Code)+

131

Example

» Example of pr-compiler

CLECON EQU 001480004+,

oo
=
o
=
l
.
N
£t +t +t +t O t t t t
=
tl

132

Example

» Example of pr-compiler

v Area Tt CODE READONLY
D0] |
b EesetHandler for debuge
() -

______ [b HandlerUndef handlerUndef
______ - b HandlerS5WI W T interrupt handlers
b HandlerPabort (handlerPAborte

b HandlerDabort ;handlerD Aborte

b, ‘handlerEeserveds

b HandlerTEQ+
b HandlerFIQ«

133

