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Stream Lines

 Consider 2D incompressible flow

 Continuity Eqn
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 Vx and Vy are related

 Can you write a common function for both? 
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Stream Function

 Assume
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 Instead of two functions, Vx and Vy, we need to solve 

for only one function   Stream Function

 Order of differential eqn increased by one

 Then
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Stream Function

 What does Stream Function  mean?

 Equation for streamlines in 2D are given by

 = constant

 Streamlines may exist in 3D also, but stream function 

does not

 Why?  (When we work with velocity potential, we may 

get a perspective)

 In 3D, streamlines follow the equation
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Rotation

 Definition of rotation

Time=t
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Rotation

 To Calculate Rotation
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Rotation
 To Calculate Rotation
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Rotation
 To Calculate Rotation
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Rotation
 To Calculate Rotation
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 To write rotation in terms of stream functions

2 2

2 2

1 1

2 2

y x
z

V V

x y x y

 
                        

 

xV
y




 yV
x

    

21

2
    

 

2 2 0z   

 That is

 For irrotational flow (z=0)
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Rotation in terms of Stream Function



 This equation is “similar” to continuity equation
 Vx and Vy are related

 Can we find a common function to relate both Vx

and Vy ?

 For irrotational flow (z=0)
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Rotation and Potential



Velocity Potential

 In 3D, similarly it can be shown that

 Assume
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 Then

 f is the velocity potential



Velocity Potential vs Stream 

Function

Stream Function () Velocity Potential (f)
only 2D flow all flows

viscous or non-viscous flows

Irrotational (i.e. Inviscid or 

zero viscosity) flow

Incompressible flow (steady or 

unsteady)

Incompressible flow (steady 

or unsteady state)

compressible flow (steady 

state only)

compressible flow (steady or 

unsteady state)

Exists 

for

 In 2D inviscid flow (incompressible flow OR steady 

state compressible flow), both functions exist

 What is the relationship  between them?



Stream Function- Physical 

meaning
 Statement: In 2D (viscous or inviscid) flow 

(incompressible flow OR steady state compressible 

flow),  = constant represents the streamline. 
 Proof
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VISCOUS FLOW



i) Viscous Sublayer (VSL)

The thickness of the VSL (d the lower case Greek letter delta) is known from experiments to be 

related to the kinematic viscosity and the shear velocity of the flow by: 

It ranges from a fraction of a millimetre to several millimetres thick.

The thickness of the VSL is particularly important in comparison to size of grains (d) on the 

bed (we’ll see later that the forces that act on the grains vary with this relationship).

*
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The Boundary Reynolds’ Number (R*) is used to determine the relationship between d and d:

*U d




*
R

A key question is “at what value of R* is the diameter of the grains on the bed equal to the 

thickness of the VSL?”
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Turbulent boundaries are classified on the basis of the relationship between thickness of the VSL 

and the size of the bed material.

Given that there is normally a range in grain size on the boundary, the following shows the 

classification:



IV.  Organized structure of turbulent flows

We characterized turbulent flows as being of a “chaotic” nature marked by random fluid 
motion.

More accurately, turbulence consists of organized structures of various scale with randomness 

likely superimposed.

The following illustration shows a hypothetical record of changing flow velocity at a point in a 

flow.



Note that there are short duration, relatively large magnitude fluctuations that are 

superimposed on a longer duration, lower magnitude, regular variation in velocity.

Such a pattern of velocity fluctuations is due to large and small scale organized structures.

Note that a similar pattern of variation would be apparent if boundary shear stress were 

plotted instead of velocity.



Note on boundary shear stress, erosion and deposition

At the boundary of a turbulent flow the average boundary shear stress (to) can be determined 

using the same relationship as for a laminar flow.

In the viscous sublayer viscous shear predominates so that the same relationship exists:

sino gDt  

This applies to steady, uniform turbulent flows.

Boundary shear stress governs the power of the current to move sediment; specifically, erosion 

and deposition depend on the change in boundary shear stress in the downstream direction.



In general, sediment transport rate (qs; the amount of sediment that is moved by a current) 

increases with increasing boundary shear stress.

When to increases downstream, so does the sediment  transport rate; this leads to erosion of 

the bed (providing that to is sufficient to move the sediment).

When to decreases downstream, so does the sediment  transport rate; this leads to deposition 

of sediment on the bed

Variation in to along the flow due to 

turbulence leads to a pattern of erosion and 

deposition on the bed of a mobile sediment.



a) Large scale structures of the outer layer

Rotational structures in the outer layer of a turbulent flow.

i) Secondary flows.

Involves a rotating component of the motion of fluid about an axis that is parallel to the mean 

flow direction.

Commonly there are two or more such rotating structures extending parallel to each other.



In meandering channels, characterized by a sinusoidal channel form, counter-rotating spiral 

cells alternate from side to side along the channel.



ii)  Eddies

Components of turbulence that rotate about axes that are perpendicular to the mean flow 

direction.

Smaller scale than secondary flows and move downstream with the current at a speed of 

approximately 80% of the water surface velocity (U).

Eddies move up and down within the flow as 

the travel downstream and lead to variation in 

boundary shear stress over time and along the 

flow direction.



Some eddies are created by the topography of the bed.

In the lee of a negative step on the bed (see figure below) the flow separates from the 

boundary (“s” in the figure) and reattaches downstream (“a” in the figure). 

A roller eddy develops between the point of separation and the point of attachment.

Asymmetric bed forms (see next chapter) develop similar eddies.





Flow over a step on the boundary.

diuneviz1.avi




b) Small scale structures of the viscous sublayer.

i) Streaks

Associated with counter-rotating, flow parallel vortices within the VSL.

Streak spacing (l) varies with the shear velocity and the kinematic viscosity of the fluid; l
ranges from millimetres to centimetres.

*
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Alternating lanes of high and low speed fluid within the VSL.

l increases when sediment is 

present.



Red = high velocity

Blue = low velocity



ii) Bursts and sweeps

Burst: ejection of low speed fluid from the VSL into the outer layer.

Sweep: injection of high speed fluid from the outer layer into the VSL.

Often referred to as the “bursting cycle” but not every sweep causes a burst and vise versa.

However,  the frequency of bursting and sweeps are approximately equal.





Sediment transport under unidirectional flows

I.  Classification of sediment load

The sediment that is transported by a current.

Two main classes:

Wash load: silt and clay size material that remains in suspension even during low flow events in 

a river.

Bed material load: sediment (sand and gravel size) that resides in the bed but goes into 

transport during high flow events (e.g., floods).

Bed material load makes up many arenites and rudites in the geological record.



Three main components of bed material load.

Contact load: particles that move in contact with the bed by sliding or rolling over it.



Saltation load: movement as a series of “hops” along the 
bed, each hop following a ballistic trajectory.



When the ballistic trajectory is disturbed by turbulence the motion is referred to as Suspensive

saltation.



Intermittent suspension load: carried in suspension by turbulence in the flow.

“Intermittent” because it is in suspension only during high flow events and otherwise resides in 
the deposits of the bed.

Bursting is an important process in initiating suspension transport.



A very nice java applet showing movement on the bed in response to an incoming 

sweep.

ball.flc


In the section on grain size distributions we saw 

that some sands are made up of several normally 

distributed subpopulations.

These subpopulations can be interpreted in terms 

of the modes of transport that they underwent 

prior to deposition.

II.  Hydraulic interpretation of grain size 

distributions



The finest subpopulation represents the wash load.

Only a very small amount of wash load is ever 

stored within the bed material so that it makes up 

a very small proportion of these deposits.



The coarsest subpopulation represents the contact 

and saltation loads.

In some cases they make up two subpopulations 

(only one is shown in the figure).



The remainder of the distribution, normally making 

up the largest proportion, is the intermittent 

suspension load. 

This interpretation of the subpopulations gives us 

two bases for quantitatively determining the 

strength of the currents that transported the 

deposits.



The grain size “X” is the coarsest sediment that 
the currents could move on the bed.

If the currents were weaker, that grain size 

would not be present.

If the currents were stronger, coarser material 

would be present.

This assumes that there were no limitations to 

the size of grains available in the system.

In this case, X = -1.5 f or approximately 

2.8 mm.



The grain size “Y” is the coarsest sediment that 
the currents could take into suspension.

Therefore the currents must have been just 

powerful enough to take  the 0.41 mm particles  

into suspension.

In this case, Y = 1.3 f or approximately 

0.41 mm.

If the currents were stronger the coarsest grain 

size would be larger.

This assumes that there were no limitations to 

the size of grains available in the system.



To quantitatively interpret “X” we need to know 
the hydraulic conditions needed to just begin to 

move of that size. 

This condition is the “threshold for sediment 
movement”. 

To quantitatively interpret “Y” we need to know 
the hydraulic conditions needed to just begin 

carry that grain size in suspension. 

This condition is the “threshold for suspension”. 



a)  The threshold for grain movement on the bed.

Grain size “X” can be interpreted if we know what flow strength is required to just move a 
particle of that size.

That flow strength will have transported sediment with that maximum grain size.

Several approaches have been taken to determine the critical flow strength to initiate motion 

on the bed.



i) Hjulstrom’s Diagram

Based on a series of experiments using unidirectional currents with a flow depth of 1 m.

The diagram (below) shows the critical velocity that is required to just begin to move sediment 

of a given size (the top of the yellow field).

It also shows the critical velocity for deposition of sediment of a given size (the bottom of the 

yellow field).



Note that for grain sizes coarser than 0.5 mm the velocity that is required for transport increases 

with grain size; the larger the particles the higher velocity that is required for transport.

For finer grain sizes (with cohesive clay minerals) the finer the grain size the greater the critical 

velocity for transport.

This is because the more mud is present the greater the cohesion and the greater the resistance 

to erosion, despite the finer grain size.



In our example, the coarsest grain size was 2.8 mm.



In our example, the coarsest grain size was 2.8 mm.

According to Hjulstron’s diagram, that grain size would require a 

flow with a velocity of approximately 0.65m/s.

Therefore, the sediment shown in the cumulative frequency 

curve was transported by currents at 0.65 m/s.



The problem is that the forces that are required to move sediment are not only related to flow 

velocity.

Boundary shear stress is a particularly important force and it varies with flow depth.

to = gDsin

Therefore, Hjulstrom’s diagram is reasonably accurate only for sediment that has been 

deposited under flow depths of 1 m.



i) Shield’s criterion for the initiation of motion

Based on a large number of experiments Shield’s criterion considers the problem in terms of the 
forces that act to move a particle.

The criterion applies to beds of spherical particles of uniform grain size.

Forces that are important to initial motion:

2. to which causes a drag force that acts to move 

the particle down current.

3.  Lift force (L) that reduces the effective 

submerged weight.

1.  The submerged weight of the particle (                    ) which resists 

motion.

3( )
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What’s a Lift Force?

The flow velocity that is “felt” by the particle varies from approximately zero at its base to some 
higher velocity at its highest point.



Pressure (specifically “dynamic pressure” in contrast to static pressure) is also imposed on the 
particle and the magnitude of the dynamic pressure varies inversely with the velocity:

Higher velocity, lower dynamic pressure.

Maximum dynamic pressure is exerted 

at the base of the particle and 

minimum pressure at its highest point.



The dynamic pressure on the particle varies symmetrically from a minimum at the top to a 

maximum at the base of the particle.



This distribution of dynamic pressure results in a net pressure force that acts upwards.

Thus, the net pressure force (known as the Lift Force) acts oppose the weight of the particle 

(reducing its effective weight).

This makes it easier for the flow to 

roll the particle along the bed.

The lift force reduces the drag force 

that is required to move the particle.



If the particle remains immobile to the flow and the velocity gradient is large enough so that the 

Lift force exceeds the particle’s weight….it will jump straight upwards away from the bed.

Once off the bed, the pressure 

difference from top to bottom of the 

particle is lost and it is carried down 

current as it falls back to the bed….

following the ballistic trajectory of 

saltation.

A quick note on saltation……
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Shield’s experiments involved determining the critical boundary shear stress required to move 
spherical particles of various size and density over a bed of grains with the same properties 

(uniform spheres).

He produced a diagram that allows the determination of the critical shear stress required for 

the initiation of motion.

A bivariate plot of “Shield’s Beta” versus Boundary Reynolds’ Number:

vs
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Critical shear stress for motion.

Submerged weight of grains per unit area on the bed.
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Force acting to move the particle (excluding Lift)
=

Force resisting movement

As the Lift Force increases  will decrease (lower to required for movement).

Reflects something of the lift force (related to the velocity gradient across the 

particle).



For low boundary Reynold’s numbers Shield’s  decreases with increasing R*.

For high boundary Reynold’s numbers Shield’s  increases with increasing R*.



For low boundary Reynold’s numbers Shield’s  decreases with increasing R*.

For high boundary Reynold’s numbers Shield’s  increases with increasing R*.

The change takes place at R*  12.



At boundary Reynold’s numbers less than 12 the grains on the bed are entirely within the 

viscous sublayer.

At boundary Reynold’s numbers greater than 12 the grains on the bed extend above the 

viscous sublayer.



As Shield’s  decreases (R* < 12) the critical shear stress required for motion decreases for a 

given grain size.



At low boundary Reynolds numbers (< 12) the grains experience a strong velocity gradient 

within the VSL.

As R* increases towards a value of 12 the VSL thins and the velocity gradient becomes steeper, 

increasing the lift force acting on the grains.

The greater lift force reduces the effective weight of the grains and reduces the boundary shear 

stress that is necessary to move the grain.



At high boundary Reynolds numbers (> 12) the grains protrude through the VSL so that the 

region of strong velocity gradient is below the grains, leading to lower lift forces.

As R* increases the velocity gradient acting on the grains is reduced and resulting lift forces are 

reduced.

The lower lift force leads to an increase in the effective weight of the grains and increases the 

boundary shear stress that is necessary to move the grains.



The boundary Reynold’s number accounts for the variation in lift force on the grains which 

influences the critical shear stress required for motion.



d = -1.5f = 2.8 mm = 0.0028 m

 = 1.1 x 10-6 m2/s (water at 20C)

s = 2650 kg/m3 (density of quartz)

 = 998.2 kg/m3 (density of water at 20C)

g = 9.806 m/s2

0.1 1)sd
gd


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 
 

 

Calculate:

=172

How to use Shield’s Diagram

Note the assumptions 

regarding the water

What is the boundary shear stress required to move 2.18 mm sand? 
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= 0.047

Rearranging:

 0.047 s gd  

= 2.13 N/m2



Limitations of Shield’s Criterion:

1.  It applies only to spherical particles; it doesn’t include the influence of particle shape.

It will underestimate the critical shear stress required for motion for angular 

grains.

2.  It assumes that the material on the bed is of uniform size.

It underestimates the critical shear stress for small grains on a bed of larger grains

It overestimates the critical shear stress 

for large grains on a bed of finer grains



b)  The threshold for suspension

The coarsest grain size in the intermittent suspension load is 

the coarsest sand that the current will suspend.

Sediment is suspended by the upward 

component of turbulence (velocity V).

The largest particle to be suspended by 

a current will be that particle with a 

settling velocity () that is equal to V.



Experiments have shown that V  U*  for a given current.

Therefore, Middleton's criterion is:

A particle will be taken into suspension by a current when the shear velocity of the current 

equals or exceeds the settling velocity of the particle.

U*  



River U* 
(m/s) (m/s)

Middle Loup 7 – 9 7 - 9

Middle Loup ≈ 20 ≈20

Niobrara 7 - 10 7 - 9

Elkhorn 7 - 9 2.5 – 5.0

Mississippi (Omaha) 6.5 – 6.8 2.5 – 5.0

Mississippi (St. Louis)          9 - 11 3 - 12

Rio Grande 8 - 12 ≈10

Comparisons of the settling velocity of the largest grain size in the intermittent suspension load 

found in the bed material of major rivers show that they compare very favorably to the 

measured shear velocity during peak flow in those rivers.



This diagram shows the shear velocity required to suspend particles as a function of their size 

(the curve labeled U* = ).

For comparison it also shows the critical shear velocity required to move a particle on the bed 

based on Shield’s criterion.

The U* =  curve can also be 

used to estimate settling 

velocity for grains coarser than 

0.1 mm (the upper limit for 

Stoke’s Law).



For 0.5 mm diameter quartz spheres:

As flow strength increases at U*=0.021 m/s

the grain will begin to move on the bed.

As flow strength increases further at 

U*=0.05 m/s the moving grain will be taken 

into suspension.

Note that for grain sizes finer than approximately 0.015 mm the grains will go into suspension as 

soon as the flow strength is great enough to move them (i.e., they will not move as contact 

load).



What is the critical shear velocity required to suspend 0.41 mm 

sand? 

The critical shear velocity for 

suspension is 0.042 m/s.



How do our estimates based on the coarsest grains size in transport on the bed and the 

coarsest grain size in suspension compare?

Middleton’s criterion: U* = 0.042 m/s 

Shield’s criterion: to = 2.13 N/m2

*
oU

t


  = 998.2 kg/m3 (density of water at 20C)

U* = 0.046 m/s 

Very close!



Contemporaneously, Ekman…

 

Considered the effects of rotation although he did 

not really think of his solutions in terms of what we 

would call boundary layer theory.

V.W. Ekman Young Ekman



This is a singular perturbation.

The order of the equations is reduced and we can no longer satisfy all the 

boundary conditions if the viscous term is neglected.

The mathematical issue is how to retain the higher order derivatives only 

where they are needed to help satisfy the boundary conditions and

the physical issue is to understand through the applications of boundary 

layer theory how (and whether) the action of friction in very localized 

regions may affect the fluid flow in regions outside the domain directly 

affected by friction. The interplay between the outer region, in which 

friction is not directly important, and the inner region  in which  friction 

directly acts is a key feature of boundary layer theory (a form of singular 

perturbation theory). 



An Oceanic example

Wind-driven ocean circulation model

J( ,2 )   x  r2  4  T (x, y)

J(a,b)  axby  aybx  U / L2

 
AH

L3
,   r 

r*

L

If r and v neglected and the no slip condition is dropped, there will still be  a 

singular perturbation to the equations if the  term, i.e. the nonlinear advection 

terms are ignored. This leads to an inertial boundary layer.This equation in its 

entirety will be discussed more fully later.



An outline of where we will be going

1) Linear boundary layer theory

Ekman layers, Boundary layers in density stratified fluids, control of 

interior, experimental applications.

2) Coastal bottom boundary layer.

Boundary layer on shelf for upwelling and downwelling.

Observations (Lentz)

3) Boundary layers in the General Oceanic Circulation.

Sverdrup theory, Stommel, Munk, inertial boundary layers, inertial 

runaway,thermocline and its boundary layer structure.



Equations of motion

uux  vuy  wuz  2v  
1


px   uxx  uyy  uzz 

uvx  vvy  wvz  2u  
1


py   vxx  vyy  vzz 

uwx  vwy  wwz            
1


pz  g  wxx  wyy  wzz 

ux  vy  wz  0

Incompressible fluid in a 

rotating system.

If the density is not constant 

must add an ernery equation

We are interested in cases where  is “small”. Must introduce scales.


