
Linear Control system 



System – An interconnection of elements and devices for a desired purpose. 

Control System – An interconnection of components forming a system 

configuration that will provide a desired response. 

Process – The device, plant, or system 

under control.  The input and output 

relationship represents the cause-and-

effect relationship of the process. 

Introductory concepts 

 



• Plant:It is a process/body/machine of which a 
entire particular quantity or condition is to be 
controlled. 

• Controller: It is a component required to generate 
the appropriate control signal applied to a plant. 

• Servomechanism:It is a power amplifying 
feedback control system in which the control 
variable is mechanical position ,or time derivative 
of position such as velocity or acceleration 
.Occasionally it refers to mechanical syatem in 
which steady state error is zero for constant input 
signal. 



• Regulator:It is a system in which there is 

steady state value for constant input signal. 

• Linear time invariant system:systems whose 

parameters are varying with time.not 

dependent on whether input/output are 

varying with time. 

• Non Linear time invariant system:systems 

whose parameters are not  varying with 

time. Dependent on whether input/output 

are varying with time. 

 

 

 



• Open loop system:A system in which the output is 
dependent on I/p but I/p is independent of change 
in o/p of the system. 

• Closed loop system:A system in which the I/p, 
controlling action  is dependent of change in o/p 
of the system. 

• Continuous and Discrete time control system:All 
system variables are function of continuous time 
variable ‘t’. 

• Discrete time control system: One or more system 
variable are known at only at discrete time 
intervals. 



Control System 

• Control is the process of causing a system variable to 

conform to some desired value. 

• Manual control       Automatic control (involving machines 

only). 

• A control system is an interconnection of components 

forming a system configuration that will provide a desired 

system response. 
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Multivariable Control System 

Open-Loop Control Systems 

utilize a controller or control 

actuator to obtain the desired 

response. 

Closed-Loop Control 

Systems utilizes feedback to 

compare the actual output to 

the desired output response. 



Control System Classification 

Open-Loop Control System 

Missile Launcher System 



Control System Classification 

Closed-Loop Feedback Control System 

Missile Launcher System 



Effect of feedback on overall 

gain. 

• The overall gain of a open loop system is 

G(s) and feedback when introduced the 

feedback is C(s)/R(s)=G(s)/1+-G(s)H(s).So 

gain is affected by the denominator.For 

positive feedback the sign in denominator 

is(-) and for negative feedback the sign in 

denominator is(+). 



Effect of feedback on overall 

sensitivity. 

• sensitivity is reduced by factor of 

1/1+G(s)H(s) due to feedback for change in 

forward parameter. 

• Closed loop system is more sensitive to 

variation in feedback parameters than 

variation in forward path transfer functions. 



Effect of feedback on overall 

stability. 

• feedback can improve o overall stability or 

may harmful purely depends on application 

and proper design of feedback. 



Effect of feedback on overall 

noise. 

• Feedback  can decrease the effect of noise. 



Manual Vs Automatic Control 
• Control is a process of causing a system variable such as 

temperature or position to conform to some desired value or 

trajectory, called reference value or trajectory. 

• For example, driving a car implies controlling the vehicle to 

follow the desired path to arrive safely at a planned destination. 

i. If you are driving the car yourself, you are performing manual control of 

the car. 

 

 

 

 

 

ii. If you use design a machine, or use a computer to do it, then you have 

built an automatic control system. 



Control System Classification 

Desired 

Output 

Response 

Measurement 

Output 

Variables 
Controller Process 

Multi Input Multi Output (MIMO) System 



Purpose of Control Systems 

i. Power Amplification (Gain) 

– Positioning of a large radar antenna by low-power rotation 

of a knob 

ii. Remote Control 

– Robotic arm used to pick up radioactive materials 

iii. Convenience of Input Form 

– Changing room temperature by thermostat position 

iv. Compensation for Disturbances 

– Controlling antenna position in the presence of large wind 

disturbance torque 

 



Application of control system 

• Familiar control systems have the basic closed-loop configuration. For 
example, a refrigerator has a temperature setting for desired 
temperature, a thermostat to measure the actual temperature and the 
error, and a compressor motor for power amplification. Other 
examples in the home are the oven, furnace, and water heater. In 
industry, there are controls for speed, process temperature and 
pressure, position, thickness, composition, and quality, among many 
others. Feedback control concepts have also been applied to mass 
transportation, electric power systems, automatic warehousing and 
inventory control, automatic control of agricultural systems, 
biomedical experimentation and biological control systems, and social, 
economic, and political systems. See also Biomedical engineering; 
Electric power systems; Mathematical biology; Systems analysis; 
Systems engineering. 
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Control System Components 

i. System, plant or process 

– To be controlled 

ii. Actuators 

– Converts the control signal to a power signal 

iii. Sensors 

– Provides measurement of the system output 

iv. Reference input 

– Represents the desired output 



Control System Design Process 
1. Establish control goals 

2. Identify the variables to control 

3. Write the specifications for the variables 

4. Establish the system configuration and identify the actuator 

5. Obtain a model of the process, the actuator and the sensor 

6. Describe a controller and select key parameters to be adjusted 

7. Optimize the parameters and analyze the performance 

If the performance meet the specifications, then finalize design 

If the performance does not 

meet specifications, then 

iterate the configuration 

and actuator 





(a) Automobile 

steering control 

system. 

(b) The driver uses 

the difference 

between the actual 

and the desired 

direction of travel 

to generate a 

controlled adjustment 

of the steering wheel. 

(c) Typical direction-

of-travel response. 

Examples of Modern Control Systems 
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Examples of Modern Control Systems 



Examples of Modern Control Systems 



The Future of Control Systems 



The Future of Control Systems 



Design Example 



Design Example 



Design Example 



Design Example 



The issue of ensuring the stability of a closed-loop feedback system is central to 

control system design. Knowing that an unstable closed-loop system is generally 

of no practical value, we seek methods to help us analyze and design stable 

systems. A stable system should exhibit a bounded output if the corresponding 

input is bounded. This is known as bounded-input, bounded-output stability and 

is one of the main topics of this chapter.  

The stability of a feedback system is directly related to the location of the roots 

of the characteristic equation of the system transfer function. The Routh–
Hurwitz method is introduced as a useful tool for assessing system stability. The 

technique allows us to compute the number of roots of the characteristic 

equation in the right half-plane without actually computing the values of the 

roots. Thus we can determine stability without the added computational burden 

of determining characteristic root locations. This gives us a design method for 

determining values of certain system parameters that will lead to closed-loop 

stability. For stable systems we will introduce the notion of relative stability, 

which allows us to characterize the degree of stability.  

The Stability of Linear Feedback Systems 

 



The Concept of Stability 

A stable system is a dynamic system with a bounded response 

to a bounded input. 

Absolute stability is a stable/not stable characterization for a 

closed-loop feedback system.  Given that a system is stable 

we can further characterize the degree of stability, or the 

relative stability. 



The Concept of Stability 

The concept of stability can be 

illustrated by a cone placed on 

a plane horizontal surface. 

A necessary and 

sufficient condition for a 

feedback system to be 

stable is that all the 

poles of the system 

transfer function have 

negative real parts. 

A system is considered marginally stable if only certain bounded 

inputs will result in a bounded output. 



The Routh-Hurwitz Stability Criterion 

It was discovered that all coefficients of the characteristic 

polynomial must have the same sign and non-zero if all 

the roots are in the left-hand plane. 

These requirements are necessary but not sufficient.  If the 

above requirements are not met, it is known that the 

system is unstable.  But, if the requirements are met, we 

still must investigate the system further to determine the 

stability of the system. 

The Routh-Hurwitz criterion is a necessary and sufficient 

criterion for the stability of linear systems. 



The Routh-Hurwitz Stability Criterion 
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Characteristic equation, q(s) 

Routh array 

The Routh-Hurwitz criterion 

states that the number of roots 

of q(s) with positive real parts 

is equal to the number of 

changes in sign of the first 

column of the Routh array. 



The Routh-Hurwitz Stability Criterion 

Case One:  No element in the first column is zero. 

 
Example 6.1 Second-order system

The Characteristic polynomial of  a second-order sys tem is:

q s( ) a2 s
2 a1 s a0

The Routh array is written as:

w here:

b1

a1 a0 0( ) a2

a1

a0

Therefore the requirement for a stable second-order system is 

simply that all coef f icients be positive or all the coef ficients be 

negative.
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The Routh-Hurwitz Stability Criterion 

Case Two:  Zeros in the first column while some elements of 

the row containing a zero in the first column are nonzero. 

 
If  only one element in the array is zero, it may be replaced w ith a small positive 

number  that is allow ed to approach zero after completing the array.

q s( ) s
5

2s
4 2s

3 4s
2 11s 10

The Routh array is then:

w here:

b1

2 2 1 4

2
0  c1

4 2 6



12


d1

6 c1 10

c1

6

There are two sign changes in the first column due to the large negative number 

calculated for c1.  Thus, the system is unstable because two roots lie in the 

right half  of  the plane. 
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The Routh-Hurwitz Stability Criterion 

Case Three:  Zeros in the first column, and the other elements 

of the row containing the zero are also zero. 

 This case occurs when the polynomial q(s) has zeros located symetrically about the 

origin of  the s-plane, such as (s+)(s -) or (s+j)(s -j).  This case is solved using 

the auxiliary polynomial, U(s), w hich is located in the row above the row  containing 

the zero entry in the Routh array.

q s( ) s
3

2 s
2 4s K

Routh array:

For a stable system we require that 0 s 8

For the marginally stable case, K=8, the s^1 row  of the Routh array contains all zeros.  The 

auxiliary plynomial comes f rom the s^2 row. 

U s( ) 2s
2

Ks
0 2 s

2 8 2 s
2

4  2 s j 2( ) s j 2( )

It can be proven that U(s) is a factor of  the characteris tic polynomial:

q s( )

U s( )

s 2

2 Thus, w hen K=8, the factors of the characteristic polynomial are:

q s( ) s 2( ) s j 2( ) s j 2( )

0
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The Routh-Hurwitz Stability Criterion 

Case Four:  Repeated roots of the characteristic equation on 

the jw-axis. 

 

With simple roots on the jw-axis, the system will 

have a marginally stable behavior.  This is not 

the case if the roots are repeated.  Repeated roots 

on the jw-axis will cause the system to be 

unstable.  Unfortunately, the routh-array will fail 

to reveal this instability. 



Example  

 

Using block diagram reduction we find that: 

The Routh array is then: 

Kas

cs

Kabs

Ks

Kas

0

3

1

3

2

3

4

)6(6

111



For the system to be stable bothb3 and c3 must be positive.

Using these equations a relationship can be determined for K and a 

where: b3

60 K

6
and c3

b3 K 6( ) 6 Ka

b3



The Relative Stability of Feedback Control Systems 

It is often necessary to know the 

relative  damping of each root to 

the characteristic equation.  

Relative system stability can be 

measured by observing the 

relative real part of each root.  In 

this diagram r2 is relatively more 

stable than the pair of roots 

labeled r1. 

One method of determining the relative stability of 

each root is to use an axis shift in the s-domain and 

then use the Routh array as shown in Example 6.6 of 

the text. 



The characteristic equation of this system is:

1 Gc G s( ) 0

or 

1
K s a( )

s s 1( ) s 2( ) s 5( )
 0

Thus,

s s 1( ) s 2( ) s 5( ) K s a( ) 0

or 

s
4

8s
3 17s

2 K 10( )s Ka 0

To determine a stable region for the system, we establish the Routh array as

where 

b3

126 K

8
and c3

b3 K 10( ) 8Ka

b3

Kas

cs

Kabs

Ks

Kas

0

3

1

3

2

3

4

0)10(8

171



Design Example: 



Kas

cs

Kabs

Ks

Kas

0

3

1

3

2
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4

0)10(8
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

Design Example: 

where 

b3

126 K

8
and c3

b3 K 10( ) 8Ka

b3

Therefore,

K 126

K a 0

K 10( ) 126 K( ) 64Ka 0



System Stability Using MATLAB 



 Root Locus Techniques 



 Definition of a root locus 

 How to sketch a root locus 

 How to refine your sketch of a root locus 

 How to use the root locus to find the poles of a closed-
loop system 

 How to use the root locus to describe qualitatively the 
changes in transient response and stability of a system 
as a system parameter is varied 

 How to use the root locus to design a parameter value to 
meet a transient response specification for systems of 
order 2 and higher 

52 

Objectives 



• What is root locus? 
 

– Root locus is a graphical representation of the closed-loop 

poles as a system parameter is varied 

– It can be used to describe qualitatively the performance of a 

system as various parameters are changed 

– It gives graphic representation of a system’s transient 
response and also stability 

– We can see the range of stability, instability, and the 

conditions that cause a system to break into oscillation 

53 

Introduction 



The Control System Problem 

 The poles of the open loop transfer 
function are easily found by 
inspection and they do not change 
with changes in system gain. But 
the poles of the closed loop 
transfer function are more difficult 
to find and they change with 
changes in system gain 

 

 Consider the closed loop system in 
the next figure 
a) Closed loop system 
b) Equivalent transfer function 

 

Note: KG(s)H(s) = Open Loop 
Transfer Function, or loop gain 

54 



If  

 

G(s) = NG(s) / DG(s) 

 

And 

 

H(s) = NH(s) / DH(s) 

 

Then   

 

T(s) = KG(s) / 1 + K(s)H(s) 

 

Therefore  

 
T(s) = KNG(s)DH(s) / DG(s)DH(s) + KNG(s)NH(s) 

 

• Observations: 

– The zero of T(s) consist of the 
zeros of G(s) and The poles of 
H(s) 

– The poles of T(s) are not 
immediately known without 
factoring the denominator and 
they are a function of K 

– Since the system’s performance 
depends on the knowledge of the 
poles’ location, we will not be 
able to know the system 
performance readily 

– Root locus can be used to give us 
a picture of the poles of T(s) as 
the system gain, K, Varies 

55 



Vector representation of complex number 

 Vector has a magnitude 
and a direction 

 Complex number (σ + 
jω) can be described in 
Cartesian coordinates 
or in polar form. It can 
also be represented by 
a vector 

 If a complex number is 
substituted into a 
complex function, F(s), 
another complex 
number will result 

56 



Example:  

 

If  

 

 s = (σ + jω) is substituted into F(s) 
= (s + a)  

 

Then  

 

F(s) = (σ + a) + jω 

 

Therefore 

 

 (s + a) is a complex number and 
can be represented by a vector 
drawn from the zero of the function 
to point S 

57 



Recall 

 

F(s) =   
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Draw the vector representation of  

(s + 7)|s5 + j2 
Or 

 

 

Where  

 

∏ = Product 
 

Or 

 

F(s) = M∟θ (in polar 
form) 

(s +z1)(s +z2)… 

(s + p1)(s + p2)… 

F(s) = ∏ (s + zi) / ∏ (s + pj) 
m n 

I =1 j =1 




n

j

j

m

i

i

ps

zs
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|)(|
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


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Summary 

M = ∏ zero lengths / ∏ pole lengths 

 

 

 

Θ = Σ zero angles – Σ pole angles 
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Given F(s) =           , Find F(s) at the point s 

= -3 + j4 

Graphically: 

 For (s +1): 

 (s + 1)|s-3 + j4 

 = (-3 + j4) + 1 

 = -2 + j4 

 = 4.47 ∟116.56o 

 

Similarly: 

 s|s-3 + j4 = 5 ∟126.9o 

 (s + 2)|s-3 + j4 = -1 + j4 

   = 4.12 ∟ 104.03o 

 

Therefore 

 M∟θ = F(s)| s-3 + j4  

 = 4.47 / 5(4.12)  

  ∟116.56o – 126.9o +104.03o 

 = 0.217 ∟ -114.3o  

60 
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Defining the Root Locus 

Consider the system represented by 
block diagram next: 

 

The C.L.T.F.  

 

= K / s2 +10s + K 

 

Where K = K1K2 

 

If we plot the poles of the C.L.T.F. 
for value K = 0  50, we will 
obtain the following plots 
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 Root locus is the representation of the path of the closed loop poles as the gain is varied 

 Root locus show the changes in the transient response as the gain K, varies 

For 0 < K < 25 

 - poles are real and distinct (jω = 0) 

 - Overdamped response 

For K = 25 

 - Poles are real and multiples 

 - Critical response 

For 25 < K < 50 (or K > 25) 

 - Poles are complex conjugate 

 - Underdamped response 

 - Since Ts is inversely ∞ to the real part of the pole and the real part remains the same for K > 25 

 - Therefore, the settling time, Ts, remains the same regardless of the value of gain (Note that Ts = 4 / 
σd) 

For K > 25 

 - as the gain increases, the damping ratio, ζ = cos θ decreases and thus the %OS decreases too 

 - Note: %OS = e-[ζπ/√(1-ζ2)]*100 

 - As the gain increases, the damped freq. of oscillation, ωd, which is the imaginary part of the 
complex pole also  increase 

 - Since peak time, Tp = π / ωd , thus an increase in ωd will result in an increase in Tp 

 - Finally, since the root locus never crosses over into the RHP, the system is always stable, 
regardless of the value of gain 
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Observations: 
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Properties of the Root Locus 
• Knowing the properties of Root Locus will enable us to sketch the root locus without 

having to factor the denominator of the closed loop transfer function 
• Consider the general representation of the C.L.T.F: 
    
   T(s) = KG(s) / 1 + KG(s)H(s) 
 
A pole exists when the characteristic polynomial in the denominator becomes zero 
 
Hence, KG(s)H(s) = -1 = 1∟(2k + 1)1800, k =0,+1,+2,… 
 

Or |KG(s)H(s)| = 1 and ∟KG(s)H(s) = (2k + 1)1800 

 

 
Similarly,  
 
 
Hence, Given the poles & zeros of the open loop Transfer function, KG(s)H(s), a point in the 

s-plane is on the root locus for a particular value of gain, K, if the angles of the zeros 
minus the angles of the poles, all drawn to the selected point on the S-plane, add up to (2k 
+ 1)1800 
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Given a unity feedback system that has a the following forward transfer 

function: 

a. Calculate the angle of G(s) at the point (-3 
+ j0) by finding the algebraic sum of angle 
of the vectors drawn from the zeros & 
poles of G(s) to the given point 

 

b. Determine if the point specified in (a) is on 
the root locus 

 

c. If the point is on the Root Locus, find the 
gain K using the lengths of the vectors 
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Zerolength

Polelength
K

Σ angles = 1800 + θ1 + θ2 = 1800 -108.430 + 

108.430 = 1800 

 

Or 

 

∟G(s)|s=-3j0 

= Σθzeros – Σθpoles 

= 1800 – (-108.430 + 108.430)  

= 1800 

 

Since the angle is 1800, the point is on Root 

Locus 
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Sketching the Root Locus 
• Based on the properties of root locus, some rules are established to enable us 

to sketch the Root Locus: 

 

 

 

 

 



No. of branches 

The no. of branches 

of the R.L equals 

the number of 

closed-loop poles. 

(Since a branch is 

the path that one 

poles traverses.) 
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Symmetry 

The root locus is 

symmetrical about 

the real-axis. 

(Since complex 

poles always exist 

in complex 

conjugate form.) 
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Symmetrical 

about real 

axis 



Real-axis segment 

On the real-axis, for 
K>0, the root locus 
exists to the left of 
an odd number of 
real-axis, finite 
open-loop poles 
and/or finite open-
loop zeros. (Due to 
the angle property 
of R-L.)  
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To the left 

of an odd 

number 



Starting & Ending Points 

The root locus begins 

at the finite & 

infinite poles of 

G(s)H(s) & ends 

at the finite & 

infinite zeros of 

G(s)H(s). 

 

72 

Endin

g 

Starti

ng 



 Infinite pole: If the function approaches ∞ as s 
approaches ∞, then the function has an infinite pole. 

 Infinite zero: If the function approaches zero as s 
approaches ∞, then, the function has an infinite zero 

 Example: KG(s)H(s) = K / s(s + 1)(s + 2) 

 This function has 3 finite poles at 0, -1, -2 & 3 
infinite zeros. 

 Every function of s has an equal no. of poles & 
zeros if we included the infinite poles & zeros as 
well as the finite poles & zeros. 
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Concept of Infinite pole & zero 
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Behavior at infinity 
 The root locus approaches straight lines as 

asymptotes as the locus approaches infinity. 

 The equation of the asymptotes is given by the real-
axis intercept, σa & angle θa : 

 

 

 

 

 

 Where k = 0, +1, +2, + 3, and the angle is given in 
radians w.r.t. the positive extension of the real-axis. 



Example: Sketch the root locus for the 

system shown 

 Notice that there are 4 finite 

poles & 1 finite zero.  

 Thus there will be 3 infinite 

zeros. 

 Calculate the asymptotes of the 

infinite zeros: 

 Intercept on real-axis. 
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Root locus and asymptotes for the system 

of previous example 

Real 

axis 

intercept 

Π 

/3 

5Π /3 
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complex  
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Refining  

the  

Sketch 



Real-Axis Breakaway & Break-in Points 

 Breakaway point is the 
point where the locus 
leaves the real-axis.  

 (-σ1 in the figure) 

 

 

 Break-in point is the 
point where the locus 
returns to the real-axis. 

 (σ2 in the figure) 
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 We know that for a point to be on a Root-locus,  

  K = -1 / G(s)H(s) 

 Thus, on the real-axis (jω = 0),  

  K = -1 / G(σ)H(σ)  

 Note also that  
◦ at the breakaway point, K is maximum (for the R-L on the real-

axis),  

◦ and at the break-in point, K is minimum.  

 Breakaway & Break-in point can be found by 
differentiating K G(σ)H(σ) = -1 & set it to zero. 
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Finding the Breakaway & Break-in points 

via differentiation 
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Find the breakaway & break-in points for 

the root locus shown  



Finding Breakaway & Break-in Points by 

transition method 

• This method eliminates the step of 
differentiation. 

• Derivation in Appendix J.2. on CD-
Rom. 

• This method states that: 

– Breakaway & break-in points 
satisfy the following 
relationship: 

 

  

  

 

 Where Zi & Pi are the negative 
of the zero & pole values, 
respectively, of G(s)H(s). 
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• Jω axis crossing is a point on the R-L that separates the stable operation of 
the system from the unstable operation. 

• The value of ω at the axis crossing yields the frequency of oscillation. 

• The gain at the jω axis crossing yields the max. positive gain for system 
stability. 

 

Jω-axis crossing can be found by using Routh-Hurwitz criterion as follows: 

 

• Forcing a row of zeros in the Routh Table will yield the gain. 

• Going back one row to the even polynomial equation & solving for the roots 
yields the frequency at the imaginary axis crossing. 

  

 (Recall that a row of zeros in the Routh Table indicates the existence of poles 
on the jω axis.) 
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Finding the jω axis crossings 



KsKsss

sK
sT

where

sH
sHsG

sG
sTofFTLC

3)8(147

)3(
)(

1)(,
)()(1

)(
)(...

234 









83 

For the system shown, find the frequency & gain, K, for which 

the root locus crosses the imaginary axis. For what range of K is 

the system stable?  
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Construction of Routh table 



For +ve K, only s1 row can be all zeros. 
 
 Let -K2 -65K+720 / 90-K = 0  to find value of K on jω-axis. 
 -K2 -65K+720 = 0 
 K = 9.65 
 
To find the frequency on the jω axis crossing, form the even polynomial by using the 

s2 row & with K= 9.65, 
  
 (90 -K)s2 + 21K = 0 
 80.35s2 + 202.7 = 0 
 s2 = -202.7 / 80.35 
 s = +j1.59  
 
The root-locus crosses the jω axis at + j1.59 at a gain of 9.65 
 
The system is stable for 0 < K < 9.65 

85 

Continuation of Previous Problem Solving 



Angle of departure & arrival from complex 

poles & zeros 

 Recall that a condition for a 

point on the s-plane to be on the 

root locus is that the angles of 

the zeros minus the angles of 

the poles, all drawn to the 

selected point on the s-plane, 

add up to  

 (2k + 1) 180°.  

 

Example 

∟KG(s)H (s) = (2k + 1 ) 180° 

 

Consider the next Figure: 
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• Assume ε is a point on the root locus 
close to a complex pole.  
 

• Sum of all angles drawn from all other 
poles & zeros to the pole that is near to ε 
is: 

 
-θ1, + θ2 + θ3 – θ4 – θ5 + θ6 =(2k+I)180° 
  
 The angle of departure is:  
 
θ1 = θ2 + θ3 – θ4 – θ5,+ θ6 - (2k+1)180° 
 
 Similarly, for complex zero: 
 
-θ1 + θ2 + θ3 – θ4 – θ5 + θ6 = (2k+I)180° 
 
The angle of arrival is:  
 
 θ2 = θ1 - θ3 + θ4 + θ5,- θ6 + (2k+1)180° 
 

87 

Angle of departure & arrival 



Example: 

Given the unity feedback system, find the angle of departure from 

the complex poles & sketch the root locus 
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Root locus for the system 

showing angle of departure 
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Continuation of Previous Problem Solving 



• Sketching the root locus & 
Finding the critical points 

– Find the exact point and gain 
where the locus crosses the 
0.45 damping ratio line 

– Find the exact point and gain 
where the locus crosses the 
jw-axis 

– Find the breakaway point on 
the real axis 

– Find the range K within which 
the system is stable 
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An Example 



• Use Second order approximation which 
satisfy the following conditions: 

– Higher order poles are much farther into 
the left half of the s-plane than the 
dominant second order pair of poles. 
The response that results from a higher 
order pole does not appreciably change 
the transient response expected from the 
dominant second order poles 

– Closed loop zeros near the closed loop 
second order pole pair are nearly 
cancelled by the close proximity of 
higher order closed loop poles 

– Closed loop zeros not cancelled by the 
close proximity of higher order closed 
loop poles are far removed from the 
closed loop second order pole pair 
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Transient Response Design via Gain 

Adjustment 



 Since Root Locus is a plot of the Closed Loop Poles 
as a system parameter is varied  any change in the 
parameter will change the system performance too! 

 Root Locus exhibits nonlinear relationship between 
gain and pole 
◦ Along some sections of the RL – very small changes in gain yield very 

large changes in pole location and hence performance  High 
Sensitivity to changes in gain 

◦ Along other sections of the RL – very large changes in gain yield very 
small changes in pole location  Low Sensitivity to changes in gain 

 Preferences  Low Sensitivity to changes in gain 
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Pole Sensitivity 
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