Linear Control system



Introductory concepts

System — An interconnection of elements and devices for a desired purpose.

Control System — An interconnection of components forming a system
configuration that will provide a desired response.

Process — The device, plant, or system
undgr con‘.[rol. The mput and output . ,

relationship represents the cause-and-
effect relationship of the process.

Process to be controlled.



* Plant:It 1s a process/body/machine of which a
entire particular quantity or condition 1s to be
controlled.

* Controller: It 1s a component required to generate
the appropriate control signal applied to a plant.

 Servomechanism:It 1s a power amplifying
feedback control system i1n which the control
variable 1s mechanical position ,or time derivative
of position such as velocity or acceleration
.Occasionally 1t refers to mechanical syatem in
which steady state error 1s zero for constant input
signal.



* Regulator:It 1s a system in which there i1s
steady state value for constant input signal.

* Linear time invariant system:systems whose
parameters are varying with time.not
dependent on whether input/output are
varying with time.

 Non Linear time invariant system:systems
whose parameters are not varying with
time. Dependent on whether input/output
are varying with time.



Open loop system:A system 1n which the output is
dependent on I/p but I/p 1s independent of change
in o/p of the system.

Closed loop system:A system in which the I/p,
controlling action 1s dependent of change 1n o/p
of the system.

Continuous and Discrete time control system:All
system variables are function of continuous time
variable ‘t’.

Discrete time control system: One or more system

variable are known at only at discrete time
intervals.



Control System

* Control 1s the process of causing a system variable to
conform to some desired value.

e Manual control = Automatic control (involving machines

only).

* A control system 1s an interconnection of components
forming a system configuration that will provide a desired

system response. jnpyt
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Open-Loop Control Systems
utilize a controller or control — I I
actuator to obtain the desired

reSponse. Open-loop control system (without feedback).

Closed-Loop Control — —* — >

Systems utilizes feedback to ‘

compare the actual output to
the desired output response.

Closed-loop feedback control system (with feedback).
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Multivariable Control System
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Control System Classification
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Control System Classification

Missile Launcher System
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Closed-Loop Feedback Control System



Eftect of feedback on overall
gain.

* The overall gain of a open loop system 1s
G(s) and feedback when introduced the
feedback 1s C(s)/R(s)=G(s)/1+-G(s)H(s).So
gain is affected by the denominator.For
positive feedback the sign in denominator
1s(-) and for negative feedback the sign in
denominator 1s(+).



Efftect of feedback on overall
sensitivity.

* sensitivity 1s reduced by factor of
1/1+G(s)H(s) due to feedback for change in
forward parameter.

* Closed loop system 1s more sensitive to
variation in feedback parameters than
variation in forward path transfer functions.



Eftect of feedback on overall
stability.

 feedback can improve o overall stability or
may harmful purely depends on application
and proper design of feedback.



Eftect of feedback on overall
Noise.

e Feedback can decrease the effect of noise.



Manual Vs Automatic Control
* Control 1s a process of causing a system variable such as

temperature or position to conform to some desired value or
trajectory, called reference value or trajectory.

e For example, driving a car implies controlling the vehicle to
follow the desired path to arrive safely at a planned destination.

1.  Ifyou are driving the car yourself, you are performing manual control of
the car.

1. If you use design a machine, or use a computer to do it, then you have
built an automatic control system.



Control System Classification

Desired ——p
Output ——p
Response =——p

Controller

Process

VVY

A A A

vvyy

Multi Input Multi Output (MIMO) System

Measurement

A A A

Output
Variables



Purpose of Control Systems

1. Power Amplification (Gain)

— Positioning of a large radar antenna by low-power rotation
of a knob

i1. Remote Control

— Robotic arm used to pick up radioactive materials
i11. Convenience of Input Form

— Changing room temperature by thermostat position
1v. Compensation for Disturbances

— Controlling antenna position in the presence of large wind
disturbance torque



Application of control system

e Familiar control systems have the basic closed-loop configuration. For
example, a refrigerator has a temperature setting for desired
temperature, a thermostat to measure the actual temperature and the
error, and a compressor motor for power amplification. Other
examples in the home are the oven, furnace, and water heater. In
industry, there are controls for speed, process temperature and
pressure, position, thickness, composition, and quality, among many
others. Feedback control concepts have also been applied to mass
transportation, electric power systems, automatic warehousing and
inventory control, automatic control of agricultural systems,
biomedical experimentation and biological control systems, and social,
economic, and political systems. See also Biomedical engineering;
Electric power systems; Mathematical biology; Systems analysis;
Systems engineering.



General Control System
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Control System Components

1. System, plant or process

— To be controlled
11. Actuators

— Converts the control signal to a power signal
111. Sensors

— Provides measurement of the system output
1v. Reference input

— Represents the desired output



Control System Design Process

1. Establish control goals
2. Identify the variables to control
3. Write the specifications for the variables

4. Establish the system configuration and identify the actuator

If the performance does not 5. Obtain a model of the process, the actuator and the sensor
meet specifications, then L

iterate the configuration

and actuator r

6. Describe a controller and select key parameters to be adjusted

7. Optimize the parameters and analyze the performance

If the performance meet the specifications, then finalize design



Physical System
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Control Systems
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Examples of Modern Control Systems

} Errcit

(a) Automobile
steering control
system.

(b) The driver uses
the difference
between the actual

Diesited and the desired
direciion . .
et ofttavel direction of travel
direction
of tmvel to generate a
controlled adjustment
" of the steering wheel.
Desired direciion of tmvel (C) Typ'cal dlreCtIOn-
Acioml direciion of tavel

of-travel response.

R po nse—a irection of trwvel




Examples of Modern Control Systems
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A necative feedback system block diagram depicting a basic closed-loop control system.
The control device is often called a “controller.”



Examples of Modern Control Systems

A manual control system for regulating the level of fluid in a tank by adjusting the
output valve. The operator views the level of fluid through a port in the side of the tank.



Examples of Modern Control Systems

A three-axis control system for inspecting individual
semiconductor wafers with a highly sensitive camera.



Examples of Modern Control Systems
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Examples of Modern Control Systems
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Examples of Modern Control Systems

The Utah/MIT Dextrous Robotic Hand: A dextrous robotic hand having 18 degrees of
freedom, developed as a research tool by the Center for Engineering Design at the
University of Utah and the Artificial Intelligence Laboratory at MIT. It is controlled by
five Motorola 68000 microprocessors and actuated by 36 high-performance
electropneumatic actuators via high-strength polymeric tendons. The hand has three
fingers and a thumb. It uses touch sensors and tendons for control.
{Photograph by Michael Milochik. Courtesy of University of Utah.)



Examples of Modern Control Systems
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A feedback control system model of the national income.



Examples of Modern Control Systems

A laboratory robot used for sample preparation. The robot manipulates small objects,
such as test tubes, and probes in and out of tight places at relatively high speeds [41].
(© Copyright 1993 Hewlett-Packard Company. Reproduced with permission.)



The Future of Control Systems

The Honda P3 humanoid robot. P3 walks, climbs stairs and turmms comers.
Photo courtesy of American Honda Motor, Inc.



The Future of Control Systems
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Design Example

Input angle, 8.(7) ' 50 volts
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Design Example
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(a) Open-loop (without feedback) control of the speed of a turntable.
(b} Block diagram model.



Design Example
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(a) Closed-loop control of the speed of a tuntable.
(b) Block diagram model.
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Design Example
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(a) Open-loop (without feedback) control and
(b} closed-loop control of blood glucose.



The Stability of Linear Feedback Systems

The issue of ensuring the stability of a closed-loop feedback system is central to
control system design. Knowing that an unstable closed-loop system is generally
of no practical value, we seek methods to help us analyze and design stable
systems. A stable system should exhibit a bounded output if the corresponding
mput 1s bounded. This 1s known as bounded-input, bounded-output stability and
1s one of the main topics of this chapter.

The stability of a feedback system i1s directly related to the location of the roots
of the characteristic equation of the system transfer function. The Routh—
Hurwitz method 1s introduced as a useful tool for assessing system stability. The
technique allows us to compute the number of roots of the characteristic
equation in the right half-plane without actually computing the values of the
roots. Thus we can determine stability without the added computational burden
of determining characteristic root locations. This gives us a design method for
determining values of certain system parameters that will lead to closed-loop
stability. For stable systems we will introduce the notion of relative stability,
which allows us to characterize the degree of stability.



The Concept of Stability

A stable system 1s a dynamic system with a bounded response
to a bounded input.

Absolute stability is a stable/not stable characterization for a
closed-loop feedback system. Given that a system is stable
we can further characterize the degree of stability, or the
relative stability:.



The Concept of Stability

I a

(a) Stable

N

(b) Neutral (¢) Unstable

The concept of stability can be
illustrated by a cone placed on
a plane horizontal surface.

A necessary and
sufficient condition for a
feedback system to be
stable is that all the
poles of the system
transfer function have

i
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negative real parts.

A system is considered marginally stable if only certain bounded
inputs will result in a bounded output.



The Routh-Hurwitz Stability Criterion

It was discovered that all coefficients of the characteristic
polynomial must have the same sign and non-zero if all
the roots are in the left-hand plane.

These requirements are necessary but not sufficient. If the
above requirements are not met, it 1s known that the
system 1s unstable. But, 1f the requirements are met, we
still must investigate the system further to determine the
stability of the system.

The Routh-Hurwitz criterion 1s a necessary and sufficient
criterion for the stability of linear systems.



The Routh-Hurwitz Stability Criterion

Characteristic equation, q(s) — >

n n—1 n-2 _
as"+a, s" +a, ,s" " +-+as+a,=0

Routh array

The Routh-Hurwitz criterion| « « o

states that the number of roots"

of q(s) with positive real parts, v, \ 4 )

-1
. b, = =
is equal to the number of ™ a a
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The Routh-Hurwitz Stability Criterion
Case One: No element in the first column 1s zero.

Example 6.1 Second-order system

The Characteristic polynomial of a second-order systemis:

2
q(s) = a,'s” + a;-s + ag

The Routh array is written as: 2
s la, a,

1
s |a 0

. 0
w here: S bl O

aj-ag — (0)-ap
1= = 4
aj

Therefore the requirement for a stable second-order system s
simply that all coefficients be positive or all the coefficients be
negative.



The Routh-Hurwitz Stability Criterion
Case Two: Zeros 1n the first column while some elements of
the row containing a zero in the first column are nonzero.

f only one element in the array is zero, it may be replaced w ith a small positive

number ¢ that is allow ed to approach zero after completing the array.

qs)=s + 25t + 28 + 4%+ 11s + 10

The Routh array is then:

S
o Lde-26 12 6oy~ 10 |
2 = € h € ' ¢, 0

There are two sign changes in the first column due to the large neg:§ive nd

l10

1

¢

d,

calculated for c1. Thus, the systemis unstable because two roots lie in the

right half of the plane.

2
4
6
10
0

11
10

oS O O O



The Routh-Hurwitz Stability Criterion
Case Three: Zeros in the first column, and the other elements
of the row containing the zero are also zero.

This case occurs when the polynomial q(s) has zeros located sy metrically about the
origin of the s-plane, such as (s+c)(s-c) or (s+jw)(s-j). This case is solved using
the auxiliary poly nomial, U(s), w hich is located in the row above the row containing
the zero entry in the Routh array.

q(s) = sS+2s’+4s+ K
3

Routh array: A 1 4
s° 2 K
st | &L 0
s | K 0

For a stable systemwe requirethat 0<s <8

For the marginally stable case, K=8, the s*1 row of the Routh array contains all zeros. The
auxiliary plynomial comes fromthe s*2 row.

UGs) = 28* + Ks' = 257 + 8 = A2+ 4) = 2s + 2)(s — j-2)
it can be proven that U(s) is a factor of the characteristic polynomial:

q(s) s+2
UGs) 2 Thus, w hen K=8, the factors of the characteristic polynomial are:

q(s) = (s + 2)(s + 32)(s — j-2)



The Routh-Hurwitz Stability Criterion
Case Four: Repeated roots of the characteristic equation on
the jw-axis.

With simple roots on the jw-axis, the system will
have a marginally stable behavior. This 1s not
the case if the roots are repeated. Repeated roots
on the jw-axis will cause the system to be
unstable. Unfortunately, the routh-array will fail
to reveal this instability.



Example

T Kis + a) I
(s + 1 sty + 2y + 3

Welding head position control.

4 3 2
Using block diagram reduction we find that: 4(s) = 5 + 3" + 11s" + (K + fi)s + Ka

The Routh array is then: g4 1 11 Ka
s> 6 (K +6)
s b, Ka
s' C;
s’ Ka
where: b, = 0K and c3= B9~ oka
6 b;

For the system to be stable bothb;and ¢; must be positive.

Using these equations a relationship can be determined for K and



The Relative Stability of Feedback Control Systems

It is often necessary to know the

relative damping of each root to N
the characteristic equation. a
Relative system stability can be
measured by observing the
relative real part of each root. In
this diagram 12 1s relatively more A
stable than the pair of roots - 7
labeled rl.

L

i

|
P ——— S

One method of determining the relative stability of
each root 1s to use an axis shift in the s-domain and
then use the Routh array as shown in Example 6.6 of
the text.



Design Example:

The characteristic equation of this system is:

1+G,G(s)=0
or
[+ K(s + a)

s(s + 1)(s + 2)(s +5) -

Thus,
s(s+ D(s+2)(s+5+K(s+a)=0

or
4 3 2
s +8 + 175"+ (K+10s +Ka=0

To determine a stable region for the system, we establish the Routh array ¢

st 1 17 Ka
s> 8 (K +10) 0
s? b, Ka
s' Cy
s° Ka
where
126— K b3(K + 10) — 8Ka
by = and cy=

8 by



Design Example:

st 1 17 Ka
5° 8 (K +10) 0
s b, Ka
s' Cy 30
s° Ka
201
where
126 — K b3(K + 10) — 8Ka i
by = and cy =
8 bs Stable
1.0 region
Selected K and o
Therefore, 0.6 A
K< 126
0 ] ] ] ]
Ka>0 0 50 70 100 126 150

(K + 10)(126 - K) — 64Ka > 0



System Stability Using MATLAB

(!lt\] =

l

PG+ 5425423 >

==numg=[1]; deng=[1 1 2 23]; sysg=ti{numg.deng);

Closed-loop control system with 7{s) = ¥F{s J/R{s) = 1/ i3+ 52

2nd sign change
+ 2 &

lst sign change

§3 l 2
52 l 24
g —22 0
50 24 0

==sys=feedbackisysa.[1]);
>>pole(sys)

dns =

-3.0000
1.0000 + 2.6458i
1.0000 - 2.6458i

Unstable poles




Root Locus Techniques



Objectives

» Definition of a root locus
» How to sketch a root locus
» How to refine your sketch of a root locus

» How to use the root locus to find the poles of a closed-
loop system

» How to use the root locus to describe qualitatively the
changes 1n transient response and stability of a system
as a system parameter 1s varied

» How to use the root locus to design a parameter value to
meet a transient response specification for systems of
order 2 and higher
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Introduction

e What 1s root locus?

— Root locus 1s a graphical representation of the closed-loop
poles as a system parameter 1s varied

— It can be used to describe qualitatively the performance of a
system as various parameters are changed

— It gives graphic representation of a system’s transient
response and also stability

— We can see the range of stability, instability, and the
conditions that cause a system to break into oscillation
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The Control System Problem

» The poles of the open loop transfer
function are easily found by
inspection and they do not change
with changes in system gain. But
the poles of the closed loop
transfer function are more difficult
to find and they change with
changes in system gain

» Consider the closed loop system in
the next figure

a) Closed loop system
b) Equivalent transfer function

Note: KG(s)H(s) = Open Loop
Transfer Function, or loop gain

Forward
transfar
I | 1 L -
i function
il

Y

nis) 4 -'.|-E
L I o

— M)

F'y

Feedback
{ransfer
function

{a)

R

| + KGis)Hls)

(b
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If * (Observations:

— The zero of T(s) consist of the
G(s) = Ng(s) / Dg(s) zeros of G(s) and The poles of
H(s)
And — The poles of T(s) are not
t immediately known without

factoring the denominator and
H(s) = Ny(s) / Dy(s) they are a function of K

— Since the system’s performance
Then > depends on the knowledge of the
poles’ location, we will not be
able to know the system

T(s) =KG(s) / I + K(s)H(s) performance readily
— Root locus can be used to give us
Therefore 2> a picture of the poles of T(s) as

the system gain, K, Varies
T(s) = KNg(s)Dy(s) / D(s)Dy(s) + KNg(s)Ny(s)
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Vector representation of complex number

P Vector has a magnitude
and a direction

» Complex number (c +
jo) can be described in
Cartesian coordinates ol
or in polar form. It can i
also be represented by 8
a vector a

P If a complex number is
substituted nto a
comﬁlex function, F(s), (a)
another complex
number will result

s-plane

56



Example:

If J
s = (o + jo) 1s substituted into F(s) o
=(s+a)
(5)
Then
F(s)= (o +a) +jo e
o -
Therefore /
0= L=

(s +a) is a complex number and
can be represented by a vector
drawn from the zero of the function
to point S ()
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Draw the vector representation of
(s+7)

ReSIR,
(s +z)(s +2,)... FE(s) = H (s + z) T Gs+p)
- ﬁS +p)E+py)... Where
ﬂ;/if: B [1 = Product
{‘” Or

F(S) ML 0 (in polar
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Summary

M =[] zero lengths / [ | pole lengths

[Tits+2)]
[Tits+p)

M =

® = X zero angles — X pole angles
O = ZA(S+Z ) — 24(S+pj)
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Given F(s) =

Graphically:

For (s +1):

(st D44
=(-3+j4)+1
=-2+j4

=447 L116.56°

Similarly:

Sly> 344 =5 L 126.9°
(s +2)s; cja=-1 +j4

Therefore

= 4.47/5(4.12)

L 116.56°—126.9° +104.03°

=0.217 L -114.3°

(s+1)

: AN
=4.12 L 104.03° (s +1) |
(s+2)\ ~4 j1
ML O =F(s)| ¢5.3+j4 ' X( O - O

s+ F1nd F(s) at the point s
=-3+14

- j3  s-plane
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Defining the Root Locus

Consider the system represented by
block diagram next:

The C.L.T.F.
pesiticn  Sepsors  Amplifier atd camera
i) f K
:I</S2 +10s + K H? o 1 st
()
Where K = K1K2 :
If we plot the poles of the C.L.T.F. s

for value K = 0 = 50, we will
obtain the following plots



K Pole 1 Pole 2

(] -10 0

A -047 (.53

10 -8.87 -1.13

[5 -8.16 -1.84

2 -7.24 -2.76

25 -5 -5

30 -5+ 0.4 -5-.4
35 ~5473.16 -5-73.16
4 -5+ 387 -5-13.87
45 -5+ j447 -5 - 447
50 -5+ -5-15
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K = 50 X -7 5
as x I
s-plane 40 X 7
35 X —H 73
30 X —H 72
K = 0O s 10 15 20 25 20 15 10 5 0O = K
XK KKK 1 K XK o
—10 9 -8 =7 —e6 —5 —a —3 -2 =41 o
-1 1
30 X< 172
35 X —H 3
40 X :
- v a
as x 7
K = 50X 4 s
@)
Jeoo
'y ¥
K — S0 - /s
as “
s-plane 40 -1/
35 — 73
30 ;2
K = 0 5 10 15 20 25 20 15 10 0O = K
X 1 1 | 1 1 - 1 1 X - o
-10 ¢ -8 -7 -6 —5 —a4 —3 —2 —1 o
- 1
3s —H —3
40 .
- —a
as 7
K = 50 — —F 5
v v

&)
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Observations:

» Root locus is the representation of the path of the closed loop poles as the gain is varied
» Root locus show the changes in the transient response as the gain K, varies
For0 <K <25
- poles are real and distinct (jo = 0)
- Overdamped response
For K =25
- Poles are real and multiples
- Critical response
For 25 <K <50 (or K > 25)
- Poles are complex conjugate
- Underdamped response
- Since T, 1s inversely o to the real part of the pole and the real part remains the same for K > 25
- 'l;herefore, the settling time, T, remains the same regardless of the value of gain (Note that T,=4/
G4
For K> 25
- as the gain increases, the damping ratio, { = cos 0 decreases and thus the %OS decreases too
- Note: %08 = e-[(n/N(1-(2)]*100
- As the gain increases, the damped freq. of oscillation, @4, which 1s the imaginary part of the
complex pole also increase
- Since peak time, T, =7/ @4, thus an increase in wy will result in an increase in Tp

- Finally, since the root locus never crosses over into the RHP, the system is always stable,
regardless of the value of gain
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Properties of the Root Locus

* Knowing the properties of Root Locus will enable us to sketch the root locus without
having to factor the denominator of the closed loop transfer function

* Consider the general representation of the C.L.T.F:
T(s) = KG(s) / 1 + KG(s)H(s)
A pole exists when the characteristic polynomial in the denominator becomes zero

Hence, KG(s)H(s) = -1 = 1L (2k + 1)180% k =0,+1,42,...
Or [KG(s)H(s)| = 1 and L_KG(s)H(s) = (2k + 1)180°

Similarly, _
ey 1 1 lipolelength

. - G S M T1 erolengt : L

Hence, Given thl; pcgfe)slzglz(zgrL)s ojythe Q];alzloo raﬁs@;r function, KG(s)H(s), a point in the
s-plane 1s on the root locus for a particular value of gain, K, if the angles of the zeros
mlln)liSS 6%6 angles of the poles, all drawn to the selected point on the S-plane, add up to (2k
_|_
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Given a unity feedback system that has a the following forward transfer
K (s + 2)function:

)= S ast13)

a. Calculate the angle of G(s) at the point (-3
+10) by finding the algebraic sum of angle
of the vectors drawn from the zeros &
poles of G(s) to the given point

b. Determine 1f the point specified in (a) 1s on
the root locus

c. If the point 1s on the Root Locus, find the
gain K using the lengths of the vectors,



K(s+2)

K(s+2)

G(s)=

S-Plane 1

0, 7

v %Polellength (‘/12. +3? )(\/12 +3?)
I | 1|

Zerolength

(S* +4s+13) B

(s+2+ j3)(s+2—j3)

¥ angles = 180° + 6, + 6, = 1807 -108.43% +
108.43%=180°

Or

L G(s)|s=-30

- Zezeros o ZOpoles

= 1800 - (-108.43°% + 108.439)
= 180°

Since the angle is 180°, the point is on Root
Locus
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Sketching the Root Locus

* Based on the properties of root locus, some rules are established to enable us
to sketch the Root Locus:
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No. of branches

The no. of branches

of the R.L equals b
the number of 2
closed-loop poles.
(Since a branch is " VNG
the path that on% i '
poles traversgs. E

t

2nd
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Symmetry

The root locus 1s

symmetrical about

the real-axis. .
(Since complex
poles always exist
n Cf)mplse};( metrica
conjugateaggg{pegl

axis

70



Real-axis segment

On the real-axis, for sy [ T
(s+1)s+2)

K>0, the root locus T
exists to the left of

an odd number of l
real-axis, finite *-
open-loop poles 09K x|
and/or finite open-

loop zeros. (Due to I

the angle property—" "\ ) ‘

of R-L.) T4 the left AL RE \
of an odd
number



Starting & Ending Points

The root locus begins
at the finite &
infinite poles of
G(s)H(s) & ends cplan
at the finite &

infinite zeros of —
G(s)H(s).Endin
g

Starti
ng




Concept of Infinite pole & zero

» Infinite pole: If the function approaches o as s
approaches oo, then the function has an infinite pole.

» Infinite zero: If the function approaches zero as s
approaches oo, then, the function has an infinite zero

» Example: KG(s)H(s) =K/ s(s + 1)(s + 2)

» This function has 3 finite poles at 0, -1, -2 & 3
infinite zeros.

» Every function of s has an equal no. of poles &
zeros 1f we included the infinite poles & zeros as
well as the finite poles & zeros.
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Behavior at infinity

» The root locus approaches straight lines as
asymptotes as the locus approaches infinity.

» The equation of the asymptotes is given by the real-
axis intercept, o, & angle 0, :

Zﬁnitepoles—Zﬁnitezeros
o, =

# finite poles—# finite zeros

B Qk+Dx
“  # finite poles— finite zeros

» Where k=0, +1, +2, + 3, and the angle is given in
radians w.r.t. the positive extension of the real-axis.

74



Example: Sketch the root locus for the
system shown

R(s) + K(s+3) C(s)

s(s+1)(s+2)s+4)

» Notice that there are 4 finite
poles & 1 finite zero.

» Thus there will be 3 infinite
ZEeros.

» Calculate the asymptotes of the
infinite zeros:

P Intercept on real-axis.

o - Zﬁnite

poles— Z finite zeros

# finite poles—t finite zeros
o CIZ229-(3)_ 4

4-1 3

QCk+Dx

“ " # finite poles—# finite zeros

Vs

=—fork=0
3f

=x fork=1

=57”f0rk:2
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Root locus and asymptotes for the system

(TF 1’\1”9‘71. N11Q AY qmn] A

Ja

A
=

m s-plane

/3 Asymptote / | jo Real
L e

& intercept
. | 1 e (T
; 3 -2 ) :
/ .
S5I1/3

- IIIE
Asymptote \ |
1
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Real-Axis Breakaway & Break-in Points

» Breakaway point is the

point w.
leaves t

here the locus
he real-axis.

(-o; n il

» Break-in point is the

he figure

point where the locus

returns to the real-axjs:
(0, 1n the figure

y-plane
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Finding the Breakaway & Break-in points
via differentiation

» We know that for a point to be on a Root-locus,
K=-1/G(s)H(s)

» Thus, on the real-axis (jo = 0),
K=-1/G(oc)H(o)

» Note also that

o at the breakaway point, K 1s maximum (for the R-L on the real-
axis),
o and at the break-in point, K is minimum.

» Breakaway & Break-in point can be found by
differentiating K G(o)H(c) = -1 & set it to zero.
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Find the breakaway & break-in points for
the root locus shown

Fromthe Root Locus jo
K(s—3)(s—5)
(s+1)(s+2) Br wplans
B K(s* —8s+15)
(2 435+2)
n-theirgoslagus onibereuly axis,
KG(s)H(s)=—-1=KG(o)H(0)
K(oc?>-80+15) 3
(62 +30+2)
Ok _(llo” —260 +61) 0o
do (0°—-8c+15)
o=-1.45,3.82

A

KG(s)H(s) =

-1
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Finding Breakaway & Break-in Points by
transition method

» This method eliminates the step of
differentiation.

* Derivation in Appendix J.2. on CD-
Rom.

* This method states that:

— Breakaway & break-in points
satisfy the following
relationship:

Where Z, & P, are the negative
of the zero & pole values,
respectively, of G(s)H(s).

Re peatthe previousexamplewith this method
K(s—=3)(s—5)
(s+D(s+2)
1 1 1 1
+ = -
c-3 o-5 o+l o+2
116> +260-61=0
o=-145,3.82

KG(s)H(s) =
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Finding the jo axis crossings

 Jo axis crossing is a point on the R-L that separates the stable operation of
the system from the unstable operation.

*  The value of o at the axis crossing yields the frequency of oscillation.

«  The gain at the jo axis crossing yields the max. positive gain for system
stability.

Jw-axis crossing can be found by using Routh-Hurwitz criterion as follows.:

Forcing a row of zeros in the Routh Table will yield the gain.

*  Going back one row to the even polynomial equation & solving for the roots
yields the frequency at the imaginary axis crossing.

(Recall that a row of zeros in the Routh Table indicates the existence of poles
on the jo axis.)
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For the system shown, find the frequency & gain, K, for which
the root locus crosses the imaginary axis. For what range of K 1s

the system stable?

R(s) + K(s +3) C(S‘)P
B s(s+ 1D)(s+2)(s+4)
CLTF of T(s)=—28)  misy=1
1+G(s)H(s)
where
T(s) = K(s+3)

s*+7s° +14s* +(8+K)s +3K
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Construction of Routh table

1

14

3K

7

8+ K

90 — K

21K

—K? — 65K + 720

90 — K

21K
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Continuation of Previous Problem Solving

For +ve K, only s! row can be all zeros.

Let -K? -65K+720/90-K =0 to find value of K on jw-axis.
-K? -65K+720 =0
K=9.65

To find the frequency on the jo axis crossing, form the even polynomial by using the
s? row & WiC%h K=y9.65, ! . povy Y

(90 -K)s’ + 21K =0
80.35s° +202.7=0
s?=-202.7/80.35
s =4j1.59

The root-locus crosses the jo axis at + /.59 at a gain of 9.65

The system is stable for 0 < K <9.65
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Angle of departure & arrival from complex
poles & zeros

» Recall that a condition for a
point on the s-plane to be on the
root locus 1s that the angles of
the zeros minus the angles of

the poles, all drawn to the

selected point on the s-plane, )

add up to gam

(2k + 1) 180°. Vi o
Example A .

L KG(s)H (s) = (2k+ 1) 180°

Consider the next Figure:
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Angle of departure & arrival

* Assume € is a point on the root locus
close to a complex pole.

* Sum of all angles drawn from all other
poles & zeros to the pole that is near to €
1s:

AN "

0,7 054 05— 0, — 05+ 05 =(2k+1) 180°

Thle angTQ of departur.é. 1s:
| -\ :

| el eS| -
0,=0,+0,—0,—0.,+6,-(2k+1)180°
Silmilarl);%r complex zero:
0,%0,+0,-0,—0.+0, = (2k+1)180°

The angle of arrival is:

0,=0,-0,+0,+0,,- 0, + (2k+1)180°



Example:
Given the unity feedback system, find the angle of departure from
the complex poles & sketch the root locus

R e+ (i vt L
[ [T ] \
K(s+2 .. :ﬁ?/? o | —_—
KG(s)H(s) = (Sf ) H(s)=1 A 1 "
(s+3)(S°+25+2) -
where
K(s+2 .
KG(s)H(s) = (s+2) | |
(s+3)(s+1-jD(s+1+j1) | 17

Root locus for the system
showing angle of departure
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Continuation of Previous Problem Solving

~6,-6,+6,-0, =12k +1)180" =180" (k = 0)

~6,-90° + tan™" Gj —~ tanl(%j =180°

6, =-90° +45°-26.5° -180’
=-251.6" =108.4°

The angleof departureof the complex poleis —108.4°

(symmetryaboutthe real axis)
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An Example

Sketching the root locus &
Finding the critical points

Find the exact point and gain
where the locus crosses the
0.45 damping ratio line

Find the exact point and gain
where the locus crosses the
JW-axis

Find the breakaway point on
the real axis

Find the range K within which
the system is stable

Rix)

=)~

|
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Transient Response Design via Gain
Adjustment

« Use Second order approximation which
satisfy the following conditions:

— Higher order poles are much farther into
the left half of the s-plane than the
dominant second order pair of poles. o i
The response that results from a higher A ¥ R
order pole does not appreciably change i Vsa-e i i beeh

the transient response expected from the N ' P
dominant second order poles

— Closed loop zeros near the closed loop i e = Ehosedjanp e
second order pole pair are nearly \ "% G Closeddoop 2er0
cancelled by the close proximity of

X - loep e

higher order closed loop poles

— Closed loop zeros not cancelled by the i r K
close proximity of higher order closed . "
loop poles are far removed from the
closed loop second order pole pair
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Pole Sensitivity

» Since Root Locus is a plot of the Closed Loop Poles
as a system parameter is varied = any change in the
parameter will change the system performance too!

» Root Locus exhibits nonlinear relationship between

gain and pole

o Along some sections of the RL — very small changes in gain yield very
large changes in pole location and hence performance = High
Sensitivity to changes in gain

o Along other sections of the RL — very large changes in gain yield very
small changes in pole location = Low Sensitivity to changes in gain

» Preferences =2 Low Sensitivity to changes in gain
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