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Introduction

Partial Differential Equations

 Partial Differential Equations (PDEs).

 What is a PDE?

 Examples of Important PDEs.

 Classification of PDEs.
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A partial differential equation (PDE) is an 

equation that involves an unknown function 

and its partial derivatives. 
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Linear PDE
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Heat Equation 
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ice ice
Temperature at 
different x at t=0

Temperature at 
different x at t=h

Temperature

Position  x

Thin metal rod  insulated 
everywhere except at the 
edges. At  t =0 the rod is 
placed in ice 

Different curve is 
used for each value 

of t



Examples of PDEs

PDEs are used to model many systems in 
many different fields of science and 
engineering. 

Important Examples:

 Laplace Equation

 Heat Equation

 Wave Equation



Laplace Equation

Used to describe the steady state distribution of 

heat in a body.

Also used to describe the steady state 

distribution of electrical charge in a body.
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Heat Equation
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The function u(x,y,z,t) is used to represent 

the temperature at time t in a physical body 

at a point  with coordinates (x,y,z)

 is the thermal diffusivity. It is sufficient to 

consider the case  = 1.



Simpler Heat Equation
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T(x,t) is used to represent the temperature 

at time t at  the  point x of the thin rod.
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Wave Equation
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The function u(x,y,z,t) is used to represent the 

displacement at time t of a particle whose 

position at rest is (x,y,z) .

The constant c represents the propagation 

speed of the wave.



Classification of PDEs

Linear Second order PDEs are important 
sets of equations that are used to model 
many systems in many different fields of 
science and engineering.

Classification is important because: 
 Each category relates to specific engineering 

problems.

 Different approaches are used to solve these 
categories.
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Linear Second Order PDE
Examples (Classification)
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Linear Second Order PDE
Examples (Classification)

Hyperbolicis

ACBCBcA

t

txu

x

txu
c

Parabolicis

ACBCBA

t

txu

x

txu

Equation Wave

041  ,0  ,0

0
),(),(

Equation Wave

______________________________________

EquationHeat

040  ,0  ,

0
),(),(

EquationHeat

22

2

2

2

2
2

2

2

2



































Boundary Conditions for PDEs

 To uniquely specify a solution to the PDE, 
a set of boundary conditions are needed.

 Both regular and irregular boundaries are 
possible.
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Parabolic Equations

 Parabolic Equations

 Heat Conduction Equation

 Explicit Method

 Implicit Method

 Cranks Nicolson Method



Parabolic Equations
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Parabolic Problems
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Example 1: Heat Equation
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Elliptic Equations

 Elliptic Equations

 Laplace Equation

 Solution



Elliptic Equations
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Laplace Equation
Laplace equation appears in several 
engineering problems such as:

 Studying the steady state distribution of heat in a 
body.

 Studying the steady state distribution of electrical 
charge in a body.
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Laplace Equation
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 Temperature is a function of the position (x and y)

 When no heat source is available f(x,y)=0



D’Alembert’s Solution
There is an elegant approach to solve the wave equation by introducing 

new variables:
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The use of these variables is because that the solution of the 

wave equation behaves in specific fashion that its spatial 

movement is related to the temporal variation throu
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If given the initial conditions:
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Example
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From the wave equation, =1

D'Alembert's solution:
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Wave Propagation

It is much easier to identify the wave propagation characteristics of the

solution of the wave equation by examining an initial disturbance confined

within a finite area and trace its development in tim
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When t>0, the disturbance splits into two parts, one propagating to the

right while the other propagating to the left, as shown below:



Characteristic Lines
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Nonhomogeneous: Wave Equation

Sometime we have deal with nonhomogeneous form of the wave equation.

For example, when the string or beam is under an external excitation, varying

both in space and time: ( , )

The nonhomogeneous wave e

F x t
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 is the characteristic triangle, a region in the x,t plane bounded

by the two characteristic lines and the initial time line.
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Separation of Variables Method 

With Applications
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UNIT-II

PARTIAL DIFFERENTIAL 
EQUATIONS: FIRST ORDER



Formation of Partial Differential equations

Partial Differential Equation  can be formed either 
by elimination of arbitrary constants  or by the 
elimination of arbitrary functions from a relation 
involving three or more variables . 

SOLVED PROBLEMS
1.Eliminate two arbitrary constants a  and b    from
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(OR)    Find  the differential  equation of all spheres
of fixed radius having their centers in x y- plane.



By substituting all these values in (1)
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2. Find the partial Differential Equation by eliminating
arbitrary functions from )( 22 yxfz 
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3.Find Partial Differential Equation

by eliminating  two arbitrary functions from 
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Differentiating  both sides with respect to x and y
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Again  d . w .r. to  x and yin equation (2)and(3)
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Different Integrals of Partial Differential 

Equation

1. Complete Integral (solution)

Let   

be the Partial Differential Equation. 
The complete integral of equation (1) is given    
by                                                                               
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2. Particular solution
A solution obtained by giving particular values to

the arbitrary constants in a complete integral is

called particular solution .

3.Singular solution
The eliminant of a , b between                 

when it exists , is called singular solution 
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4. General solution

In equation (2)  assume an arbitrary relation    

of the form             . Then (2) becomes )(afb 

)3.........(0))(,,,,( afazyx

Differentiating  (2) with respect to a, 

)4(..........0)( 








af

ba



The  eliminant of (3) and (4) if exists,

is called general solution



Standard  types of first  order equations
TYPE-I

The  Partial Differential equation of the form
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The Partial Differential Equation  of the form
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


















.

1.

 The given pde can be written as

0),,( 
dy

dz
a

dx

dz
zf .And also this can

be integrated to get solution     



TYPE-IV

The pde of the form                            can be 

solved by assuming

),(),(

),(),(

),(),(

ayqaqyg

axpapxf

aqygpxf









),(),( qygpxf 

dyaydxaxdz

dy
y

z
dx

x

z
dz

),(),( 












Integrate the above equation to get solution



SOLVED PROBLEMS

1.Solve the pde and find the complete      

and singular solutions

12 qp

Solution

Complete solution is given by 

1

1

2

2





ab

ba

cbyaxz 

with



cyaaxz  )1( 2

d.w.r.to.  a  and  c then  

01

2











c

z

ayx
a

z

Which is not possible

Hence there is no singular solution

2.Solve the pde and find the  

complete, general and singular solutions

0 qppq



Solution

The complete solution is given by

cbyaxz 

with

1

0








b

b
a

baab

)1.......(
1

cbyx
b

b
z 








 

01

0
1

1
2
















c

z

yx
bb

z

no singular solution

To get general solution  assume that

)(bgc 

)2).......((
1

bgbyx
b

b
z 






From eq (1)



 
)3).......((

1

1
2

bgyx
bc

z











Eliminate from (2) and (3) to get general 

solution

3.Solve the pde

and find the complete and singular solutions

221 qpqypxz 

Solution
The pde

is in Clairaut’s form    

221 qpqypxz 



)2.......(1 22 babyaxz 

complete solution of  (1) is

d.w.r.to  “a”   and  “b” 

)3........(

0
1

0
1

22

22


























ba

b
y

b

z

ba

a
x

a

z



)(1
1

1

1

1
,

1

22

22

22

22
22

22

2
2

22

2
2

yx
ba

ba

ba
yx

ba

b
y

ba

a
x

















From (3)



1

)(10
1

1

0
1

1
1

0
1

0
1

222

222

22

22

22

22

2

22

2























zyx

yxz
ba

z

ba
babyax

ba

b
by

ba

a
ax

is required singular solution



4.Solve the pde zqypx  3)2()1(

Solution

pde

)23(

3)2()1(

qpqypxz

zqypx





Complete solution of above pde is

)23( babyaxz 

5.Solve the pde zqp  22

Solution
Assume that )( ayxz 



)(uz

ayxu





du

dz
aa

u

z

y

u

u

z

y

z
q

du

dz

u

z

x

u

u

z

x

z
p









































.

1.

2

2

2

2

22 z
du

dz
a

du

dz
zqp 



















From given pde



du
az

dz

a

z

du

dz

a

z

du

dz

22

2

2

1

1

1

1


























Integrating on both sides

b
a

ayx
z

b
a

u
z












2

2

1
2

1
2



6. Solve the pde qpzpq 

Solution
Assume 

Substituting  in given equation

apq 

dy
z

a
dx

az

a
dz

dy
y

z
dx

x

z
dz

z

a
q

az

a
p

appzpap

























11

1
,

1



))(1( adydxazadz 

Integrating on both sides

bayxaz
a

 ))(1(
2

2

7.Solve pde

(or) xy
y

z

x

z

xypq












))((

Solution

y

q

x

p




Assume that

dy
a

y
axdxqdypdxdz

a

y
qaxp

a
q

y

x

p







,

Integrating on both sides 

b
a

yx
az 

22

22



8. Solve the equation yxqp  22

Solution

dyaydxxaqdypdxdz

ayqxap

aqyxp







,

22

integrating

bayxaz  2

3

2

3

)()(
3

2



Equations reducible to the standard forms

(i)If               and             occur in the pde as in)( pxm )( qyn

0),( qypxF nm Or in 0),,( qypxzF nm

Case (a)    Put               and              

if           ;               

Xx m 1 Yy n 1

1m 1n

n

m

yn
Y

z

x

Y

Y

z

y

z
q

xm
X

z

x

X

X

z

x

z
p













































)1(

)1(



)1()1(

)1()1(

nQn
Y

z
qy

mPm
X

z
px

n

m













where Q
Y

z
P

X

z










,

0),( qypxF nm 0),( QPFThen                              reduces  to

Similarly                             reduces  to0),,( qypxzF nm
0),,( QPzF



case(b)

If             or

put    

1m 1n
YyXx  log,log

Qqy
yY

z
q

Ppx
xX

z
p













1

1

(ii)If           and          occur in pde as in)( pzk )( qz k
),( qzpzF kk

),(),( 21 qzyfpzxf kk Or in



Case(a)  Put              if Zz k 1 1k

Qkqz
y

Z
kz

y

Z

Z

z

y

z

Pkpz
x

Z
kz

x

Z

Z

z

x

z

kk

kk

1̀1̀

1̀1̀

)1()1(

)1()1(











































Q
y

Z
P

x

Z










,where

),(),( 21 QyfPxf ),( QPF

Given  pde reduces to

and



Case(b)  if 1k
Zz log

Qqz
y

Z
z

y

Z

Z

z

y

z

Ppz
x

Z
z

x

Z

Z

z

x

z











































1

1

Solved Problems

1.Solve 
24242 zyqxp 

Solution  
)1.......(1

2
2

2
2



















z

qy

z

px



1

2,2





k

nm

Qzy
Y

Z
zy

y

Y

Y

Z

Z

z

y

z
q

Pzx
X

Z
zx

x

X

X

Z

Z

z

x

z
p

22

22





















































Xx 1 Yy 1 Zz log

Q
Y

Z
P

X

Z










,

where



Q
z

qy
P

z

px


22

,

   

1

1

22

22





QP

QP
(1)becomes

cyaaxz

abba

cbYaXZ







222

222

1log

1,1



2. Solve the pde )( 22222 yxzqp 

SOLUTION

)1).....(( 22

22

yx
z

q

z

p



















1k Zz log

Qqz
y

Z
z

y

Z

Z

z

y

z

Ppz
x

Z
z

x

Z

Z

z

x

z











































1

1



22222

2222 )2).....((

aQyxP

yxQP





Eq(1) becomes

b
a

yaayy

xa
x

a

xa
z



























1
222

221
2

cosh
22

)(

)(
2

sinh
2

log



Lagrange’s  Linear Equation  

Def: The linear partial differenfial equation  

of first order is called as Lagrange’s linear Equation.

This  eq is of the form RQqPp 

Where           and      are functions x,y and zQP, R

The general solution of the partial differential 

equation                                is RQqPp  0),( vuF

Where      is arbitrary function of                       

and  
F 1),,( czyxu 

2),,( czyxv 



2cv 1cu Here             and           are independent  solutions

of  the auxilary equations                        
R

dz

Q

dy

P

dx


Solved problems

1.Find the general solution of zyxqypx )(22 

Solution

auxilary equations are
zyx

dz

y

dy

x

dx

)(22 




  1

11

22

cyxu

y

dy

x

dx







Integrating on both sides

z

dz

yx

yxd

zyx

dz

yxyx

yxd

zyx

dz

yx

dydx




















)(

)(

)())((

)(

)(22

Integrating on both sides



2

1

2

)(

loglog)log(

czyxv

czyx







The general solution is given by 0),( vuF

0))(,( 111   zyxyxF

2.solve )()()( 222 yxzqxzyzyx 

solution
Auxiliary equations are given  by

)()()( 222 yxz

dz

xzy

dy

zyx

dx











0

)()()(

)()()(

222

222

222















z

dz

y

dy

x

dx

yxxzzy

z

dz

y

dy

x

dx

yx

z

dz

xz

y

dy

zy

x

dx

Integrating on both sides



a
zyx

u 
111

0

)()()(

)()()(

111

111



















z

dz

y

dy

x

dx

yxzxzyzyx

dzzdyydxx

yxz

dzz

xzy

dyy

zyx

dxx

bxyzv 

Integrating on both sides



The general solution is given by

0),( 111   xyzzyxF

HOMOGENEOUS   LINEAR   PDE WITH  

CONSTANT  COEFFICIENTS

Equations  in which  partial derivatives 

occurring  are all of same order (with degree 

one ) and the coefficients are constants ,such 

equations are called homogeneous linear PDE 

with constant coefficient



Assume that .,
y

D
x

D










then       order linear homogeneous equation is 

given by  

thn

),().........( 22

2

1

1 yxFzDaDDaDDaD n

n

nnn  

or

)1().........,(),( yxFzDDf 

),(........
22211 yxF

y

z
a

yx

z
a

yx

z
a

x

z
n

n

nn

n

n

n

n

n
























The complete solution of equation (1)  consists 

of two parts ,the complementary function  and 

particular integral.

The complementary function is complete 

solution of equation of 0),(  zDDf

Rules to find complementary function  

Consider the equation   

0
2

2

2

2

12

2
















y

z
k

yx

z
k

x

z

)2...(..........0)( 2

21

2  zDkDDkD

or



1,  DmD

The auxiliary equation for (A.E) is given by 

And by giving 

02

21

2  DkDDkD

The  A.E  becomes )3....(021

2  kmkm

Case 1
If the equation(3) has two distinct  roots 21,mm

The complete solution of (2) is given by

)()( 2211 xmyfxmyfz 



Case 2
If the equation(3) has two  equal roots i.e

21 mm 

The complete solution of (2) is given by

)()( 1211 xmyxfxmyfz 

Rules to find the particular Integral 

),()( 2

21

2 yxFzDkDDkD 

),(),( yxFzDDf 

Consider the equation



Particular Integral (P.I) 
),(

),(

DDf

yxF




Case 1 If

then  P.I=

byaxeyxF ),(

0),(,
),(

1

),(

1









bafe
baf

e
DDf

byax

byax

If                      and                   is

factor of                 then           

0),( baf )( D
b

a
D 

),( DDf 



),,(

)sin(

),,(

)sin(
2222 nmnmf

nymx

DDDDf

nymx











)cos()sin(),( nymxornymxyxF 

Case 2 

P.I 

byaxxe P.I

If                      and                  is 

factor of                

then    P.I

0),( baf 2)( D
b

a
D 

),( DDf 

byaxe
x 
2

2



Case 3
nm yxyxF ),(

  nmnm yxDDfyx
DDf

1
),(

),(

1 



P.I

  1
),(


DDfExpand in ascending powers of

or       and  operating on             term by term.nm yxD D

Case 4  when                 is any function of x 

and y. 

P.I=       

),( yxF

),(
),(

1
yxF

DDf 

 


dxmxcxFyxF
DmD

),(),(
1



Solved problems

1.Find the solution of pde

0)33( 2233  zDDDDDD

Solution
The Auxiliary equation is given by

Where ‘c’ is replaced by                after integration 

)( DmD  ),( DDf 

)( mxy 

Here is factor of



Solution

The Auxiliary equation is given by

By taking

0331 23  mmm

1,  DmD

.1,1,1m

Complete solution )()()( 3

2

21 xyfxxyxfxyf 

2. Solve the pde 0)54( 23  zDDDDD

Solution

The Auxiliary equation is given by



)5()()(

5,1,0

054

321

23
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4. Find the solution of  pde
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Complementary Function  + Particular Integral
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5.Solve yxyx eezDDDD   233 )23(

Solution

)2()()(.

.2,1,1

23.

321

3

xyxyxxyFC

m

mmEA









)2()(23
.

22

2

323

2

1
DDDD

e

DDDD

e
IP

yxyx











9)2()(
.

2

2

2

1

yxyx xe

DDDD

e
IP








yx

yxyx

e
x

IP

DDDD

e

DDDD

e
IP













6
.

)2()(23
.

2

2

223232

21 ... IPIPFCz 



yx
yx

e
xxe

xyxyxxyz 



69

)2()()(
22

321 

6.Solve yxzDDD 2coscos)( 2 

Solution

 )2cos()2cos(
2

1
)( 2 yxyxzDDD 

)()(.

1,0

0.

21

2

yxyFC

m

mmEA

 







)2cos(
))2()1((

)2cos(

)(

)2cos(
.

21 yx
yx

DDD

yx
IP 











3

)2cos(

))2()1((

)2cos(

)(

)2cos(
.

22















yxyx

DDD

yx
IP

)2cos(
3

1
)2cos()()( 21 yxyxxyxyz  

7.Solve
2222 )6( yxzDDDD 

Solution

.3,2

06. 2





m

mmEA



)3()2(. 21 xyxyFC  

22

2

2

2

2

2
2

22

1

2

2

2

22

22

661

61
1

6
.

yx
D

D

D

D

D

D

D

D
D

yx
D

D

D

D

D

DDDD

yx
IP






















 










 





















 













































































 







 













90

2

60

2

12

12

2
8

3

2

12

2

12

2
6

3

2

22
6

2

61

6524

43
222

443
222

2

2

2

22
222

22

2

2

2

2
2

xyxyx

xyx
yxD

xxyx
yxD

D

x

D

x

D

yx
yxD

yx
D

D

D

D

D

D
D



7.Solve  xyzDDDD sin)65( 22 

Solution

A.E  is 0652  mm
.2,3  mm
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Non Homogeneous Linear  PDES

If  in the equation )1...().........,(),( yxFzDDf 

the polynomial expression                    is not 

homogeneous, then (1) is a non- homogeneous 

linear partial differential  equation                 

),( DDf 

Complete Solution 

= Complementary Function + Particular Integral

To find C.F., factorize                                

into factors of the form  

),( DDf 

)( cDmD 

yxezDDDD 3222 )43( Ex



If the non homogeneous equation is of the form 
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Introduction

Syllabus

The syllabus contains the following articles:

First Order Differential Equation

Leibnitz linear equation
Bernoulli’s equation
Exact differential equation
Equations not of first degree

Equation solvable for p
Equation solvable for x
Equation solvable for y

Clairaut’s equation

Higher Order Differential Equation

Second order linear differential equations with variable coefficients
Method of variation of parameters
Power series solutions
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First Order Differential Equations Leibnitz linear equation

Leibnitz linear equation

Definition

An equation of the form
dy

dx
+ Py = Q, where P and Q are either constants or

functions of x only is called Leibnitz linear equation.

Alternately, the equation may be of the form
dx

dy
+ Px = Q, where P and Q

are either constants or functions of y only.

Solution

This equation is solved by evaluating the Integration Factor that is given by

IF = e
∫
Pdx and the solution is obtained by y(IF ) =

∫
Q(IF )dx+ c for the

former case and for the latter x is replaced by y in the IF and the solution.

(BBSBEC, FGS) B.Tech. (First Year) 3 / 34



First Order Differential Equations Leibnitz linear equation

Questions

dy

dx
+
y

x
= x3 − 3

x log x
dy

dx
+ y = 2 log x

dy

dx
+ y cotx = 5ecos x

dy

dx
=

y

2y log y + y − x√
1− y2dx = (sin−1 y − x)dy
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First Order Differential Equations Bernoulli equation

Bernoulli’s Equation

Definition

An equation of the form
dy

dx
+ Py = Qyn, where P and Q are either constants

or functions of x only is called Bernoulli’s equation.

Alternately, the equation may also be written as
dx

dy
+ Px = Qxn, where P

and Q are either constants or functions of y only.

Solution

This equation is reduced to Leibnitz linear equation by substituting y1−n = z
and differentiating. This generates the Leibnitz equation in z and x that is
solved as explained earlier and then z is resubstituted in terms of y. The
corresponding changes are made in the latter case of definition.
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First Order Differential Equations Bernoulli equation

Questions

x
dy

dx
+ y = x3y6

ey
(
dy

dx
+ 1

)
= ex

dy

dx
− tan y

1 + x
= (1 + x)ex sec y

dy

dx
+
y log y

x
=
y(log y)2

x2

(xy2 − e1/x
3

)dx− x2ydy = 0
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First Order Differential Equations Exact differential equation

Exact Differential Equation

Definition

An equation of the form M(x, y)dx+N(x, y)dy = 0 is said to be an Exact
differntial equation if it can be obtained directly by differentiating the equation
u(x, y) = c, which is its primitive.
i.e. if

du = Mdx+Ndy

Necessary and Sufficient Condition

The necessary and sufficient condition for the equation Mdx+Ndy = 0 to be
exact is

∂M

∂y
=
∂N

∂x

Solution

The solution of Mdx+Ndy = 0 is given by∫
y constant

Mdx+

∫
(terms of N not containing x)dy = c

(BBSBEC, FGS) B.Tech. (First Year) 7 / 34



First Order Differential Equations Exact differential equation

Questions

(x2 − 4xy − 2y2)dx+ (y2 − 4xy − 2x2)dy = 0

(1 + ex/y)dx+

(
1− x

y

)
ex/ydy = 0

(2xy cosx2 − 2xy + 1)dx+ (sinx2 − x2)dy = 0

xdy + ydx+
xdy − ydx
x2 + y2

= 0

(y2exy
2

+ 4x3)dx+ (2xyexy
2

− 3y2)dy = 0
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First Order Differential Equations Equations reducible to exact equations

Equations reducible to exact equations

Reducible to exact equations

Equations which are not exact can sometimes be made exact after multiplying
by a suitable factor (function of x and/or y) called the Integration Factor (IF).

IF by Inspection

ydx+ xdy = d(xy)

ydx− xdy
y2

= d

(
x

y

)
xdy − ydx

xy
= d

[
log
(y
x

)]
xdx+ ydy

x2 + y2
= d

[
1

2
log(x2 + y2)

]

xdy − ydx
x2

= d
(y
x

)
xdy − ydx
x2 + y2

= d

(
tan−1

x

y

)
ydx+ xdy

xy
= d[log(xy)]

xdy − ydx
x2 − y2

= d

(
1

2
log

x+ y

x− y

)
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First Order Differential Equations Equations reducible to exact equations

Equations reducible to exact equations

IF for Homoegeneous Equation

If Mdx+Ndy = 0 is a Homoegeneous equation in x and y, then
1

Mx+Ny
is

an IF provided Mx+Ny 6= 0.

IF for f1(xy)ydx+ f2(xy)xdy = 0

For equation of this type, IF is given by
1

Mx−Ny
.
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First Order Differential Equations Equations reducible to exact equations

Equations reducible to exact equations

IF for Mdx+Ndy = 0

If

∂M
∂y −

∂N
∂x

N
is a function of x only, say f(x), then IF = e

∫
f(x)dx.

If

∂N
∂x −

∂M
∂y

M
is a function of y only, say g(y), then IF = e

∫
g(y)dy.

IF for xayb(mydx+ nxdy) + xcyd(pydx+ qxdy) = 0

In this equation, a, b, c, d,m, n, p, q are all constants and IF is given by xhyk,
where h and k are so chosen that the equation becomes exact after
multiplication with IF.
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First Order Differential Equations Equations reducible to exact equations

Questions

(1 + xy)ydx+ (1− xy)xdy = 0

xdy − ydx = xy2dx

(xyex/y + y2)dx− x2ex/ydy = 0

(x2y2 + xy + 1)ydx+ (x2y2 − xy + 1)xdy = 0(
y +

y3

3
+
x2

2

)
dx+

1

4
(x+ xy2)dy = 0

(2x2y − 3y4)dx+ (3x3 + 2xy3)dy = 0

(xy2 + 2x2y3)dx+ (x2y − x3y2)dy = 0
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First Order Differential Equations Equations not of first degree

Equations of first order and higher degree

Definition

A differential equation of the first order and nth degree is of the form

pn + P1p
n−1 + P2p

n−2 + · · ·+ Pn = 0, where p =
dy

dx
(1)
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First Order Differential Equations Equations not of first degree

Equations solvable for p

Resolve equation (1) into n linear factors and solve each of the factors to
obtain solution of the given equation.

Questions

p2 − 7p+ 12 = 0

xyp2 − (x2 + y2)p+ xy = 0

p− 1

p
=
x

y
− y

x

p2 − 2p sinhx− 1 = 0

4y2p2 + 2pxy(3x+ 1)3x3 = 0
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First Order Differential Equations Equations not of first degree

Equations solvable for y

Differentiate equation (1), wrt x, to obtain a differential equation of first order
in p and x that has solution of the form φ(x, p, c) = 0. The elimination p from
this solution and equation (1) gives the desired solution.

Questions

xp2 − 2yp+ ax = 0

y − 2px = tan−1(xp2)

x2
(
dy

dx

)4

+ 2x
dy

dx
− y = 0

x− yp = ap2
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First Order Differential Equations Equations not of first degree

Equations solvable for x

Differentiate equation (1), wrt y, to obtain a differential equation of first order
in p and y that has solution of the form φ(y, p, c) = 0. The elimination p from
this solution and equation (1) gives the desired solution.

Questions

y = 3px+ 6p2y2

p3 − 4xyp+ 8y2 = 0

y = 2px+ p2y

y2 log y = xyp+ p2
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First Order Differential Equations Clairaut’s equation

Clairaut’s equation

Definition

An equation of the form y = px+ f(p) is called Clairaut’s equation.

Solution

Differente the equation wrt x, and obtain the solution by putting p = c in the
given equation.

Questions

y = xp+
a

p

y = px+
√
a2p2 + b2

p = sin(y − px)

p = log(px− y)

(BBSBEC, FGS) B.Tech. (First Year) 17 / 34



Higher Order Differential Equation

Linear Differential Equations

Definition

A linear differential equation is that in which the dependent variable and
its derivatives occur only in the first degree and are not multiplied together.
Thus, the general linear differential equation of the nth order is of the form

dny

dxn
+ a1

dn−1y

dxn−1
+ a2

dn−2y

dxn−2
+ · · ·+ an−1

dy

dx
+ any = X (2)
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Higher Order Differential Equation

Linear Differential Equations

Complementary Function (CF)

If all the roots of equation (2) are real and distint, CF is given by
y = c1e

m1x + c2e
m2x + · · ·+ cne

mnx

If two roots are equal, say m1 = m2, then CF is given by
y = (c1x+ c2)em1x + c3e

m3x + · · ·+ cne
mnx

If two roots are imaginary, say m1 = α+ ιβ, m2 = α− ιβ, then CF is
given by y = eαx(c1 cosβx+ c2 sinβx) + c3e

m3x + · · ·+ cne
mnx

It two pairs of imaginary roots are equal, say
m1 = m2 = α+ ιβ, m3 = m4 = α− ιβ, then CF is given by
y = eαx[(c1x+ c2) cosβx+ (c3x+ c4) sinβx] + c5e

m5x + · · ·+ cne
mnx
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Higher Order Differential Equation

Linear Differential Equations

Particular Integral (PI)

If X = eax, then PI is given by y =
1

f(D)
eax =

1

f(a)
eax, provided f(a) 6= 0.

If X = sin(ax+ b) or cos(ax+ b), then PI is given by

y =
1

f(D2)
sin(ax+ b) =

1

f(−a2)
sin(ax+ b). Likewise for cos(ax+ b).

If X = xm, where m is a positive integer, then PI is given by y =
1

(D)
xm.

Take out the lowest degree term from f(D) to make the first term unity and
then shift the remaining term to numerator and apply Binomial expansion
upto Dm. Operate term by term on xm.
If X = eaxV , where V is a function of x, then PI is given by

y =
1

f(D)
eaxV = eax

1

f(D + a)
V .

If X is any other function of x, then PI is obtained by resolving the f(D) into

linear factors and applying
1

D − a
X = eax

∫
e−axXdx
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Higher Order Differential Equation

Questions

(D2 + 4D + 5)y = −2 coshx

(D2− 4D + 3)y = sin 3x cos 2x

(D2 + 4)y = ex + sin 2x

(D2 +D)y = x2 + 2x+ 4

(D2 − 3D + 2)y = xe3x + sin 2x

(D2 − 4D + 4)y = 8x2e2x sin 2x

(D2 − 1)y = x sinx+ (1 + x2)ex

(D − 1)2(D + 1)2y = sin2 x

2
+ ex + x
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Higher Order Differential Equation LDE with Variable Coefficients

Cauchy’s Homogeneous Equation

Definition

An equation of the form

xn
dny

dxn
+ a1x

n−1 d
n−1y

dxn−1
+ a2x

n−2 d
n−2y

dxn−2
+ · · ·+ an−1x

dy

dx
+ any = X (3)

where ais are constants and X is a function of x is called Cauchy’s
Homegeneous Linear Equation.

Solution

The equation is reduced to an LDE with constant coefficients by putting
z = ex thereby generating an LDE in x and z that can be solved as explained
earlier and finally the solution of equation (3) is obtained by putting z = log x.
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Higher Order Differential Equation LDE with Variable Coefficients

Questions

x2
d2y

dx2
+ 9x

dy

dx
− 25y = 50

x4
d3y

dx3
+ 2x3

d2y

dx2
− x2 dy

dx
+ xy = 1

d2y

dx2
+

1

x

dy

dx
=

12 log x

x2

x2
d2y

dx2
− 3x

dy

dx
+ y = log x

sin(log x) + 1

x
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Higher Order Differential Equation LDE with Variable Coefficients

Legendre’s Linear Equation

Definition

An equation of the form

(a+ bx)n
dny

dxn
+ a1(a+ bx)n−1

dn−1y

dxn−1
+ · · ·+ an−1(a+ bx)

dy

dx
+ any = X (4)

where ais, a and b are constants and X is a function of x is called Legendre’s
Linear Equation.

Solution

The equation is reduced to an LDE with constant coefficients by putting
a+ bx = ez thereby generating an LDE in x and z that can be solved as
explained earlier and finally the solution of equation (4) is obtained by putting
z = log(a+ bx).
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Higher Order Differential Equation LDE with Variable Coefficients

Questions

(1 + x)2
d2y

dx2
+ (1 + x)

dy

dx
+ y = 4 cos log(1 + x)

(1 + 2x)2
d2y

dx2
− 6(1 + 2x)

dy

dx
+ 16y = 8(1 + 2x)2

(3 + 2x)2
d2y

dx2
− 2(3 + 2x)

dy

dx
− 12y = 6x
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Higher Order Differential Equation variation of parameters

Variation of Parameters

This method is applicable for the second order differential equation of the

form
d2y

dx2
+ a1

dy

dx
+ a2y = X

Let the CF of this equation be

y = c1y1 + c2y2

. Then the PI of this equation is given by

y = uy1 + vy2

where

u = −
∫
y2X

W
dx

and

v =

∫
y1X

W
dx

where W is the Wronskian of y1, y2.
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Higher Order Differential Equation variation of parameters

Questions

d2y

dx2
+ 4y = 4 sec2 2x

d2y

dx2
+ y = cosec x

d2y

dx2
+ y = x sinx

y′′ − 2y′ + 2y = ex tanx
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Higher Order Differential Equation Series Solution

Series Solution

We discuss the method of solving equations of the form

P0(x)
d2y

dx2
+ P1(x)

dy

dx
+ P2(x)y = 0 (5)

where P0(x), P1(x) and P2(x) are polynomials in x, in terms of infinite
convergent series.

Solution

Divide equation (5) by P0(x) to get

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0 (6)

where p(x) =
P1(x)

P0(x)
and q(x) =

P2(x)

P0(x)
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Higher Order Differential Equation Series Solution

Series Solution

Ordinary Point

x = 0 is called an ordinary point of equation (5) if P0(0) 6= 0.
In this casem the solution of equation (5), can be expressed as

y = a0 + a1x+ a2x
2 + · · · =

∞∑
k=0

akx
k

Singular Point

x = 0 is called a singular point of equation (5), if P0(0) = 0.
In this case, the solution of equation (5) can be expressed as

y = xm(a0 + a1x+ a2x
2 + · · · ) =

∞∑
k=0

akx
m+k
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Higher Order Differential Equation Series Solution

Solution when x = 0 is an ordinary point

Solution

Let y =

∞∑
k=0

akx
k be the solution of equation (5). Then, on differentiating

dy

dx
=

∞∑
k=1

kakx
k−1 and

d2y

dx2
=

∞∑
k=2

k(k − 1)akx
k−2.

1. Substitute the values of y, dydx ,
d2y
dx2 in equation (5).

2. Equate to zero the coefficients of various powers of x and find a2, a3, a4, . . .
in terms of a0 and a1.
3. Equate to zero the coefficient of xn. The relation so obtained is called the
recurrence relation.
4. Give different values to n in the recurrence relation to determine various ais
in terms of a0 and a1.
5. Substitute the values in the above mentioned series to obtain the solution
with a0 and a1 as arbitrary constants.
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Higher Order Differential Equation Series Solution

Questions

d2y

dx2
+ xy = 0

y′′ − xy′ + x2y = 0

(2− x2)y′′ + 2xy′ − 2y = 0
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Higher Order Differential Equation Series Solution

Solution when x = 0 is a regular singular
point I

Let y =

∞∑
k=0

akx
m+k be the solution of equation (5). Then, on differentiating

dy

dx
=

∞∑
k=0

(m+ k)akx
m+k−1 and

d2y

dx2
=

∞∑
k=0

(m+ k)(m+ k − 1)akx
m+k−2.

1. Substitute the values of y, dydx ,
d2y
dx2 in equation (5).

2. Equate to zero the coefficients of lowest powers of x. This gives a quadratic
equation in m, which in known as indicial equation.
3. Equate to zero the coefficients of other powers of x to find a1, a2, a3, a4, . . .
in terms of a0.
4. Substitute the values of a1, a2, a3, . . . in above said solutionto get the series
solution of (5) having a0 as the arbitrary constant. Though, it is not the
complete solution as the same should have two arbitrary constants.
5. The method of complete solution depends on the nature of roots of the
indicial equation.
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Higher Order Differential Equation Series Solution

Solution when x = 0 is a regular singular
point II

Case I When the roots m1,m2 are distinct and not differing by an
integer. Then the complete solution is given by

y = c1(y)m1
+ c2(y)m2

Case II When the roots m1,m2 are equal. Then the complete solution is
given by

y = c1(y)m1
+ c2

(
∂y

∂m

)
m1

Case III When the roots m1 < M2 are distinct and differ by an integer.
Then th ecomplete solution is given by

y = c1(y)m1 + c2

(
∂y

∂m

)
m1
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Higher Order Differential Equation Series Solution

Questions

2x2
d2y

dx2
+ (2x2 − x)

dy

dx
+ y = 0

x2
d2y

dx2
+ x

dy

dx
+ (x2 − 4)y = 0

2x(1− x)
d2y

dx2
+ (1− x)

dy

dx
+ 3y = 0
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