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Introduction
Partial Differential Equations

o Partial Differential Equations (PDEs).
0o What is a PDE?

o Examples of Important PDEs.

o Classification of PDEs.



Partial Ditterential Equations

A partial differential equation (PDE) Is an
equation that involves an unknown function
and its partial derivatives.

Example :
0° u(x,t) o u(x,t)
OX* ot

PDE involves twoor more independent variables
(in theexample x and t are independent variables)




Notation

0% u(x,t)
u, = :
OX
0% u(x,t)
Uy =
OX ot

Order of the PDE = order of the highest order derivative.




ILinear PDE

Classification

Example of linear PDE :

2U,, +1lu,+3u;+4u,+cos(2t)=0
2U,—-3U +4u, =0

Examples of Nonlinear PDE

2u, + (u, Y +3u, =0

Uy +2 Uy +3u, =0
2U, +2Uu,U +3u, =0




Heat Equation

ice Ice

g Temperature Temperature at
X 1 different x at t=0
Thin metal rod insulated /
everywhere except at the

edges. At t =0 the rod is

placed in ice \

O? T(x,1) B o0 T(x,t) ~0 \ Position x

axz ot Temperature at
TO,)=T(@t)=0 different x at t=h

T (x,0) =sin(z x)




Examples of PDEs

PDEs are used to model many systems in
many different fields of science and
engineering.

Important Examples:
= Laplace Equation
= Heat Equation
= Wave Equation




Laplace Equation

2 2 2
0 u(a>)<(,2y,z) L0 u(ayx,zy,z) L0 U((;;zy’Z) 0

Used to describe the steady state distribution of
heat in a body.

Also used to describe the steady state
distribution of electrical charge in a body.




Heat Equation

2 2 2
8u(x,(;[/,z,t) :a((’}_qu@ u +a u]

The function u(x,y,z,t) Is used to represent
the temperature at time t in a physical body
at a point with coordinates (x,y,z)

o IS the thermal diffusivity. It is sufficient to
consider the case o = 1.




Simpler Heat Equation

GT(X,'[) _82T(X,t) < o

ot OX?

T(x,t) Is used to represent the temperature
attime t at the point x of the thin rod.




Wave Equation

+ +
ot? ox°  oy°  ozf

82u(x,y,z,t)_C2£52u o°u 82u)

The function u(x,y,z,t) Is used to represent the
displacement at time t of a particle whose
position at rest is (X,y,2) .

The constant c represents the propagation
speed of the wave.




Classification of PDEs

Linear Second order PDEs are important
sets of equations that are used to model
many systems in many different fields of
science and engineering.

Classification is important because:

= Each category relates to specific engineering
problems.

= Different approaches are used to solve these
categories.




Linear Second Order PDEs

Classification

A second order linear PDE (2 -independent variables)
Au,+Bu,+Cu,+D =0,
A, B, and C are functions of xand y
D isa function of x, y,u,u,,andu,
is classified based on (B“—4AC) as follows:
B°—4AC <0 Elliptic
B°—4AC =0  Parabolic

B°—4AC >0  Hyperbolic




Linear Second Order PDE

Examples (Classification)

2 2

u(xy) , uxy) g
OX oy

A=1B=0,C=1=B*-4AC <0

= Laplace Equation is Elliptic

Laplace Equation

One possiblesolution: u(x,y)=e"siny
u, =e’siny, u, =e"siny

—_ X . aXel
u, =e"cosy, u, =-e siny

Uy + Uy =0




Linear Second Order PDE

Examples (Classification)

o%u(x,t)  au(x,t)

ox2 ot
A=a, B=0, C=0=B*-4AC =0
— Heat Equation Is Parabolic

=0

Heat Equation «

> o°u(x,t)  o%u(x,t)

A &
A=c*>0,B=0, C=-1=B*-4AC >0
— Wave Equation is Hyperbolic

=0

Wave Equation c




Boundary Conditions for PDEs

o To uniquely specify a solution to the PDE,
a set of boundary conditions are needed.

o Both reqgular and irregular boundaries are
possible.

2
Heat Equation : aa u(>;,t) _auxY =0
OX ot region of

u(0,t) =0 /‘ interest

u(4,t)=0

u(x,0) =sin(z x)\J 1



Parabolic Equations

Parabolic Equations

Heat Conduction Equation
Explicit Method

Implicit Method

Cranks Nicolson Method

O OO0 O



Parabolic Equations

A second order linear PDE (2 - independent variables x, y)
Au,+Bu,+Cu,+D=0,

A, B, and C are functions of x and y

D is a function of x y,u,u,,and u,

is parabolicif | B°—4AC =0




Parabolic Problems

O T(x,t) 08° T(x1t)
ot OX°

Heat Equation :

TO.O=TLH=0
T (x,0) =sin(xz X) ice o 'ce

*  Parabolic problem (B?—-4AC =0)
* Boundary conditions are needed to uniquely specify a solution.




Example 1: Heat Equation

Solve the PDE:

o’u(x,t) ou(xt)
O°X o
U(O,t) = U(l, t) =0 ice

u(x,0) = sin(r X) o —

0

Use h=0.25 k=0.25 tofind u(x,t)for xe[0,1],t €[0,1]

A== -4

h?




Elliptic Equations

o Elliptic Equations
O Laplace Equation
o Solution



Elliptic Equations

A second order linear PDE (2 - independent variables x, y)
Au,+Bu,+Cu,+D=0,

A, B, and C are functions of xand y
D is a function of x, y, u,u,,andu,

is Ellipticif | B*—4AC <0




Laplace Equation

Laplace equation appears in several
engineering problems such as:

= Studying the steady state distribution of heat in a
body.

= Studying the steady state distribution of electrical
charge in a body.

0% T (X, 0% T (X,
(2 y) | (2 Y) _ t(x.y)
OX oy

T :steady statetemperature at point(x, y)
f (x,y): heat source (or heat sink)




Laplace Equation

0° T(X,Y) N 0 T(X,Y)
OX* oy’

A=1B=0C=1

B°—4AC =-4 <0 Elliptic

=1(xy)

0 Temperature is a function of the position (x and y)

o When no heat source is available =>f(x,y)=0




D’Alembert’s Solution

There is an elegant approach to solve the wave equation by introducing
new variables:

v=Xx+ct, z=x-ct, u(x,t)y=u(v,z){ }
The use of these variables is because that the solution of the
wave equation behaves in specific fashion that its spatial

movement is related to the temporal variation through the
constant c.

Using these new variables, the derivative w.r.t X & t can be
rewritten as

ou _ou 8v ou oz ou 8(x+ct) ou o(X — ct) ou N ou

8x Y, 6x 0z OX oV  OX 82 ox oV oz

Label u, _a_u u :a—u,u :a_u etc

ox ' ov b oz




Similarly,

ou ou av ou oz ou ou
( )+ —(—C) =C[——-—]

ot ov ot az ot ov ov 0z

Continue to convert all derlvatives INn X & t Into derivatives

Inv & z, the wave equation to obtain the following equation:

2
ou _9 (&J) 0, this equation can be integrated twice
OZov 0z \ oV
ou
— = f(v),
~ W)

u(v,2) = | f(V)dv +/(2) = $(v) + ¥/ (2)
u(x,y)=a¢(x+ct)+w(x—ct): D'Alembert's solution



If given the Initial conditions:
u(x,t=0) = f(x), S (x,t=0)=g(x

Determine the D'Alembert's solution:
u(x,0) =g(x+ct) +y(x—ct) =g(x) +w(x) = f(x)

ou _ 0 ov O B oz
E(X’t) == [¢(X+ct)] e [y (X —ct)] p
= cg'(X + ct) —cy'(X —ct)

ou , ,
E(X’t =0) =c[¢'(xX) —y¥'(X)] = g(x)

1 ¢ x+ct
26 900
See textbook, chapter 11.4 for detailed derivation

u(x,t) =%[f(x+ct)+ F(x—ct)]+




Example

Determine the solution of the wave equation in d'Alembert form

2 2
agzag, forO<x<m, t>0,
ot OX

u(x,0)=f(x)= sin(2x),2—$(x,0) = g(x) =sin(x)

1 1 // \\\ J I




From the wave equation, c=1
D'Alembert's solution:

u(x,t) :%[f (X +Ct) + f(x—ct)]+2—1c_[xx_+:g(s)ds

f(x+ct)=f(x+1t)=sin(2x + 2t)
f(x—t)=sin(2x —2t)

f XX_:t g(s)ds = J' XTsin(s)ds = —cos(s)\ij = Cc0S(X —t) —cos(x +1)

u(x,t) = %[sin(Zx +2t) +sin(2x — 2t)] + %[cos(x —t)—cos(x +1)]

A very simple form of solution, image how difficult it will be
If one uses the separation of variables and Fourier series solution
to solve this equation.



Wave Propagation

It is much easier to identify the wave propagation characteristics of the
solution of the wave equation by examining an initial disturbance confined
within a finite area and trace its development in time. Examine the
9—x%if—3<x<3

solution when ¢ =1, u(x,0) = f(x) = _
0 ,Otherwise

Z_l:(x,o) =g(x)=0 Initial condition

1 10 | | |
u(x,t)=§(f(x+t)+f(x—t)) f\
As shown, the initiail disturbance can

be interpreted as a pressure spike,
a wave crest, a temperature surge, etc..

f() 5 —




When t>0, the disturbance splits into two parts, one propagating to the
right while the other propagating to the left, as shown below:

9 10
u(x,0)
-l{(-X:Z-I..Z) Propagate to the right
>
u(x, 2) 5 .
- m m . = '. »
4 .
U(X, 8) ’° s ¢ \
- . ) .' L}
X \ .
u(x, 12 ; o 4
. 1 ’ 1
.' [ N
0. g | - | -
-15 -10 5 10 15




Characteristic Lines

62 , 0°U B ou
P =C pvt u(x,0) = f(x) (x 0) = g(x)

Assume g(x) =0 for S|mpI|C|ty
D'Alembert's solution: u(x,t) = %[ f(x+ct)+ f(x—ct)]

Specify & = x+ct,n = X —ct therefore
f (X +ct) remains the same as long as & = X + ct remains a constant.

t
X+ct=constant X-ct=constant
f(x+ct)=const f(x-ct)=const
Slope -c Slope ¢




Nonhomogeneous: Wave Equation

Sometime we have deal with nonhomogeneous form of the wave equation.
For example, when the string or beam is under an external excitation, varying
both in space and time: F(x,t)

. 0u Lo
The nonhomogeneous wave equation: po C PV + F(x,1)
X

with the initial conditions of :u(x,0) = f(x),g—ttj(x, 0) = g(x)

It can be shown that (not here), the general solution if of the form

u(x.1) :%[f(x—ct)+ f(x+ct)]+2icjxx_+:g(s)ds+2—1C”AF(s,f)dsdr

A 1s the characteristic triangle, a region in the x,t plane bounded
by the two characteristic lines and the initial time line.



Separation ot Variables Method
With Applications

Introduction

Laplace's Equation
m Steady-State temperature in a rectangular plate
m Math. Parenthesis: The Fourier Series

The Diffusion or Heat Flow Equation
m Flow of Heat through a slab of thickness ¢

The Wave Equation
m The Vibrating String




Introduction

Many of the problems of mathematical physics involve the solution

of PDE’s. The same PDE may apply to a variety of physical
problems; then many of the methods will apply to a bigger set of

problems.
1 Laplace's Equation: Viu=
1 Poisson’s Equation: Viu=f(x,y,z)
1 du
1 The difussion or heat flow equation: Viu=——
a? Ot
1 9%u

1 Wave equation: V23— ——
| vZ Ot?




Laplace Equation

Example (Steady-State temperature in a rectangular plate)

We have a rectangular plate on the region:
R:{0 < x <10, 0 < y} with border conditions:
T(x=0)= T{x=10)= T(y = o0) =0%and T(y =0) = 100°

V2T =0
0°T  O°T
i =0
Ox?  Oy?
T(x,y) =X(x)Y(y)
2y 2
Y—a 2 —I—X—a L —0

Ox2 Oy?




Contd...

82){ a?Y
1$x 1¥Y 0
X2 Y Dy2

=%

LOX . —62Y = const. = —k?
X 0x2 ~ Y oy?
X" =—k?X and Y"=4+k’Y
(soln's:)

X(x) = Acoskx + Bsinkx and Y(y) = Ce" + De= ¥




Contd...

T(x,y) = X(x)Y(y) = (Acos kx + Bsin kx)(Ce® + De™¥)
BiC.: T(x,00)=0=€ =0

T(0,y)=0=A=0 and

T(lD,y)zﬂzbsiHIOk:D::»k:n%

—

T(x,y) = BDsin (n%x) e "0

andT(x,0) =100 = BDsin (nf—ﬂx) -1 =100




Contd...

T(x,y)=)_ b,e~"10” sin (nf—ox)

n=1
For y = 0, we must have T = 100, then :

Z bp sin (n—x)

whrr:h is just the Fourier sine series- - -




The Diffusion or Heat Flow Equation:

e
Example (Flow of Heat through a slab of thickness £)

We have a slab place on the region:

R:{0<x<¥¢, —oo<y< oo} with border conditions:
u(x =0) =0 and u(x = ¢) = 100° for t = 0 (beginning, a
steady-state temperature distribution)

Solution

1 du
2 L ou 2 . |
V= TS (a” is a const. char. mate. and u the temp.)
ifu=F(x,y,z)T(t)
- ol
= TV2F = ——— (dividing by u= FT)
a< Ot
1 o, 1 8T 1o, 2 1 oTr 5
Y =y YT M e



Solution
The solution of the DFQ dependent of the time is trivial:

T(t) = e ko't

and in our particular problem, where we have a very long slab, the
diffusion will be only on the x-direction, then the DFQ dependent
on the space coordinates, also become trivial, because we
recognize as the SHO.

O%F (x)
Ox?2

+ k*F(x) =0
soln :
F(x) =Acos kx 4+ Bsin kx




O

B.C:ux=0)=0= A=0, and we allow u(x = ¥¢) =0 at a later
time(diffusion). Then if u(x =¢) =0=sink{ =0= kf = nm

=k = % (eigenvalues)

Then our base functions (eigenfunctions) are then

422, NTX
= “Tfgn——

l

and the general solution to our problem will be the series:

5
2 2. . NTX
= Z ble 0 1FsmT
n=1



S

The problem say at the beginning, a steady-state temperature

distribution is on the slab, which implies ug satisfy Laplace’s
2
equation, i.e VZug =0, ie. %ﬁ} = 0, and the solution for this

equation is ug = ax + b, then applying border condition we get

~ 100

Which can be solved using F.S., for f(x) = 1%x and the
half-period equal to ¢




S

The Euler coefficients:

a, =0 (we dont want solutions with cosine functions (B.C.))

nmx 1 0 £100 . nmx
f f(x)sm—dx— 7 (/Eﬂdx—l— ) TKSII‘ITdX)

100
= —f X sin ? dx = (Integration by parts:)
0

/2
100(sinwn — wncosmn) 100 (—1)"’—1
By = 39 =
mw=n T
=
10{] 1)n—1
Z ( ) _k2ﬂ2t5|n nmx

4




The Wave Equation:

Example (The Vibrating String)

Let a string be stretched tightly and its ends fastened to supports
at x =0 and x = £. When the string is vibrating, its vertical
displacement y from its equilibrium position along the x-axis
depends on x and t. We assume the displacement y is very small
and that the slope dy /0t is small at any point at any time.

9%y 1 8%y
o2~ vig =V
ify = X(x)T(t)

10°X 1 16%T

_ = :—2
> X0 vreeE_

(soln’s:)
X(x) = Acos kx + Bsinkx and T(t) = Ccos kvt + D sin kvt




O

B.C.: yix=0]=0=~A=10,
u(x =¢) =0=sinkl =0 = ké = nm = k = 7 (eigenvalues)

n n n
Then: y1(x,t) = Bsin MBS (C cos —yt + Dsin —ﬂ.vt) but at

4 l ¢
t = 0 every piece of string is not varying with time, the dy /0t = 0
Then D = 0 as well. ©

Then our base functions (eigenfunctions) are then

y1 = BCsin n?ﬂx Cos %th

and the general solution to our problem will be the series:

yixgt)= HZZI by, sin (%x) cos (% vt)




Then at t =0, y(x,t) = yo = f(x), then

y(x, t_D)_Zb sin({;3 )_f(x)




THANK YOU




UNIT-11

PARTIAL DIFFERENTIAL
EQUATIONS: FIRST ORDER



Formation of Partial Differential equations

Partial Differential Equation can be formed either
by elimination of arbitrary constants or by the
elimination of arbitrary functions from a relation
involving three or more variables .

SOLVED PROBLEMS

1.Eliminate two arbitrary constantsa and b from
2 2 .
(X—a) +(y—b) +2° = Riere R is known constant .




(OR) Find the differential equation of all spheres
of fixed radius having their centers in x y- plane.

solution
(x—a)f +(y—b) +z°=R%....(1)

Differentiating both sides with respect to x and y

2292 _ _o(x—a)
OX

2292 _ _5(y—b)
oy

o _ oz

OX Loy




By substituting all these values in (1)

pZZZ_I_qZZZ_I_ZZ :RZ
RZ

322:
P +qg° +1

or

RZ
__ . .
82) Oz
— —+ | — —+ 1
) (&)

2




2. Find the partial Differential Equation by eliminating
arbitrary functions from z = f (x* — y?)

SOLUTION

d.w.r.to.xandy

@: f'(XZ_yZ)XZX ...... (2)

OX

2 (X —y?)x—2Y......(3)

oy




(2)




3.Find Partial Differential Equation
by eliminating two arbitrary functions from

z = yf (X)+xg(y)

SOLUTZ|Oi yf (X) + xg (Y)...... (D

Differentiating both sides with respect to x and y

g_z — yF' () +g(Y).enn(2)
X

% = £ (%) + %G (Y)eeen(3)




Again d.w .r.to x and yin equation (2)and(3)

0°Z
OXOY

= /09 +g'(y)

X% (2)+ yx<(3)...... to...get




Xg(y)+yf (x)+xy(f'(x)+g'(y))
—z+xy(f'+qg’)
Oz 0z ( 622j

—> X — =7
OX y@y Xy\axay




Different Integrals of Partial Differential
Equation

1. Complete Integral (solution)

0z 0z
F(x,y,z,—,—)=F(X,v¥,2,p,q)=0......(1
Let(yaxay) (X,¥,2,p,0) L)
be the Partial Differential Equation.
The complete integral of equation (1) is given

by 4(x,y,2,a,b) =0.......... (2)




2. Particular solution

A solution obtained by giving particular values to
the arbitrary constants in a complete integral is
called particular solution .

3.Singular solution
The eliminant of a, b between

#(x,y,z,a,b)=0
9% _0 99 _
oa ab

when it exists , Is called singular solution




4. General solution

In equation (2) assume an arbitrary relation
of the form b=1(a). Then (2) becomes

(X, Y,z,a, f(a))=0......... (3)

Differentiating (2) with respect to a,

op Op ., .
@a_l_ b f (a)—O .......... (4)

The eliminant of (3) and (4) if exists,
IS called general solution




Standard types of first order equations
TYPE-I
The Partial Differential equation of the form

f(p,q)=0

has solution
Z=aXx+by+c with f(a,b)=0

TYPE-II
The Partial Differential Equation of the form

Z=px+9gy+ f(p,Qg)is called Clairaut’s form
of pde , it’s solution is given by ‘

Z=ax+by+ f(a,b)




TYPE-III
If the pde is givenby T (z, p,q)=0

then assume that

Z =g(X+ay)
u = X+ ay

z = @(u)




_82_828u_@1_c_z

p_&_(’}u OX  ou au
0L 0L0U 012 dz
q — = —— ad=a—
oy ouoy ol du
‘. The given pde can be written as
f(z, gz , ag) -AQd also this can
dx dy

be integrated to get solution




TYPE-IV

The pde of the form (X, p) =9(Y,q) can be
solved by assuming

t(x,p)=9(y,q)=a
f(x,p)=a= p=0¢(x,a)

g(y,q)=a=q="¥(y,a)

dz:@dx+gdy

OX oy
dz = ¢(x,a)dx+ ¥ (y,a)dy

Integrate the above equation to get solution




SOLVED PROBLEMS

1.Solve the pde p2 —(g=1 and find the complete
and singular solutions

Solution
Complete solution is given by

Z=ax+by+c
with a°—b=1
—b=a’-1




z=ax+(@a° —-1y+c

d.w.r.to. a and c then

2z _ X+ 2ay

oa

@ = 1 = O Which is not possible
OC

Hence there is no singular solution

2.Solve the pde P+ P+ q =0and find the
complete, general and singular solutions ‘




Solution
The complete solution Is given by

Z=aX+by+cC

ab+a+b=0

with
—b
a —
b+1
-b
7= X+by+c.......(1)




oz _ -1
ob  (b+1)
OZ

—— =1 = 0 no singular solution

OC

To get general solution assume that
c=g(b)
From eq (1)

.. —Db
.z—b X+ by + g(b)....... (2) ‘

X+Yy=0

1




oz -1
oc  (b+1)

Eliminate from (2) and (3) to get general
solution

X+Yy+g'(b)....... (3)

3.Solve the pde z= px+qy+\/1+ 0° +(°
and find the complete and singular solutions

Solution
The pde = px+Qy+y1+ p’+0°
IS In Clairaut’s form




complete solution of (1) Is

z=ax+by++1+a®+b%....... (2)

d.w.rto “a® and “b”

0z a A

— = XA =0

oa V1+a?+b?

. I S (3)
— =V =0

op Ji+aZ+b?




From (3)

7 a’ y b*
“1rai+0? ) T 1iai+ b

>, o, a’+Db?

1+a’+b?

X

1 2 2
— —1—(xX° +
1+ a’ +b? ( y°)




2

ax 4 =0
J1+a?+b?
b2
by - =0
J1+a?+b?
ax + by +v1+a? +b? 1 =0
J1+a?+b?
1
i 0= z° =1-(X" +Yy?)
J1+a?+b?

— X° + y2 + 2% =1lis required singular solution ‘




4.Solve the pde(1-x)p+(2—Yy)q=3-2

Solution
pde 1-x)p+(2—-Yy)g=3-z2

Z=px+qy+(3—p—2Q9)
Complete solution of above pde is
z =ax+by+(3—a—2b)

5.Solve the pde p2 + CI2 =/

Solution

Assumethat Z = @P(X + ay) ‘




u — X + ay

z = gp(Uu)
-0z o7l @1 az
COoX OuoX  au au

0L 0L0Uu o0z 0z
q:—: =—d=ada—

oy ouoy ou du

From given pde

p*+q° z:(gj +a (dzj =7°
du du




AN,
(E) 1+a?
it e
du 1+a° \/1-|-a2

Integrating on both sides

Zﬁz - - b
J1+ a?
Zﬁz X+ ay b

J1+ a2




6. Solve the pde zpg=p+g

Solution
Assume ({=ap
Substituting In given equation

zpap = p +ap

1+ a 1+ a
p: ’q:

az Z
dz:zdx | OZ dy

OX oy
:>dz=1+adx | 1+ady




zadz = (1+ a)(dx + ady)

Integrating on both sides

%zz = (A+a)(x+ay)+Db

7/.Solve pde pg = Xy

O O
(or) (G—i)(é) Y

Solution D q

Xy




Assume that

P_Y_g,

X 9

°. p:ax,qzl
a

dz = pdx + gdy = axdx +ldy
a

Integrating on both sides

z=aX :y - b

2 2a



2 | 2
8. Solve the equation P +{ =X+Y

Solution
p*-x=y-q" =4
p=va+x,q=y-a
dz = pdx +qdy = Ja+xdx+ \/Edy
integrating ) ; ;

z:g(a+x)2+(y—a)2+b




Equations reducible to the standard forms
MIf (x"p) and (Y"Q) occur in the pde as in
F(x"p,y"q)=0 Orin F(z,x"p,y"q)=0

Case (&) Put x"=X and y " =Y

fm=#1l ; nzl
= 0z _ 07 OX :ﬁ(l—m)x‘m
OX OX ox oOX
0z o010Y oz o
q=—=——=_(-n)y
oy oY ox oY




m..  OZ
X p_a—x(l—m):P(l—m)

, oZ
Yy (q :8_Y(1_n) =Q@—n)

where oz — P,z :Q

oX oY

Then F(x"p,y'q)=0 reduces to F(P,Q)=0

~ Similarly F(z,x"p,y"q) =0 reduces to F(z,P,Q)=0 ‘




case(b)
If m=1 or n=1
put logx=X,logy=Y

p_ax X

oz 1
— E— —
=2y y — V=0

(ii)lf (2p) and (2°q) occur in pde as in F(z*p,2°0)
orin f,(x.2p)=,(y,2'0) ¢




Case(a) Put =7 ifK=—-T

4 0L

0z 01 0L

X 0L OX
0L 01 0L

=77 (1+k) T == p=(1+k)'P

OX

4 0L

oy 7 oy

oL
OX

where

Given pde reduces to

F(P,Q) and

=77 (1+k) ' —=2q=(1+k)'Q

oy

oy

(X P)=1,(y,Q)



Case(b) if k=-1 l0gz=2

oo o010, 0L |
— = =7—=171 p=P
oX 0L oX  OX

02 01L0L 0L
— = =7—>=>17 (=0
oy 0Lody oy

Solved Problems
1.Solve P X*+g°y* =7z’

x> ) (ay? )
Solutlon (?j I( . j :1 ....... (1)




m=2,nN=2
k =—1

xl=X y'=Y logz=Z
-0z 0L 0L OX L 0L

D=— = — X — =—IX°P
OX 0L OX OX oX
q:@: 07 0/ oY =—Zy_28—z=—2y_2Q
oy 0L oY oy oY
oZ oZ

—_— P, — ——
where A% oY




2 2
LS A
/ /
(1)becomes
(P +(-QF =1
P?+Q° =1

c.Z =aX +bY +c
a?+b%2=1b=+1—a?

logz =ax?++1—a’y?+c




2. Solve the pde p2 +q2 = ZZ(X2 + yz)

SOLUTION

(Ej + (ﬂj = (X2 + yz) ----- (1)
7 /

k =—1logz=Z
0Z 0L 0L oL 4
OX 0L OX OX

01 01 8Z:ZG_Z:>Z_1OI:Q

oy oZoy oy




Eq(1l) becomes

2
log z = a—sinhl(xj X (a%+Xx%) +
2 a

2 o2 2
y\/(yz a’) az cosh1(Xj+b




Lagrange’s Linear Equation

Def: The linear partial differenfial equation
of first order is called as Lagrange’s linear Equation.

This eq is of the form Pp+QQg=R
Where P,Q and R are functions x,y and z

The general solution of the partial differential

equaton Pp+Qg=R is F(u,v)=0

Where F is arbitrary function of u(Xx,y,z)=c,
and V(X,Y,Z)=¢,




Here uU=C, and V=C, are independent solutions

dx _dy _dz

of the auxilary equations —
Q R

Solved problems

1.Find the general solution of X*p+ Yy°q = (X+Y)z

Solution dx dy dz
auxilary equations are — = —, =

x> Y2 (X+Y)z ‘




— = Integrating on both sides

U = (x‘1 - y‘l): C,
dx—-dy  az

x2—y?  (X+YV)z
di(x-y)  dz

(X=Y)(X+Yy) (x+y)z
d(x—1y) _ dz

—~ Integrating on both sides
(x=y)  z ¢




log(x—Yy)=1ogz+logc,
v=(X—-Yy)z" =c,

The general solution is given by F(u,v) =0
F(x™ =y, (x=y)z7) =0

2.Solve xz(y— Z)+ yz(z —X)q = ZZ(X— y)

solution Auxiliary equations are given by

dx  dy = dz
X(y=2) y(z-%) z°(x-Y)




dx dy dz
2

D A 1
(y=2) (z—x) (X-Y)
dx dy dz
X2 | yz ' Z2
(Y—2)+(Zz—X)+(X—Y)

dx dy dz
e | y2 | 2 =0

Integrating on both sides




X dx y dy Z'dz

X(y=2) y(@z-x) z(x-y)
X dX + y dy + z dz

X(Yy=2)+y(z=x)+2(X-Y)

dx dy dz

= 0 Integrating on both sides

' yv=zxyz=b ‘




The general solution is given by

F(X'+y +z",xyz)=0

HOMOGENEOUS LINEAR PDE WITH
CONSTANT COEFFICIENTS

Equations in which partial derivatives
occurring are all of same order (with degree
one ) and the coefficients are constants ,such
equations are called homogeneous linear PDE

with constant coefficient




8_”zJr 07 . 07 . 0"7
oX" alax“-lay > X" 20y

Assume that D :g, D’ :g.

OX oy
then N"order linear homogeneous equation Is
given by

(D"+a,D"*D'+a,D"*D"* +........+a D)z = F(X, y)

f(D,D)z=F(X,¥Y)......... (1)




The complete solution of equation (1) consists

of two parts ,the complementary function and
particular integral.

The complementary function is complete
solution of equation of f(D,D")z=0

Rules to find complementary function
Consider the eqguation
0°z 0°z 0°z
>+ K, K, —5 =
OX OXOY oy
or
(D* + k,DD’ + kZD’Z)z =1 (2)




The auxiliary equation for (A.E) is given by
D? +k,DD'+k,D"* =0
And by giving D=m, D' =1
The A.E becomes m’+km+k, =0....(3)

Case 1
If the equation(3) has two distinct roots M, M,

The complete solution of (2) is given by

z= T (y+mx)+ f,(y+m,X)




Case 2
If the equation(3) has two equal roots i.e M, =M,

The complete solution of (2) is given by
z = 1,(y+mX)+xt,(y+mx)
Rules to find the particular Integral

Consider the equation
(D? +k,DD’' +k,D"?)z = F(X, y)
f(D,DYz=F(x,Y)




F(X,y)

Particular Integral (P.I) =

f(D, D)
Case 1 If F(X,y) ="
then P.I= 1 pdx+by
f(D,D’)
1

e f(a,b)#0
f( b)
If f(a,b)=0 and (D_ED) IS

factor of f(D,D’) then




ax+by

Pl = Xe

if f(a,b)=0 and(D-2D)2is

factor of f(D,D’) b
2
X X+
then P.l Z?ea g
Case 2

F (X, y) =sIin(mx+ ny)or cos(mx -+ ny)

sin(mx+ ny) sin(mx+ ny)
Pl = =
f(D?,DD',D"*) f(-m*,—mn,—n?) ‘




Case 3 F(x,y)=x"y"
1

Pl = X
f(D,D")

myn _ [f (D, Dr)]—lxmyn

Expand [f (D, D’)]‘lin ascending powers of
Dor D’ and operatingon x™y" term by term.

Case 4 when F(X, V) IS any function of X
and y.

1
Pi‘ f(D.Dy XY

D_mD,F(x,y):J'F(x,c—mx)dx ‘




Here (D—mD’) isfactorof f(D,D’)

Where ‘c’ is replaced by (y +mXx) after integration

Solved problems
1.Find the solution of pde
(D°-D"” +3DD"* -3D*D")z =0

Solution
The Auxiliary equation is given by




Solution
The Auxiliary equation is given by

m’—1+3m—-3m° =0
Bytaking D=m,D’'=1
S.m=111.
Complete solution = f,(y+X)+xf,(y+X)+x*f,(y+X)

2. Solve the pde (D’+4D°D’'-5DD")z =0

Solution
The Auxiliary equation is given by




m° +4m* —-5m =0

-.m=0,1,-5

z=f,(y)+ f,(y+x)+ f,(y —5x%)
3. Solve the pde (D*+ D)z =0

Solution ,
the A.Eisgivenby M°+1=0
m = %I

2= 1 (y+ix)+ £, (y—Ix)




4. Find the solution of pde
(D* +3DD'-4D"*)z ="

Solution

Complete solution =
Complementary Function + Particular Integral

The A.E is given by m°+3m-4=0

m=-41
C.F=g(y+x)+¢,(y-4x) ‘




2X+4
e y

Pl =—; —
DZ+3DD' —4D? —36

2X+4y

Complete solution

=C.F+P.l

:¢1(y+x)+¢2(y—4x)

2X+4y

36

€




5.50lve (D®-3DD'+2D"%)z = +¢**

Solution
AE=m’-3m+2
S.m=11-2.

C.F =g (y+X)+Xg,(y+X)+¢,(y —2X)

2X-Yy 2X—Yy

€ €

PI — —
' D°-3DD*+2D® (D-D')*(D*+2D") ‘




e2x—y Xer—y
p.1, = .
' (D-D)*(D+2D") 9
ex+y eX+y
Pl =— 2 3 N2 (N2 ,
D°-3DD"+2D"” (D-D")°(D°+2D"
2
LRl =le®
§

z=C.F+P.l,+P.l,




xeXV ¥
2= (Y+X)+Xd,(y+X)+ (Y —2%) + +—e™

9 6
6.Solve (D* —DD')z = c0s Xcos 2y
Solution
(D° —DD')z :%[cos(x+ 2y) +cos(x—2y)]
AE=m°-m=0
m=0,1

CF=a(y+X)+¢(y)




- COS(X+2y) cos(x+2y)

o0y Ty

cos(X—2Y) _ cos(X—2Y) _ cos(X—2Y)
(D*-DD) ((-1)-(2)) -3

P, =

Z=¢(y+X)+¢,(y—X)+Ccos(X+2Y) —Ecos(x—Zy)

7.Solve (D°+DD' - GD'Z)Z—
Solution AE=m*+m—-6= O

m=2-3.




C.F= ¢1(y+2X) +¢2(y—3x)

X2y2

D

1_[2_6
D

DIZ
D2

DrZ
D2

" D2+ DD’ -6D"

1+[El—6

J




B Dr DIZ DIZ
D ~°|1 [D 55 |t 53 X°y*
2X°y 2X° 2X°
D—2 X2 2 6 I
4 [ D D? j D?
D 2| x2y? 2X3y 2x* ) 2%
3 12 ) 12
D_Z_x2 % 4 27y :82)(4_
i 3 12
_x4y2| 2x°y  2x°
12 60 90




7.Solve (D? —-5DD’ +6D'*)z = ysin X

Solution
AE is M =5m+6=0
m=3m=2.
C.F=¢(y+3X)+¢,(y+2X)

Pl ysin x _ ysin x
' D? -5DD’'+6D’? (D-3D")(D-2D’)

_ 1 y sin X
B (D—BD')[(D—ZD')}
B 1
-~ (D-3D")
B 1
-~ (D-3D)
B 1
- (D-3D")

I(a— 2X)sin xdx

[- acos x — 2(—x cos x +sin x) ]

[2x cos x — 2sin x — (y + 2x) cos x]




ysin X ysin X

P.1 = =
D?2-5DD’'+6D? (D-3D')(D-2D")
1 [ ysinx
(D-3D')| (D-2D)
1 here
— a—2X)sin xd
(D—3D’)j( X)Sin xax (a=y-+2x)
-5 13D’) [—acos x —2(—xcos x +sin x)]
1

[2x cos x —2sin x — (y + 2x) cos X ]

~ (D-3D") ‘




- 1
(D-3D")
o oS ¥)d here
_j(_( —3x) cos X — 2sin x)dx (b=y+3x)
=—psin X+ 2¢os X + 3(XxsIn X + CoS X)

- ycos x—2sin x]

= —(y +3X)SIn X+ 2C0S X+ 3(XSIn X +COS X)

=5C0S X — Yy SIn X




Non Homogeneous Linear PDES

If inthe equation f(D,D"z=F(X,Y)............ (1)

the polynomial expression f(D,D’) is not
homogeneous, then (1) is a non- homogeneous
linear partial differential equation

Ex (D*+3D+D'—4D"?)z =

Complete Solution
= Complementary Function + Particular Integral

To find C.F,, factorize f(D,D’)
—mto factorsof the form (D -mD’ —c)



If the non homogeneous equation is of the form

(D-mD'-¢)(D-m,D'-c,)z=F(X,Y)
C.F =e¢(y+mx)+e="¢g(y+m,x)

1.Solve (D* — DD’ + D)z = x°

Solution
f(D,D)=D*-DD'+D=D(D-D'+1)
C.F=e"¢g(y+X)+o,(Yy)




X 1. D+,
2_ / :_2 1 X
D’-DD'+D D?|° D
[ B / B B / 12
X 4 (D'+1) X 4 (D'+1) X%+,
D ] [ D _
_lex:”lx“___x4 X x&
" 3 12| |34 345 1256




2.Solve (D+D'-1)(D+2D"—-3)z=4

Solution

A

z=e"g(y—x)+e7h(y—2X) + 3




THANRK YOU
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SYLLABUS BBSB@"?

The syllabus contains the following articles:

e First Order Differential Equation

Leibnitz linear equation
Bernoulli’s equation

Exact differential equation
Equations not of first degree

o Equation solvable for p
e Equation solvable for x
o Equation solvable for y

e Clairaut’s equation
e Higher Order Differential Equation

e Second order linear differential equations with variable coefficients
o Method of variation of parameters
o Power series solutions

(BBSBEC, FGS) B.Tech. (First Year) 2/ 34



IO PG IS BITS LV IS VI OLTIERA sl Leibnitz linear equation

LEIBNITZ LINEAR EQUATION BBSQ,@C%

DEFINITION

d
An equation of the form e + Py = @, where P and @ are either constants or

functions of x only is called Leibnitz linear equation.
d
Alternately, the equation may be of the form d—x + Pz = (@), where P and @
Y

are either constants or functions of y only.

SOLUTION
This equation is solved by evaluating the Integration Factor that is given by

IF = e P4 and the solution is obtained by y(IF) = / Q(IF)dz + c for the

former case and for the latter z is replaced by y in the IF and the solution.

(BBSBEC, FGS) B.Tech. (First Year) 3/ 34



IO PG IS BITS LV IS VI OLTIERA sl Leibnitz linear equation

(QUESTIONS
dy |y 3
oyl o3
de =z o
dy
o zlogrx— +y=2logx
dx
° dy + ycotx = 5e°S7
dx
dy Yy

° der  2ylogy+vy—=x

V1 —y2de = (sin"'y — 2)dy

(BBSBEC, FGS) B.Tech. (First Year)

BBsnec—i:

4/ 34



| BTN O PG IS BIES LN IS EV I DT ERA sl Bernoulli equation

BERNOULLI’S EQUATION BBsaec%

DEFINITION

d
An equation of the form i 4 + Py = Qy", where P and @ are either constants
T

or functions of = only is called Bernoulli’s equation.
x
Alternately, the equation may also be written as T + Pz = Qx", where P

and @ are either constants or functions of y only.

SOLUTION

This equation is reduced to Leibnitz linear equation by substituting y'~" = z

and differentiating. This generates the Leibnitz equation in z and x that is
solved as explained earlier and then z is resubstituted in terms of y. The
corresponding changes are made in the latter case of definition.

(BBSBEC, FGS) B.Tech. (First Year) 5/ 34



| BTN O PG IS BIES LN IS EV I DT ERA sl Bernoulli equation

QUESTIONS BBSBOC

d 2 a
° :zz—ery:zdy()

dx
dy
1
v (@)=
d t
° d—z - % = (1+x)e"secy
o W ylosy _ ylogy)?
dx x a2

o (zy? — el/xs)dz‘ — 22ydy =0

(BBSBEC, FGS) B.Tech. (First Year) 6 / 34



| BTN O PG IS BITS TP IS EV DI ERA sl Exact differential equation

ExXAcT DIFFERENTIAL EQUATION BBSPQ.@C%

DEFINITION

An equation of the form M (z,y)dx + N(x,y)dy = 0 is said to be an Exact
differntial equation if it can be obtained directly by differentiating the equation
u(z,y) = ¢, which is its primitive.
ie. if

du = Mdx + Ndy

NECESSARY AND SUFFICIENT CONDITION

The necessary and sufficient condition for the equation Mdx + Ndy = 0 to be

exact is
oM  ON

Oy O

SOLUTION
The solution of Mdx + Ndy = 0 is given by

/ Mdz + /(terms of N not containing z)dy = ¢
y constant

(BBSBEC, FGS) B.Tech. (First Year) 7 / 34



| BTN O PG IS BITS TP IS EV DI ERA sl Exact differential equation

QUESTIONS BBSBOC

(2% — day — 2y*)dx + (y* — 4oy — 22*)dy = 0

(14 e*/¥)dx + (1 - i) e*Vdy = 0

o (2zycosz? — 2zy + 1)dx + (sinz? — 2?)dy = 0
xdy — ydzx
d de + —5—=—=0
ray + yar + 22 12

(erJ“’2 + 423)dx + (Qxyexyz —3y*)dy =0

(BBSBEC, FGS) B.Tech. (First Year) 8 / 34



First Order Differential Equations Equations reducible to exact equations

EQUATIONS REDUCIBLE TO EXACT EQUATIONSBBSB:.@C%

REDUCIBLE TO EXACT EQUATIONS

Equations which are not exact can sometimes be made exact after multiplying
by a suitable factor (function of x and/or y) called the Integration Factor (IF).

IF BY INSPECTION

e ydx + zdy = d(zy) ° xdyx;?ydx =d (%)
o W = d g (2)] . yd”“”zizxdy — dllog(xy)]
o TETUY | jionta? +7)] o THTHE —a(GiosTEY)

(BBSBEC, FGS) B.Tech. (First Year) 9 / 34



First Order Differential Equations Equations reducible to exact equations

EQUATIONS REDUCIBLE TO EXACT EQUATIONSBBSQ,@C%

IF FOR HOMOEGENEOUS EQUATION

If Mdx + Ndy = 0 is a Homoegeneous equation in = and y, then
an IF provided Mx + Ny # 0.

1 .
Mx + Ny '

IF FOR fi(zy)ydx + fo(zy)zdy =0
1

For equation of this type, IF is given by Ve —No
T —INY

(BBSBEC, FGS) B.Tech. (First Year)
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First Order Differential Equations Equations reducible to exact equations

EQUATIONS REDUCIBLE TO EXACT EQUATIONSBBSQ,@C%

IF FOrR Mdx + Ndy =0

oM _ ON

o If % is a function of x only, say f(z), then IF = el f@)de,
ON _ oM

o If % is a function of y only, say ¢(y), then IF = el 9wy,

IF FoR z%y’(mydx 4+ nxdy) + 2y (pydz + qrdy) =0

In this equation, a, b, ¢, d, m,n, p, q are all constants and IF is given by z"y*,
where h and k are so chosen that the equation becomes exact after
multiplication with IF.

(BBSBEC, FGS) B.Tech. (First Year) 11 / 34



First Order Differential Equations Equations reducible to exact equations

QUESTIONS BBSBOC

(14 zy)yde + (1 — zy)zdy =0
zdy — ydx = zy’ds
(zye™V +y?)dx — x e”“/ydy =0
(2%y* + zy + Vydz + (2®y? — 2y + Dady = 0
y> @’ 1 2
y+§+ dx+4(x+xy)dy=0
(222%y — 3y dx + (323 + 2xy3)dy = 0
(zy? + 22°%93)dx + (2%y — 2°9y*)dy = 0

(BBSBEC, FGS) B.Tech. (First Year) 12 / 34



First Order Differential Equations Equations not of first degree

EQUATIONS OF FIRST ORDER AND HIGHER DEB oL L=
DEFINITION
A differential equation of the first order and n'" degree is of the form
n n—1 n—2 dy
p"+ Pip + Pop +--+ P, =0, where p= — (1)

dzx

(BBSBEC, FGS) B.Tech. (First Year) 13 / 34



First Order Differential Equations Equations not of first degree

EQUATIONS SOLVABLE FOR p BBSBEC

Resolve equation (1) into n linear factors and solve each of the factors to
obtain solution of the given equation.

QUESTIONS
0 p?—Tp+12=0
o zyp® — (z* +y*)p+ 2y =0
1 x vy
op——=——=
p y
p? —2psinhz — 1 =0
4y?p* + 2pry(3z + 1)32° = 0

(BBSBEC, FGS) B.Tech. (First Year) 14 / 34



First Order Differential Equations Equations not of first degree

EQUATIONS SOLVABLE FOR y BBSBEC

Differentiate equation (1), wrt x, to obtain a differential equation of first order
in p and x that has solution of the form ¢(x,p,c) = 0. The elimination p from
this solution and equation (1) gives the desired solution.
QUESTIONS

o zp? —2yp+ax =0

o y — 2px = tan!(xp?)

4
d d
172 (y) + 2z7y —y=
dx

o x—yp=ap

(BBSBEC, FGS) B.Tech. (First Year) 15 / 34



First Order Differential Equations Equations not of first degree

EQUATIONS SOLVABLE FOR BBSB@C’?

Differentiate equation (1), wrt y, to obtain a differential equation of first order
in p and y that has solution of the form ¢(y, p,c¢) = 0. The elimination p from
this solution and equation (1) gives the desired solution.

QUESTIONS
o y = 3px + 6p2y?
o p? —dayp +8y* =0
o y=2pr+ply
° y*logy = zyp +p°

(BBSBEC, FGS) B.Tech. (First Year) 16 / 34



1T AN O PG (ST DI LN IS YV DTIETA Gl Clairaut’s equation

CLAIRAUT’S EQUATION BBSQ@C%

DEFINITION

An equation of the form y = px + f(p) is called Clairaut’s equation.

SOLUTION

Differente the equation wrt z, and obtain the solution by putting p = ¢ in the
given equation.

QUESTIONS
a
e y=ap+ —
p
e y=px+ /a?p? + b?

° p=sin(y — pz)
e p=log(pr —y)

(BBSBEC, FGS) B.Tech. (First Year) 17 / 34



Higher Order Differential Equation

LINEAR DIFFERENTIAL EQUATIONS BBSE@"?

DEFINITION

A linear differential equation is that in which the dependent variable and
its derivatives occur only in the first degree and are not multiplied together.
Thus, the general linear differential equation of the n'” order is of the form

dny dnfly dn72y dy
_J . e n—1—"— n = X 2
daz"+a1dx”_1+a2dx"—2+ + On 1dx+ay 2)
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Higher Order Differential Equation

LINEAR DIFFERENTIAL EQUATIONS BBSQ,@C%

COMPLEMENTARY FuncTioN (CF)

o If all the roots of equation (2) are real and distint, CF is given by
y=c1e™% + cpe™T + ... - cpe™n®

o If two roots are equal, say m; = mo, then CF is given by
y = (1@ + c2)e™T 4 c3e™3% + - -« 4 e

o If two roots are imaginary, say m; = a + 18, mg = o — 13, then CF is
given by y = e**(cy cos Sz + co sin fx) + c3e™3” + -+ 4 ¢, eMn?

o It two pairs of imaginary roots are equal, say
mi1 =me = a+ 1, mg =my = a — 13, then CF is given by
y = e*[(crx + c2) cos fx + (csx + c4) sin fx] + c5e™F 4 - -+ + ¢ e™n®
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Higher Order Differential Equation

LINEAR DIFFERENTIAL EQUATIONS BBSB:@‘??

PARTICULAR INTEGRAL (PI)

1 1
If X = e, then PI is given by y = ———€* = ——¢%*, provided f(a) # 0.
O] (
If X =sin(az + b) or cos(ax + b), then PI is given by
1

y = ———sin(ax + b) = —— sin(ax + b). Likewise for cos(ax + b).

Fo) WD = Fay e ) oty
If X = 2™, where m is a positive integer, then PI is given by y = —z™

(D)
Take out the lowest degree term from f(D) to make the first term unity and
then shift the remaining term to numerator and apply Binomial expansion
upto D™. Operate term by term on z™.
If X = eV, where V is a function of x, then PI is given by

1 (ZIV axr 1 V
Y= ——=¢ =e¥—V.

f(D) f(D+a)

If X is any other function of z, then PI is obtained by resolving the f(D) into

1 .
linear factors and applying TX = e / e” " Xdx
—a

(BBSBEC, FGS) B.Tech. (First Year) 20 / 34



Higher Order Differential Equation

QUESTIONS BBSBOC

+4D +5)y = —2coshz
D2 — 4D + 3)y = sin 3z cos 2z
D? + 4)y = e® + sin 2z
D%+ D)y =a2 42z +4
D? — 3D + 2)y = xe3* + sin 2z
D? — 4D + 4)y = 8x2%e** sin 2z
D2—1)y—xsmx+(1+x)

(D?
(
(
(
(
(
(
(

D —1)*(D + 1)%y = sin? 5-1—6 +z
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2 ST=3 TV @ P e ST BTSN I OCTIETI L DE with Variable Coefficients

CAUCHY’S HOMOGENEOUS EQUATION BBSBEC-

DEFINITION

An equation of the form

dn B dn—ly B dn—2y
xnﬁ +CL1£IJ" 1d1.n,1 +a2xn den72

d
ot ar s fay =X (3)

where a;s are constants and X is a function of x is called Cauchy’s
Homegeneous Linear Equation.

SOLUTION

The equation is reduced to an LDE with constant coefficients by putting
z = €” thereby generating an LDE in x and z that can be solved as explained
earlier and finally the solution of equation (3) is obtained by putting z = log .
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2 ST=3 TV @ P e ST BTSN I OCTIETI L DE with Variable Coefficients

(QUESTIONS
d*y y
2
E—— —_— 2 =
°ox 7a2 +9 e 5y = 50
d*y d*y y
407Y 307Y 20y =
* T as T g P gy T W
d?y 1dy 12logzx
) ——Z =
dz?  zdzx x2
d*y y sin(logz) + 1
27 p— —_ =
o 72 3 7 +y
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2 ST=3 TV @ P e ST BTSN I OCTIETI L DE with Variable Coefficients

LEGENDRE’S LINEAR EQUATION BBSBEOC

DEFINITION

An equation of the form

dny B dn—ly
n n—1
(a+ bx) Ton + a1(a + bx) T

d
+~-~+an,1(a+bx)£ +a,y=X (4)

where a;s, a and b are constants and X is a function of x is called Legendre’s
Linear Equation.

SOLUTION

The equation is reduced to an LDE with constant coefficients by putting

a + bxr = e® thereby generating an LDE in z and z that can be solved as
explained earlier and finally the solution of equation (4) is obtained by putting
z = log(a + bx).
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2 ST=3 TV @ P e ST BTSN I OCTIETI L DE with Variable Coefficients

(QUESTIONS
(1+ )2@+(1+ )@+ = 4 coslog(1l + x)
° T dr? x i Y= g
° (1+2')2@76(1+2 )d—y+16 = §(1 + 2z)?
x dn2 € it Yy =
d?y dy
27_ —_— —
o (3+2x) T2 2(3+2x)dx 12y = 6z
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)2 67=3 TV @ 3 le (ST DRSS NI I OCTIETS e}l  variation of parameters

VARIATION OF PARAMETERS BBSB@"?

This method is applicable for the second order differential equation of the
d?y dy
F =+ (11% + a2y = X

i
Let the CF of this equation be

form

Y = C1y1 + c2y2

. Then the PI of this equation is given by

Y = uy1 + vy
where
U= — %dac
w
and -
U1
= [ Z=——d
v / W T

where W is the Wronskian of y1, yo.
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QUESTIONS BBSBOC

d2

° d—g+4y:456022x
T

° —Zzg + vy = cosec x
T
d*y o

° +y=xsix

da?
oy’ — 2y +2y=e"tanz
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Higher Order Differential Equation [ESIEISTERSTe)IITATe})

SERIES SOLUTION BBSE@C%

We discuss the method of solving equations of the form

d? d
Po(a) =5 + Pu(e) 2> + Pala)y =0 (5)

where Py(z), P1(x) and Py(x) are polynomials in z, in terms of infinite
convergent series.

SOLUTION

Divide equation (5) by FPy(x) to get

d?y

L o)+ gy =0 (©
where p(z) = ]]j;g; and ¢(z) = ;2)22
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Higher Order Differential Equation [ESIEISTERSTe)IITATe})

SERIES SOLUTION BBsq_@cr_:

ORDINARY POINT

x = 0 is called an ordinary point of equation (5) if Py(0) # 0.
In this casem the solution of equation (5), can be expressed as

oo
y:a0+a1x+a2$2+~-~: g akxk
k=0

SINGULAR POINT

x = 0 is called a singular point of equation (5), if Py(0) = 0.
In this case, the solution of equation (5) can be expressed as

o0
y=a"(ap + a1z + axx® +---) = Zakxm"’k
k=0
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Higher Order Differential Equation [ESIEISTERSTe)IITATe})

SOLUTION WHEN x = 0 IS AN ORDINARY POIN'?BsaeC%

SOLUTION

o0
Let y = Z arx® be the solution of equation (5). Then, on differentiating
k=0

7:ikakx and— Zk — Dagz"2

1. Substltute the values of y, dI, di’ in equation (5).

2. Equate to zero the coefficients of various powers of x and find as, as, aq, . ..
in terms of ag and a;.

3. Equate to zero the coefficient of ™. The relation so obtained is called the
recurrence relation.

4. Give different values to n in the recurrence relation to determine various a;s
in terms of ag and a;.

5. Substitute the values in the above mentioned series to obtain the solution
with ag and a; as arbitrary constants.
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Higher Order Differential Equation [ESIEISTERSTe)IITATe})

QUESTIONS BBSBOC

&y
dx?
oy —xy + 2%y =0

o (2—aHy +22y —2y=0

° +zy=20
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Higher Order Differential Equation [ESIEISTERSTe)IITATe})

SOLUTION WHEN z = 0 IS A REGULAR SINGULAR
POINT I BBSBL/C

oo
Let y = Z arx™ ¥ be the solution of equation (5). Then, on differentiating

k=0
dy mtk—1 Py & mh—2
T I;O(m+k)ak:v and ¥ I;O(m+k)(m+k‘— Dagx .

1. Substitute the values of v, %, % in equation (5).

2. Equate to zero the coefficients of lowest powers of x. This gives a quadratic
equation in m, which in known as indicial equation.

3. Equate to zero the coefficients of other powers of x to find a1, as,as, a4, ...
in terms of aqg.

4. Substitute the values of ai,as, as, ... in above said solutionto get the series
solution of (5) having ag as the arbitrary constant. Though, it is not the
complete solution as the same should have two arbitrary constants.

5. The method of complete solution depends on the nature of roots of the
indicial equation.
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Higher Order Differential Equation [ESIEISTERSTe)IITATe})

SOLUTION WHEN z = 0 IS A REGULAR SINGULAR
POINT II BBSB@C?

CAseE I When the roots my,msy are distinct and not differing by an
integer. Then the complete solution is given by

Y = c1(Y)m, + c2(Y)m,

CASE II When the roots my, mo are equal. Then the complete solution is
given by

0
= Cl(y)vm + c2 (8£'Jl>m1

CASE IIT When the roots m; < M, are distinct and differ by an integer.
Then th ecomplete solution is given by

0
v=am e (5n)
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Higher Order Differential Equation [ESIEISTERSTe)IITATe})

QUESTIONS BBSBOC
° 212@ + (222 f:c)d—y +y=0
dx? dx
d’y | dy
2 ot 2 _ =
:cdszr:cder(x )y =0
d’y dy
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