
Operating System

Processes

• Process Concept

• Process Scheduling

• Operations on Processes

• Inter-process Communication

• Examples of IPC Systems

• Communication in Client-Server Systems

Objectives

• To introduce the notion of a process -- a
program in execution, which forms the basis
of all computation

• To describe the various features of processes,
including scheduling, creation and
termination, and communication

• To explore interprocess communication using
shared memory and message passing

Process Concept

• An operating system executes a variety of programs:
– Batch system – jobs
– Time-shared systems – user programs or tasks

• Textbook uses the terms job and process almost interchangeably
• Process – a program in execution; process execution must progress

in sequential fashion
• Multiple parts

– The program code, also called text section
– Current activity including program counter, processor registers
– Stack containing temporary data

• Function parameters, return addresses, local variables

– Data section containing global variables
– Heap containing memory dynamically allocated during run time

Process in Memory

Process State

• As a process executes, it changes state

– new: The process is being created

– running: Instructions are being executed

– waiting: The process is waiting for some event to
occur

– ready: The process is waiting to be assigned to a
processor

– terminated: The process has finished execution

Diagram of Process State

Process Control Block (PCB)

Information associated with each process
(also called task control block)
• Process state – running, waiting, etc
• Program counter – location of instruction to next execute
• CPU registers – contents of all process-centric registers
• CPU scheduling information- priorities, scheduling queue

pointers
• Memory-management information – memory allocated to the

process
• Accounting information – CPU used, clock time elapsed since

start, time limits
• I/O status information – I/O devices allocated to process, list

of open files

Process Control Block (PCB)

CPU Switch From Process to Process

Threads

• So far, process has a single thread of execution

• Consider having multiple program counters
per process

– Multiple locations can execute at once

• Multiple threads of control -> threads

• Must then have storage for thread details,
multiple program counters in PCB.

Process Scheduling

• Maximize CPU use, quickly switch processes onto
CPU for time sharing

• Process scheduler selects among available
processes for next execution on CPU

• Maintains scheduling queues of processes
– Job queue – set of all processes in the system
– Ready queue – set of all processes residing in main

memory, ready and waiting to execute
– Device queues – set of processes waiting for an I/O

device
– Processes migrate among the various queues

Ready Queue And Various I/O Device
Queues

Schedulers

• Short-term scheduler (or CPU scheduler) – selects which process should be executed next
and allocates CPU

– Sometimes the only scheduler in a system

– Short-term scheduler is invoked frequently (milliseconds) (must be fast)

• Long-term scheduler (or job scheduler) – selects which processes should be brought into the
ready queue

– Long-term scheduler is invoked infrequently (seconds, minutes) (may be slow)

– The long-term scheduler controls the degree of multiprogramming

• Processes can be described as either:

– I/O-bound process – spends more time doing I/O than computations, many short CPU
bursts

– CPU-bound process – spends more time doing computations; few very long CPU bursts

• Long-term scheduler strives for good process mix

Addition of Medium Term Scheduling

Medium-term scheduler can be added if degree of multiple programming
needs to decrease.

Remove process from memory, store on disk, bring back in from disk to
continue execution: swapping

Multitasking in Mobile Systems

• Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

• Due to screen real estate, user interface limits iOS provides for a
– Single foreground process- controlled via user interface
– Multiple background processes– in memory, running, but not on the

display, and with limits
– Limits include single, short task, receiving notification of events,

specific long-running tasks like audio playback

• Android runs foreground and background, with fewer limits
– Background process uses a service to perform tasks
– Service can keep running even if background process is suspended
– Service has no user interface, small memory use

Context Switch

• When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process via a context switch

• Context of a process represented in the PCB

• Context-switch time is overhead; the system does no
useful work while switching
– The more complex the OS and the PCB

– the longer the context switch

• Time dependent on hardware support
– Some hardware provides multiple sets of registers per CPU

multiple contexts loaded at once

Operations on Processes

• System must provide mechanisms for:

– process creation,

– process termination,

– and so on as detailed next

Process Creation

• Parent process create children processes, which, in
turn create other processes, forming a tree of
processes

• Generally, process identified and managed via a
process identifier (pid)

• Resource sharing options
– Parent and children share all resources
– Children share subset of parent’s resources
– Parent and child share no resources

• Execution options
– Parent and children execute concurrently
– Parent waits until children terminate

Process Termination

• Process executes last statement and then asks the
operating system to delete it using the exit() system
call.
– Returns status data from child to parent (via wait())
– Process’ resources are deallocated by operating system

• Parent may terminate the execution of children
processes using the abort() system call. Some
reasons for doing so:
– Child has exceeded allocated resources
– Task assigned to child is no longer required
– The parent is exiting and the operating systems does not

allow a child to continue if its parent terminates

Process Termination

• Some operating systems do not allow child to exists if its parent has
terminated. If a process terminates, then all its children must also
be terminated.
– cascading termination. All children, grandchildren, etc. are

terminated.
– The termination is initiated by the operating system.

• The parent process may wait for termination of a child process by
using the wait()system call. The call returns status information
and the pid of the terminated process

pid = wait(&status);

• If no parent waiting (did not invoke wait()) process is a zombie
• If parent terminated without invoking wait , process is an orphan

Inter-process Communication

• Processes within a system may be independent or cooperating
• Cooperating process can affect or be affected by other processes,

including sharing data
• Reasons for cooperating processes:

– Information sharing
– Computation speedup
– Modularity
– Convenience

• Cooperating processes need inter-process communication (IPC)
• Two models of IPC

– Shared memory
– Message passing

Communications Models

(a) Message passing. (b) shared memory.

Refrences

• Operating System Concepts, 9th Edition,
Galvin, Silberschatz, Gagne

