Operating System

Processes

Process Concept

Process Scheduling

Operations on Processes

Inter-process Communication

Examples of IPC Systems
Communication in Client-Server Systems

Objectives

* To introduce the notion of a process -- a
program in execution, which forms the basis
of all computation

* To describe the various features of processes,
including scheduling, creation and
termination, and communication

* To explore interprocess communication using
shared memory and message passing

Process Concept

An operating system executes a variety of programs:
— Batch system — jobs
— Time-shared systems — user programs or tasks
Textbook uses the terms job and process almost interchangeably

Process — a program in execution; process execution must progress
in sequential fashion

Multiple parts
— The program code, also called text section

— Current activity including program counter, processor registers

— Stack containing temporary data
* Function parameters, return addresses, local variables

— Data section containing global variables
— Heap containing memory dynamically allocated during run time

Process in Memory

max
stack
heap
data
text
0

Process State

* As a process executes, it changes state
— new: The process is being created
— running: Instructions are being executed

— waiting: The process is waiting for some event to
occur

— ready: The process is waiting to be assigned to a
processor

— terminated: The process has finished execution

Diagram of Process State

admitted interrupt

scheduler dispatch

I/O or event completion I/O or event wait

Process Control Block (PCB)

Information associated with each process
(also called task control block)

Process state — running, waiting, etc
Program counter — location of instruction to next execute
CPU registers — contents of all process-centric registers

CPU scheduling information- priorities, scheduling queue
pointers

Memory-management information — memory allocated to the
process

Accounting information — CPU used, clock time elapsed since
start, time limits

/O status information — I/O devices allocated to process, list
of open files

Process Control Block (PCB)

process state
process number

program counter

registers

memory limits

list of open files

CPU Switch From Process to Process

process P, operating system process P,

interrupt or system call

executing J_L /
k4 ™

save state into PCB,

> idle

reload state from PCB, 1
>idle interrupt or system call executing

save state into PCB;

idle

reload state from PCB,,

executing l[¥

Threads

* So far, process has a single thread of execution
* Consider having multiple program counters
per process

— Multiple locations can execute at once
* Multiple threads of control -> threads

 Must then have storage for thread details,
multiple program counters in PCB.

Process Scheduling

 Maximize CPU use, quickly switch processes onto
CPU for time sharing

* Process scheduler selects among available
processes for next execution on CPU

* Maintains scheduling queues of processes
— Job queue — set of all processes in the system

— Ready queue — set of all processes residing in main
memory, ready and waiting to execute

— Device queues — set of processes waiting for an 1/0O
device

— Processes migrate among the various queues

ready
queue

mag
tape
unit 0

mag
tape
unit 1

disk
unit 0

terminal
unit 0

Queues

Ready Queue And Various I/O Device

queue header PCB, PCB,

head = > B

tail registers registers
head -ﬂ-__/

tail ——=
head T—=

il - PCB, PCB,, PCBg
head '/

tail C

PCB;

head » =

@l

Schedulers

Short-term scheduler (or CPU scheduler) — selects which process should be executed next
and allocates CPU

— Sometimes the only scheduler in a system
— Short-term scheduler is invoked frequently (milliseconds) = (must be fast)

Long-term scheduler (or job scheduler) — selects which processes should be brought into the
ready queue

— Long-term scheduler is invoked infrequently (seconds, minutes) = (may be slow)
— The long-term scheduler controls the degree of multiprogramming
Processes can be described as either:

— 1/0-bound process — spends more time doing I/O than computations, many short CPU
bursts

— CPU-bound process — spends more time doing computations; few very long CPU bursts
Long-term scheduler strives for good process mix

Addition of Medium Term Scheduling

Medium-term scheduler can be added if degree of multiple programming

needs to decrease.

Remove process from memory, store on disk, bring back in from disk to

continue execution: swapping

swap in partially executed

swapped-out processes

swap out

Yy

ready queue

@L » end

I/0O waiting
queues

Multitasking in Mobile Systems

Some mobile systems (e.g., early version of iOS) allow only one
process to run, others suspended

Due to screen real estate, user interface limits iOS provides for a
— Single foreground process- controlled via user interface

— Multiple background processes— in memory, running, but not on the
display, and with limits

— Limits include single, short task, receiving notification of events,
specific long-running tasks like audio playback

* Android runs foreground and background, with fewer limits
— Background process uses a service to perform tasks

— Service can keep running even if background process is suspended
— Service has no user interface, small memory use

Context Switch

When CPU switches to another process, the system
must save the state of the old process and load the
saved state for the new process via a context switch

Context of a process represented in the PCB

Context-switch time is overhead; the system does no
useful work while switching

— The more complex the OS and the PCB
— the longer the context switch
Time dependent on hardware support

— Some hardware provides multiple sets of registers per CPU
multiple contexts loaded at once

Operations on Processes

e System must provide mechanisms for:
— process creation,
— process termination,
— and so on as detailed next

Process Creation

Parent process create children processes, which, in
turn create other processes, forming a tree of
processes

Generally, process identified and managed via a
process identifier (pid)

Resource sharing options

— Parent and children share all resources

— Children share subset of parent’ s resources

— Parent and child share no resources

Execution options
— Parent and children execute concurrently
— Parent waits until children terminate

Process Termination

* Process executes last statement and then asks the
operating system to delete it using the exit () system
call.

— Returns status data from child to parent (viawait ())
— Process’ resources are deallocated by operating system
* Parent may terminate the execution of children

processes using the abort () system call. Some
reasons for doing so:

— Child has exceeded allocated resources
— Task assigned to child is no longer required

— The parent is exiting and the operating systems does not
allow a child to continue if its parent terminates

Process Termination

Some operating systems do not allow child to exists if its parent has
terminated. If a process terminates, then all its children must also
be terminated.

— cascading termination. All children, grandchildren, etc. are
terminated.

— The termination is initiated by the operating system.

The parent process may wait for termination of a child process by
using the wait () system call. The call returns status information
and the pid of the terminated process

pid = wait(&status);
If no parent waiting (did not invoke wait ()) process is a zombie
If parent terminated without invoking wait, process is an orphan

Inter-process Communication

Processes within a system may be independent or cooperating

Cooperating process can affect or be affected by other processes,
including sharing data
Reasons for cooperating processes:
— Information sharing
— Computation speedup
— Modularity
— Convenience
Cooperating processes need inter-process communication (IPC)

Two models of IPC
— Shared memory
— Message passing

Communications Models

(a) Message passing.

process A

(b)

shared memory.

Y

process B

message queue

Mgo

m4(MsoMg| ...

Mp

process A

= shared memory .

process B

kernel

(@)

A

kernel

(b)

Refrences

e Operating System Concepts, 9" Edition,
Galvin, Silberschatz, Gagne

