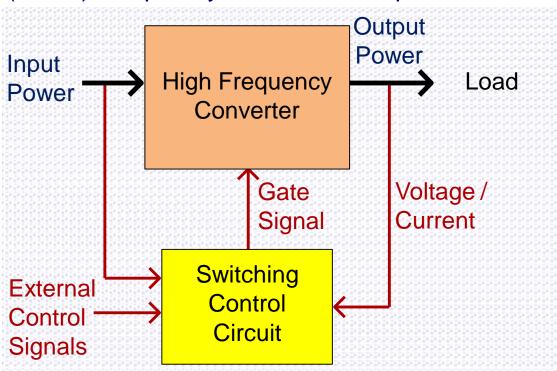
Introduction to Power Electronics

What is Power Electronics?

Power + Electronics

- Power conversion by processing electric power to expected voltage, current and / or frequency with semiconductor devices
- High frequency >20kHz
- Rapidly developed since 80s
- Applications
 - Industrial, commercial and residential purposes
 - Electrical vehicles, aerospace and space technologies



- Switched Mode Power Supplies (SMPS)
 - □ Steady and regulated output voltage / current
- Applications of SMPS
 - □ Low voltage high current DC power supplies
 - □ Battery chargers
 - □ Welding machines with over 100A
 - □ Aerospace power systems
 - Several KV power supplies for radar systems, cathode ray

Switched Mode Power Supplies (SMPS)

- Closed loop control for regulating output
- Pulse-width-modulation (PWM), frequency modulation or phase modulation control
- Control ICs (Unitrode, Maxim)
- Microprocessors
- Range of operation concerned

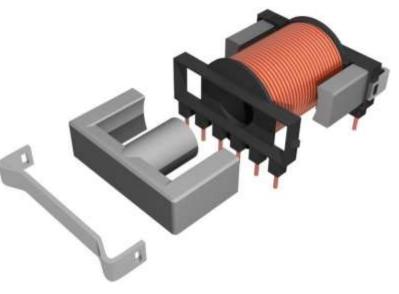
Inverters

- □ AC current or mainly voltage output
- DC/AC converters or inverters
- DC input

- Applications of Inverters
 - □ AC power supplies
 - □ AC drives
 - Induction heating
 - Electronic ballasts

- Waveform Shaping & EMI Control Systems
 - Shaping input / output and voltage / current
- Applications of Waveform Shaping
 - Switched-mode amplifiers
 - Harmonic waveform generation system
- Applications of EMI Control
 - Power factor correction rectifiers
 - Active filters

- Uninterruptible Power Supplies
 - With DC/DC converter of charging and discharging battery
 - □ With Inverter for AC output

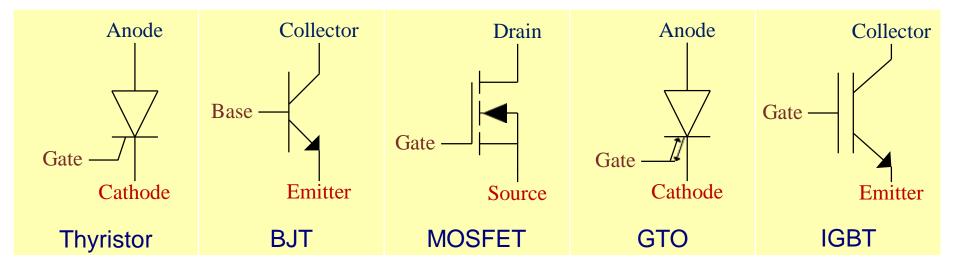


Motor Drives

- □ Choppers for brush-type DC motors
- Variable speed drives (VSD) for induction motors
- □ Converters for brushless DC motors
- Converters for switched reluctance motors

Power Components

- Energy Storage Components
 Inductors, capacitors, transformers
- Active Switching Devices
 - □ MOSFET, IGBT
 - □ Thyristors (SCR),
 - □ Gate turn-off thyristors (GTO)
 - □ Bipolar Junction Transistors (BJT)
- Passive Switching Devices
 - (Power Diodes)
 - □ General purpose diodes
 - Ultra-fast recovery diodes
 - Schottky barrier diodes



Why high frequency?

- Small size and light weight
- Inductors

$$P_{L} = E_{L}f_{s} = \frac{1}{2}LI_{L}^{2}f_{s}$$

Capacitors
$$P_{C} = E_{C}f_{s} = \frac{1}{2}CV_{C}^{2}f_{s}$$

ENERGY
IN
ENERGY
IN
Energy
Storage
Device

Symbol of Active Switching Devices

- Thyristor / Silicon Controlled Rectifier(SCR)
 - □ Developed in 1960s
 - □ Switched on by a short injecting gate current pulse
 - Firing or Triggering
 - Switched off when reverse biased
 - □ Ratings up to 5kV and 4000A
 - Very high power applications
 - Around 2V on-state voltage
 - Slow response

• $f_{\rm S} < 1 \rm kHz$

Force commutation necessary

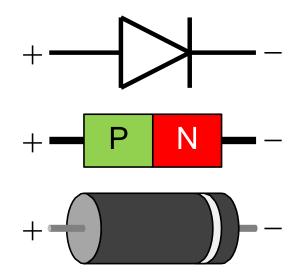
- Bipolar Junction Transistor (BJT)
 - Controlled by base current
 - □ On and off only
 - Linear region avoid
 - □ Ratings up to 1kV and 4000A
 - □ Very high power applications
 - □ On-state voltage >1V
 - $\Box f_{S} < 5 \text{kHz}$
 - Faster than thyristors
 - Slower than MOSFET and IGBT
 - □ Rarely used

	C
	Ν
B—	Ρ
	Ν
	E

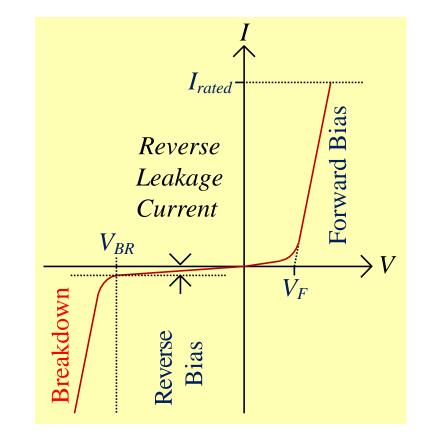
MOSFET

- Metal Oxide Silicon Field Effect Transistor
- Developed in early 1980s
- \Box Controlled by gate-to-source voltage (V_{gs})
 - Gate Signal, 10V to 18V, typically 15V
- □ Ratings up to 1000V and 2000A
 - High current low voltage applications
 - SMPS, battery chargers
- Very fast response
 - $f_S < 1$ MHz, higher for soft-switching
- Bidirectional and resistive conduction characteristics

- Gate Turn-off Thyristor (GTO)
 - Developed in mid 1980s
 - Similar to thyristor
 - Switched on by a injecting short gate current pulse
 - Switched off by reverse biased
 - Switched off by a high and short reverse current pulse
 - Ratings up to 4.5kV and 3000A
 - High power applications
 - On-state voltage 2V to 3V
 - Response faster than thyristors
 - $f_S < 2 \text{kHz}$

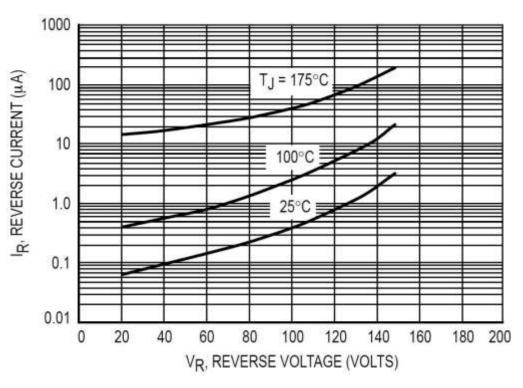

IGBT

- Insulated Gate Bipolar Transistor
- Developed in late 1980s
- Combination of MOSFET and BJT
- \Box Controlled by gate-to-emitter voltage (V_{ge})
 - Same as MOSFET
- □ Ratings up to 3500V and 2000A
 - Medium to high power applications up to 200kW
 - Popular in Motor drives
- □ On-state voltage 1.7V to 3V
- Fast response
 - Typically $f_S < 40$ kHz, faster for some models


Comparing to Signal Diodes
 More complicated structure
 Much higher V and I ratings

 Used in power processing
 Lower frequency response
 Higher on-state voltage (forward voltage, V_F)

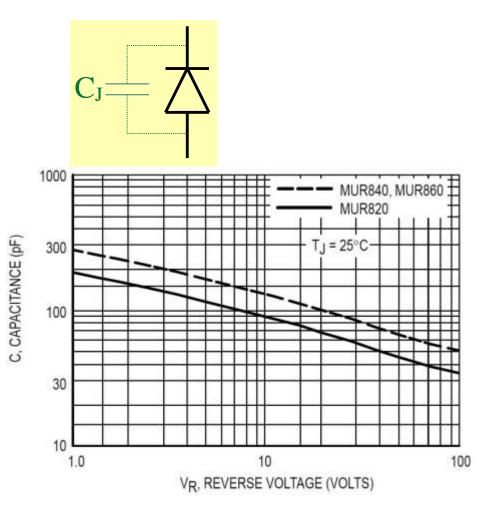
Forward Bias


- Low forward voltage
 drop (forward voltage,
 V_F)
 - Temp related
 - 0.2V to 3V
 - Decreasing with temp increase
- \Box Typical V_F provided in datasheet

Reverse Bias

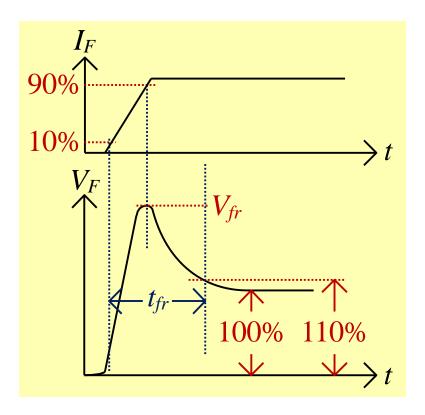
Reverse leakage current

- μA to mA
- Increasing with increase of junction temp, T_j
- Increasing with increase of reverse voltage, V_R

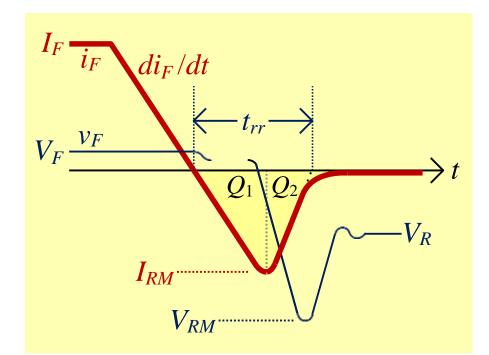


Junction Capacitance

- Diode as a capacitor in reverse bias
 - Junction capacitance between anode and cathode


Parasitic oscillations caused

- Solved by resonant converter techniques
- Acting as resonant component
- Decreasing with the increase of reverse voltage

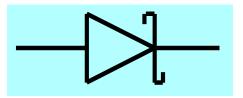

Forward Recovery of Power Diodes

- During the change from reverse bias to forward bias
- Forward voltage, V_F, increasing and back to normal
- Affecting high current and high voltage systems
- Not affecting low power systems

Reverse Recovery of Power Diodes

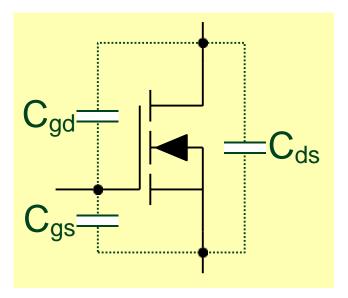
- During the change from forward bias to reverse bias
- Conducting for a period
 - Minority carriers remaining in p-n junction
- Ignoring in <400Hz sine wave</p>
- Effect significant in high frequency and square wave
- Increasing with increases of I_F and di_F/dt

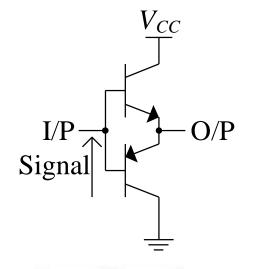
Increasing Switching losses and peak reverse voltage of diode

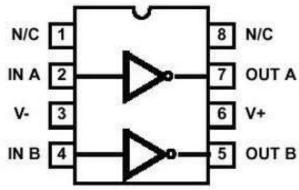

Types of Power Diodes

- General Purpose Diode
 Highest reverse recovery
 For low frequency applications
 Ultra-fast Recovery Diode
 - Very short reverse recovery period
 - Soft-recovery diodes with lower peak recovery voltage
 - High frequency and high voltage applications

Types of Power Diodes


- Schottky Barrier Diodes
 - □ No reverse recovery
 - □ Higher junction capacitance
 - □ Lower voltage rating
 - □ More expensive
 - For high frequency, high performance and low voltage applications

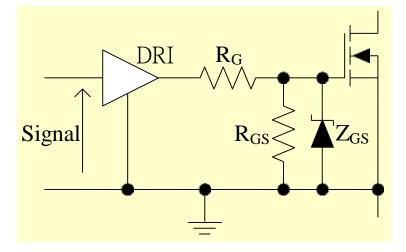

Junction Capacitance of MOSFET / IGBT


- All devices have junction capacitance between junctions
- MOSFET / IGBT Junction Capacitors
 - □ Input capacitance $C_{iss} = C_{gs} + C_{gd}$
 - Gate to source
 - Charging / discharging when devices switched on / off
 - \Box Output capacitance $C_{oss} = C_{ds} + C_{gd}$
 - Drain to source
 - Switching loss and resonance when off
 - \Box Reverse Transfer Capacitance $C_{rss} = C_{gd}$
 - Gate to drain
 - Miller effect

Gate Drivers for MOSFET / IGBT

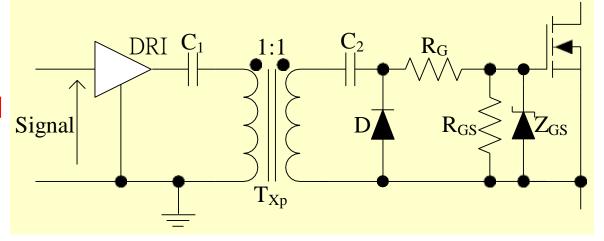
- The shorter t_{on} and t_{off}, the lower conduction loss
- MOSFET / IGBT gate drivers
 - □ Totem-pole
 - High O/P current for charging up C_{iss} quickly
 - □ ICL7667, MC34151, MC34152
 - Logic-to-logic
 - High X_{in} and low X_o
 - Output >0.4A
 - Up to 500kHz

Non-floating Gate Drive Circuit

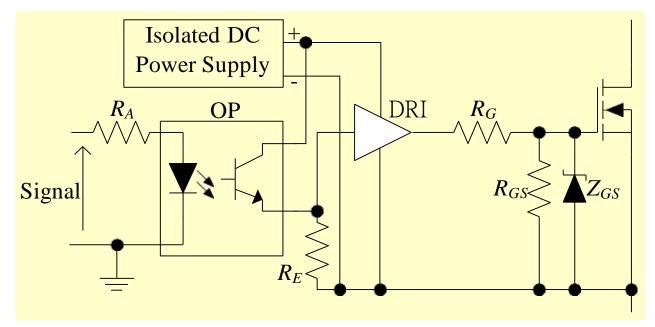

- Gate / emitter connected to ground
- R_G
 - Limiting charging current of junction capacitor
 - \Box Damping swing of v_{gs}
 - \square 8 to 33 Ω suggested

R_{GS}

Speeding up discharging of junction capacitor
 1kΩ to 10kΩ

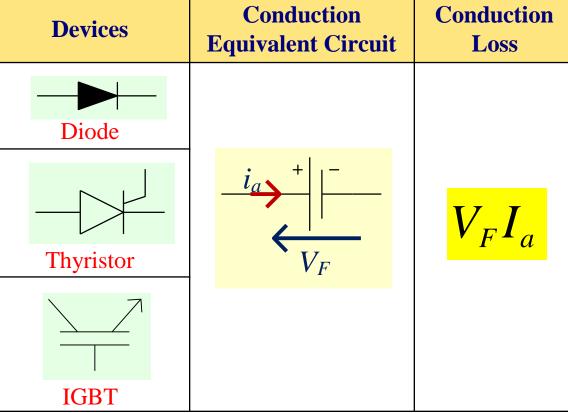

Z_{GS}

- \Box Suppressing v_{gs} transient voltage
- Voltage rating = peak output voltage of DRI


Floating Gate Drive Circuits

- Gate / emitter connected to ground
- Small pulse 1:1 transformer
 - Electrical isolation

- C₁ filtering DC component of O/P of DRI
 - $\Box V_{dri}/2$ to $-V_{dri}/2$
- C_2 recovering the voltage from DC to AC square wave $\Box V_{dri}$ to 0

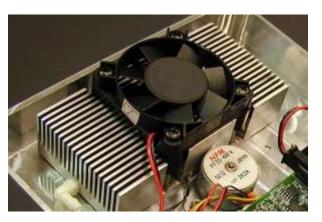

Floating Gate Drive Circuits

- Optocoupler
 - Electrical Isolation
- Very low power isolated DC power supply
 Powering OP and DRI

Conduction Characteristic and Conduction Losses

Forward Voltage
Diodes
IGBTs
BJTs
Thyristors

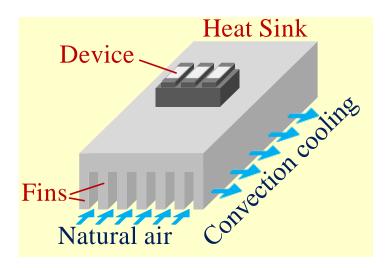
Conduction Characteristic and Conduction Losses


- Resistive
 - Inductors
 - □ Capacitors

Devices	Conduction Equivalent Circuit	Conduction Loss
MOSFET	i_a R_{ds}	$I_{a(rms)}^2 R_{ds}$
Inductor	i_a R_{ESR} \cdots	$I^2 R$
Capacitor		a(rms) ESR

Cooling Devices

- Most power losses of devices converted into heat
 - □ Heat dissipation for long lifetime of devices
 - □ Too small surface area to flow heat to surrounding medium



Cooling Devices

- Air convection cooling
 Low to medium power
 - Heat sink
 - Finned aluminium
 - Increasing surface area
 - Decreasing thermal resistance
 - 🗆 Fan
 - Increasing air flow
 - □ The change of temp of device

$$\Delta T = T_j - T_a = P_{loss} \left(R_{j-c} + R_{c-h} + R_{h-a} \right)$$

Reference

https://www.google.com/search?q=pp t+of+power+electronics&rlz=1C1KMZ B_enIN806IN806&oq=ppt+&aqs=chro me.0.69i59I2j69i57j0I5.3825j0j8&sour ceid=chrome&ie=UTF-8