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Presentation On

Solving Statically Determinate
Structures



Static Equilibrium

Asystem of particles Is in static equilibrium
when all the particles of the system are at
rest and the total force on each particle Is
permanently zero.



Statically Determinate

Amember or structure that can be analyzed and the reactions
and forces determined from the equations of equilibrium.

Statically Indeterminate

Amember or structure that cannot be analyzed by the
equations of statics. It contains unknowns in excess of the
number of equilibrium equations available.



Determinacy

r = 3n, statically determinate

r > 3n, statically indeterminate
where,
n = the total parts of structure members

I = the total number of unknown reactive forces and
moment components
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r=3.n=1.3=3(1) Statically determinate

B AN I T ?

r=5.n=1,5-3(1)=2 Statically indeterminate to the second degree
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r=6.n=2.6=3(2) Statically determinate

] Gy hmmps )

i

hinge

W//WA

2/




e @{9eS Mg migess or

reactions of an indeterminate
structures are called
redundants.

Redundant forces are chosen so
that the structure is stable and
statically determinate when they
are removed.



How do we make an
Indeterminate
structure statically
determinate?



~ Ifthere Is two degrees of indeterminacy,
we have to remove two reactive forces,
remove three for three degrees and so
forth.

~ Byremoving excess supports.

~ Byintroducing hinges.



What are the advantages

of statically indeterminate
structures over

determinate structures?



There are several advantages in designing
Indeterminate structures. These include
the design of lighter and more rigid
structures. With added redundancy In
the structural system, there is an increase
In the overall factor of safety:.
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Suggested Readings

Structural
and Stress
Analysis

Reference 1
Chapter 16

/
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obtain slope and deflection of beam and frame
tructures using slope-deflection method




Introduction

Structural analysis method for beams and frames
Introduced in 1914 by George A. Maney

This method was later replaced by moment
distribution method which is more advanced and
useful (students are encouraged) to study this
separately



Slope-Deflection Method

* Sign convention:

* Moments, slopes,
displacements,
shear are all in
positive direction as
shown

* Axial forces are
ignored
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Slope-Deflection Method
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Slope-Deflection Method

* Last 4 equations obtained in previous slide are
called slope-deflection equations

* They establish force-displacement relationship

* This method can find exact solution to indeterminate
structures
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Slope-Deflection Method

* The beam we considered
so far did not have any
external loading from Ato B

* In the presence of mid-span loading (common engineering
problems) the equations become:
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Fixed End Moment/Shear

* MugF, MgF are fixed end moments at nodes A and B,
respectively.

* Moments at two ends of beam when beam is clamped at
both ends under external loading (see next slides)

* Sagh, SgaF are fixed end shears at nodes A and B,
respectively.

* Shears at two ends of beam when beam is clamped at both
ends under external loading (see next slides)



Fixed End Moment/Shear
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Fixed End Moment/Shear
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Example

* Find support reactions.

B KN 10kN 12 kN/m

Ay EIEEREERL

77%77 A
|<£n-1+_l?_5m +D-5m +n_5 m + 1.0m _{




Solution

* This beam has 2 degrees
of Indeterminacy

1- Assume all beams
are fixed & calculate
FEM

2- Establish Slope-
Deflection equations

BkN

|

B

10kN 12 kN/m

I EEREE R

o

77%7

e

-

| 0.5m | | 0.5m 0.5m i 1.0m

3- Enforce boundary
conditions &
equilibrium conditions

at joints

4- Solve simultaneous
equations to get
slopes/deflections

25
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— =—0.75kNm

=-1.25kNm
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ution

2E1
Mag = —W(ZQA +6g) — 0.75

2E1
Mpa = —2-(205 +62) + 075

2E1
Myc = ———5-(205 +6¢) — 1.25

2E1
2Kl

2E1
Mpc = —1—0(290 +6c)+ 1.0

—

6KN 10KkN 12 kN/m

Ay B |y ofjiiigo

xR
|‘[].5 rE+EI.5 m+ 0.5 m+[].5 m+ 1.0m '_I

M, =—2—Elr[29i+ 0+ (% Vi—V,-)]HM 7

vi=0 and v;=0 for all
cases




Solution

* Equilibrium moments at the joints




Solution

* Substitution into slope deflection equations gives 4
equations and 4 unknown slopes.

1[‘—1("\ t EEIHB 075 =10

2EI8s + 8El6g + 2EI6 + 0.5 =10

218 + SEI8 + 2EI8p —().25 = 1

4ET0n + ZEI()(: —- 1.0=10

* By simultaneously solving the equations

E]H.,\ — ~().183 I':]H“ —r R [;.]H( — ()33 EIHD - {l_)_:h?




Solution

* Simply operation of substitution:

Mag = —?iEJ(ZHA +65)—075 | |Effa =152 Map =10
2F =
Mga = —%(293 +6,)4+0.75 Mpa = 115
SET Elfy = —0,00% .
Mg =—W(29]3+Hc)— 1.25 .i||-'l‘-|:|.|:'I = —1.15
2E1
Mcp = —I—O(ZQC +6g)+ 1.25 Mg =14
' Ll = =033
2E1 4 ,
AMCD = —W(-HC + HD) — 1.0 IH‘_,F:I I I-"'1'
oF
— S :
Mpe:=-=tdin-tde) +14 Elfy = +1.267 Mnc =10




Solution

* Now support reactions can easily be calculated as

6 . 2 10 < AT T 1T T 11 1
- ’ / ¥ oY or o1

[ 1 ) | |
' A ¥ " 4 A ¥ N
| 115 1.15 1.4 1.4 ;
Ran R Ra Reg Ren Ay,
3 6x0.5-1.15 _185/R = 10x0.5+1.15-1.4 _475lR = 12x0.5+1.4 _ 79

AB 10 BC 10 CD 10
R,,=6-1.85=4.15 Re,=10-4.75=5.25 R,.=12-7.4=4.6




Solution

1.85

1.85

4.15

4.75

8.9

5.25

"-..

12.65

7.4

4.6

ks

4.60
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Solution

1.15kNm

—ve

1.40kNm

—Vve

+ve

0.93kNm

+ve

1.23kNm

+Vve

0.88 kKNm

0.76 m ’[
-




Example 2

Obtain moment reaction at the clamped
support B for 6m long beam if support A
seftles down by 5mm. EI=17x1012 Nmm?

???;;iAKN‘mt?L;ttil

A



Solution

siié%‘MkNlmstilrrtl

4000 x L2
12

2EI
L

M ,g=0=— 9A+0+L§(§.005—0|J9T —

( 4000 |5, o.oo15j
g=\ 24El L), = -9.33x10°tad




Solution

bbbt b AKNIme b b
5”‘”‘%— ~9.33 x10 “*rad I

Mgy = ZE'[ 033 10°+° %—0.005 0 |- ﬂj 40001><2'—2_)

MBA = 18705.3N.m




Case study




Case study

b=7.792 mm

M,

20+ 0+ é vi—vj)]ﬂl\/l i

t=3.552 mm

38
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Case study

Wire in composite beam




' Case study




01

* Determine the support reactions in the beam
shown below.

0.75kN'M

| R !

Ll
YL

Ans. Ra=35kN Rg=90kN Rc=35kN My =7kNm (hogging)
M¢c = —19kNm (hogging).

41




Q2

* Calculate the support reactions in the be
shown below.

12kN 10kN

A - |

st G, wn)

Ans. Ra=33kN Rp=14T7kN Rc=40kKN Mp=22

I IS SIS,

am

kN m (hogging).

42




Q3

* Determine the end moments in the members of
the portal frame shown. The second moment of
areaof the vertical members is 2.51 while that of
the horizontal members is .

3 kN/'m
| I | |
I SRR R E R E )
A ' ‘ C
x ' '
¥' 10kN |
- 2.5/
5m
|
Y oler 87
?“f.‘m eﬂ'q
~ el -




Q4

* Analyze two span continuous beam ABC by slope
deflection method. Then draw Bending moment &
Shear force diagram. Take El constant.

00 KN




Introduction to moment distribution method.
Important terms.

Sign conventions.

Fixed end moments (FEM)

Examples;

(A) example of simply supported beam

(B) example of fixed supported beam with  sinking of
support.



The moment distribution method was first introduced
by Prof. Hardy Cross of Illinois University in 1930.

This method provides a convinient means of analysing
statically indeterminate beams and rigid frames.

It Is used when number ofreduntants are large and
when other method becomes verytedious.



1. Stiffness

The moment required to produce a unit rotation (slope)
at a simply supported end of amember is called
Stiffness. It is denoted by'K'.

A) Stiffness when both ends are hinged.
B) Stiffness when both ends are fixed.



hinged at both ends:

(Applied
moment)

M, 3EI
G L
i.e., the moment required at A to induce a unit rotation at A is 7

(when the far end B is free to rotate)

This moment, i.e., moment required to induce a unit rotation,
is called stitiness (denoted by k).

S—




Cont..

Beam hinged at near end and fixed at far end:

M
(Applied
moment)
_2FEI M, 4EI
= =
M= 7 ~—(26,+0) 6., I

4ET
i.e., the moment required at A to induce a unit rotation at A is 53

(when the far end B is fixed against rotation)

 ———————————————————————————————————



a

Cont.. \
Carry over factor
(C.O.F):

A moment applied at the near end induces at a fixed far end a
moment equal to half its magnitude, in the same direction.

Half of moment applied at the near end is carried over to the fixed
far end.

Calz over factoris 1/2.
%



Distribution factor (D.F)

'he factor by which the applied moment is
distributed to the member is known as the
distribution factor.

-far-end pined (DF =1)

. Figure: - far-end fixed (DF = 0)



everal members meetine at a joint

A, =>Eh oo
I,

AT

— 4E2-I2 &Z%H

L

AL, = 3Eds g ko, &
I,

M, = 4if4§ 7, 6

g
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M, = k Ty M, =—L M
k,+k, +k, +k, >k Sk

A moment applied at a joint, where several members meet, will be
distributed amongst the members in proportion to their stiffness.

Il itribution factor




A)Support moments :
clockwise moment =+ve

anticlockwise moment =-ve

B)Rotation (slope):
clockwise moment =+ve

anticlockwise moment =-ve



C) Sinking (settlement)

. The settlement will be taken as+ve, If Itrotates the
beam asawhole in clockwise direction.

. The settlement will be taken as-ve, If itrotates the
beam as awhole in anti-clockwise direction.



‘ )

. Thefixed end moments for the various load casesis
asshown in figure;

. a) for centric loading;




Cont..

) for eccentric loading, udl,rotation,sinking of
supports & uvl
L ¥
Pa“b

Pab” / el
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” Cont. \

end moment for sinking of supports:




40N GOIN
20/N/m

A

() B C
) 77 % :
'4— 3m —|< 3m >|- 3m —I- 3m—>|<— 3m >|< 3m —I

Fixed end moments

wi> Pl 20x6> 40x6
= +

—FEM o= FEM,  .— =60+30=90ANm

2 8 1 8
72 2
—FEMBC:FEMCB:‘Ii +1;]:201’;6 pI0%O, A5 105K

Pl 80x6
8

—FEM ., = FEM,, = = 60/






B C D
0.429 | 0.571 0.571 | 0.429
-90 +90 | -105 +105 | -60 +60
+90 +45 -30 -60
0 +135 | -105 +105 | -90 0
-12.87 | -17.13 -8.565 | -6.435
-4.283 -8.565
+1.837 | +2.445 4.89 | 3.674
+2.445 1.223
-1.049 | -1.396 -0.698 | -0.524
0 +122.92 | -122.92  +93.29 | -93.29 0

Distribution factors

Fixed End Moments

Release A& D,
and carry over

Initial moments
Distribution
Carry over
Distribution
Carry over

Distribution

Final Moments
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v
Example-5 : Analysce the beam showt 0"0:
and draw SFD and BMD.

Solution =
25KkN \‘
15kN

ment distribution M

Ngure by Mo
T+ Iin = (G-U-. Dee, 2

1 = 16N/ c l o
? 2m 2m v a2 5 =
3 ol i
FIG. 3.21

(a) Fixed End Moments (FEM) :

M AB = _% - ..12.;11 - —7.5 KN.m

My BA = -.._"sl' - 7.5 kKN.m

=2
By B, - — L e 18 3 B0 |
12 12 ¥




(c) Moment

A B - - :
o o.27 | o.7a o .
T —7.5 7.5 12 12 st :
Sum
9 o i —0:59 | -0.30 (8] Balance
O.60 (@] —-0.3(): :l 6549 O : =—0.\5 C.O: -
O 0.0 0.22 —-31.10 —-0.54 O Balance
— — — —
-—
0.04 o LO. BB A a0, 11 o o027| c.o.
- . —. 04 O Balance
(@] 0.1 0.40 3'07 X
().0'7!'5i : O —0.035: ;020 O -0 .02 C.O.
O 0.009] 0.026 —-0.13 -0 .07 O Balance
—-6.79 895 | -8.95 12.06 | -12.06 5.11 | Final moments
N, S Lo
Map = —6.79 KN.m. L——3 - =
My =




Structural .

—_—
——

16.67

B.M.DIAGRAM

FIG. 3.22



'mple

Support B settles by 10 mm. E =200GPa, I=50x10°mm®

20 kN

. 3 kN ;'/IT!

3EI
B (
4 m 4 m 8 m
g e "
B 3(2EI/8) B B 4(3EI/8) B
PFsa= 3(2EI/8) +4(3EI/8) 0.333 Dc = 3(2EI/8)+4(3EI/8)

S



Pl  20x8 wl® 3x8§

=" — 290N = = 16 kN
o 8 12 12
— )
FEM,, — Pl GEIS
- 3 7
50 5x2x200x10°x50x10° <10 x10x10™
2 ~
=—20—18.75=—38.75 kNm
FEM,, =~ , BF
8 I
5o 8%2x200x10°x50x10° x10™" x10x10™
2 =



BT )
FEM,, = ;‘;] + 6? ‘

6x3x200x10°x50x10° %10~ x10x10"°
=—16+

Y

8;

—16+28.125=12.125 kNm

FEM,, = ‘;’i 4+ 6’? o

6x3%x200x10°x50x10°x10"* x10x10~"

2

8..

=16+

=16+28.125=44.125 kNm



A B L

|0.333 0.667 \

44 125 | Fixed End Moments

Release A, and
carry over

Initial Moments

Distribution

Carry over

Distribution

Final Moments
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NMadula

proximate Methods of Analysis of Multi-storey Frames

Analysis for vertical loads - Substitute frames-Loading
conditions for maximum positive and negative bending
moments in beams and maximum bending moment in
columns

Analysis for lateral loads - Portal method—Cantilever
method— Factor method.




Whv annroximate

Rapid check on computer aided analysis

Preliminary dimensioning before exact
analysis

Advantage + [Faste

Disadvantage . Results are

ximate methods are particularly useful for
ey frames taller than 3storeys.




SUBSTITUTE FRAME METHOD

° Analyse only a part of the frame — substitute
frame

Carry out a two-cycle moment distribution




Substitute
frame

Actual frame




Analysis done for:

« Beam span moments
e Beam support moments
« Column moments

Liveload positioning for the worstcondition

For the same frame, liveload positions for maximum
span moments, support moments and column moments
may be different

For maximum moments at different points,
liveload positions may de different




ons for maximum positive span momen

/M\/

Influence
line for
Mg

Live

/6ads

v v v v vl v v v




ons for maximum neaative support mom

A \
Influence
line for

Ma

v v v vy




tions for maximum column mome

v v v v vl v v v




ons for maximum column mom

M

/Tivo \\
vy v v v.v v v ly




Problem 1: Total dead load is 12 kN/m. Total live
kN/m. Analyse the frame for midspan positive moment on
BC.

6m 6m 6m

4m

4m




12 LT 2
VIR 31 3 b b b 0™ 3}
B

A 6m 6m C 6 D
m
—— —— —— —=

FiX n
moments 5 )
FEMAB:—WI —12x6 _ _36kNM FEMB =36kNm

12

1

232 %62 _

FEM,.= _ |:|:|\/ICB =
12 _g6kNm

~FEM,,= FEM,.=36kNm



K, / ~0.25=
B > T
K+ K+ K, 4EI/6+4El 4+4E)

4

DC

. K, y 4 EJ I
4 K1+ K2+ K3+K4 4E|§+4EIP6+4EV 4+4E) 0.2
6

Fgc= DFp= DF = DF,=0.2




0.2

0.25

DFs
FE

Dis
t
CO
Dist

Final
Moments






89.7 kNm 32kN /m 89.7kNm

(%¢¢¢4¢4¢¢¢4¢¢¢#\)

Midspan positive moment on
BC,

32
M, =-89.7 — 32 32;6 x3=54.3

2 KNm

_|_



Problem 2: Analyse the frame for beam negative
moment at 2. Moment of inertia of beams is 1.5 times
that of columns. Total dead load is 14 kN/m and total

live load isr.g.k.N Jm
6m

4m
dm

3.5m

3.5m

3.5m

35m

17



— —

) 1419 T
IRRER TS ANRNE SRR LR RRRAR) ;LT -
v v v vilv v vy vlv v v v
A 1?5?1 B fgll C 111
] 1.51
Fix n
moments
FEM s = Wit —23x6° — _69kNmM |:E|\/|E_3 =69kNm

1
2
FEMy.= BEM,= % —

14x4%
12

“FEM,,= FEM_.=



K, s/
DF . S -
K.+ K,+K, 4E(151)6+4El 35+4E]
35
K, 1.51/
DF,, = _
Ki+ K+ Ko+, 1516+ 1/F5+V35+151 5on9
K 4

- K, A 1.51/
© K+ K+ K+, 1516+ 135+ 1354151 na1a

DF, =0.284, DF., =0.284, DF,.=
0.396



0.209

0.284

0.284

0.396

DFs
FE

Dis
T
CO
Dist

Final
Moments



A B
‘0.30 H 0.209] || 0284] 0284 || 0.396

IVIVIILITIILWD

47.13kNm , B _ 69.64kNm

S E—

Max. beam negative moment at B = 69.64
KNm

’JA’VA



wnwvirseata analvraia Faw Hasizanta

Portal method

Cantilever
method

Factor method

22




PNPRPTAI MEFTHANADN

Assumptions

1. The points of contraflexure in all the members lie at
their midpoints.
2. Horizontal shear taken by each interior column is

double that taken by each exterior column.

izontal forces are assumed to act only at the




P1

B D

S
- - 2P - 2P <_P_
P op op P

F G

> H
- -] 2Q - 2Q <—L
@ 9 9 e
Q 2Q 2Q Q

J K L
——1 —1 — —

24



P=P+2P+2P+
P




P2 o 0 C H

P+P=Q+2Q+20Q+Q =0=



Problem 3: Analvse the frame using portal

120
kN

180

)A
7m 35 om
E m
Lo
(ap)
>

3-5m

27



1zontal shears:

For the top storey, P = P+
+ 2P+ P :120+18?:P=
6

I the-bottom'Storey, Q = Plg




Momente:

35kNm 35kNm




Ream

35

122.

N\ BSE\\BSJ\ D
~| 3 ~] **° ~
B 122, 122.| 3
S e 2| 122.
5 5}
I J K

35



Caliimn

35

A 35 kNm B 70 C D 35
70 KNm
E F G I
70 |17 70 35 87.
87 5 17 5
5
I J K L
17 17 87.5
5 5



35

and Column




Home
work

40 B

5m 7.5

5m




CANTII FVVED

Frame considered as a vertical cantilever

Assumptions

1. The points of contraflexure in all the members lie
at their midpoints.

The direct stresses (axial stresses) in the columns
are directly proportional to their distance from t

centroidal vertical axis of the frame.




I
I
P1 > :
|
I

.= Y4 g
yl <y2—>; y3
P2 > '
|
|
Aq A, | As A,
|
|
|
Area of X
Cross . .
section Centroidal vertical
axis of the frame
To locate centroidal vertical _ Aldl n A2d2 + A3d3 + A4d4

axis of the frame, Y

At At AgtA,



is constant at a given height (of the ‘vertical
| cantilever).

:>V1/A1:V2/A2 :Va/ A, :V4/
4 Y1 Ay Ys
Y, VE

— @



|
#
h m; | 2 >
2| ; |B
¢ Tw Yw P,
\% V, V,
Vs
h
2. My =R =\m -+, m -V,m-V, 2)
m 4

From (1)and (2), V,V,,V.,V,can be
found.



P=H,+H,+ H,+H,



Problem 4: Analvse the frame using cantilever
the columns have the same area of cross

section.
120 5 A B C
kN
7m 35 om
E m
L
(ap)]
180 E F G
T >
=
Lo
(ap)
| T K
——1 —— —




To locate centroidal vertical axis of the

A+ A+ A+ A Z

|
120 > :
= 7.2 g
1.2 >
8.25 ! 2.2 S
- > | 5
180> 1
|
I
I
I
— — ! — ——

VA VA, VA V[ ViV, _ Vs

Also. R = =
825 125 225 825 125 225

1.25 1.25



12 2.2 1.25V,
Vz ﬂ’ V3 5\/1’ V4 > -
8.2 8.2 8.2
h ml I m2 >
2l i 1o
I e ——
e Rl ¢+ P H,
Vl V2 V3 V4
h
For the top > M, =P 5 =\Vm +V,m -V,m -V,
storey, m 4

—120x> 2\ X155 1Y x8.5 —Y x5-V

x0 2 4



1 2 N D—s—zﬁ,

—V,=13.615kN

INIE513.615

063KkN8-2
2.063kNS
v  2-28x13.615 _

3
3.713kN8.2
v _ 1:25x13.615 _

11.965KkNp-2
5

Check: 13.615+2.063—-3.713-11.965=
0




120 kN
N A B C D
7 1 3.5m 5m
g
Lo
4P
180kN |g r C
—pt H
4
Vl V2 V3 VA
For the bottom

storey,

3" M, 2120535+ 32 5+180x2 2\ x15.5+V, x8.5-\ x5-V
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3. [ 3. = @( @2.25V
—120 R85 > F+180 2=V x155 85 LS4,
Eﬁ 7Y v D—&Z‘ém_ Dﬁ%[s

X X

—V,=61.267kN

W 25461.267 _

2
9.283kN3-2
v — 2.25%61.267 _

3
16.709kN:2
v _ 1-28X61.267 _

53.841kN-2
5

Check: 61.267+9.283-16.709—-53.841=



Momente:
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47.652kN 13.615K

N
27.3kN

' 13.615k
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EFACTNDR

More accurate than Portal and Cantilever methods

«  Specially useful when moments of inertia of

various members are different.

At any joint the total moment is shared by all the

members in proportion to their stiffnesses

Half the moment gets carried over to the far end




Girder and column factors:

. Relative stiffness of a L —

Girder factor at a joint

B Zk, of all columns meeting at the

|

joint
D k, of all members meeting at the
joint

K [l beams meetin h ont
Column fagtor Za 18Ina beams meeting at the jol

Y k, of all members meeting at the

n



Moment factor for a member

{ %
G = gk, for’abeam

i

where ¢, = c+half of column facor of far
end and g, = g+ half of

> C — sum of column moment factors for a

storey

Y G — sum ofbeam moment factors for a joint



Problem 5: Analvse the frame using factor

A0
5G H
5m 75
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eolumin moment

| column moment above ABC =40x8.5+80x5=
740kNm




1 2 3 4 5 6 7 8 9 10 11 12
o [ MEMBER k=I/L Tk FACTOR | c/2, 5+6 | MOMEN Tot Col DFg seam
g/2 T al : =G/XG M
fro FACTO | col Mo m
(0]
m R . m, _c
Col |Beam| Col | Beam c g far | ¢ [ gm | C=| G=[Mom,M{ M= _M x
=xk(b| =zk(| end Cm | 9m M D |8
e |c x X x =
ams)/ | olum k| k o/
Tk |n
s)/Xk c
DA 0.2 0.29 0.5 [0.79 0.15 740 99.4
C 0.686 8
DE 0.2 0.71] 0.3 1.01 0.202 1 1221.6
DG 0.286 0.29 0.3 |0.59 0.16 140 23.2
9
ED 0.2 0.59] 0.36 0.95 0.19 059 | 83.25
e | EH 0.286 0.819] 041 0.27] 0.68 o.ig 140 26.6
EF 0.133 0.59] 0.4 0.99 0.132 041 | 5785
EB 0.2 0.41 0.5 |0091 0.18 740 | 1145
2
FE 0.133 0.79] 0.3 1.09 0.145 1 13 1.0
F 0.772 3 |3
Fl 0.286 0.21 0.16| 0.37 0.10 140 14.6
6
FC 0.2 0.21 05]0.71 0.14 740 89.3
2
| GD g86 0186222 0.15] 0.74 051 140 29.1
stprey; AC—Q21518+O 182460 H42:0-2310242 52 0 5 T1
HG 0.2 0.46] 0.21 0.67 0.134 0559 | 16./5
F—|HE 0.286 0:772(~0:54 0.2110:75 0.21 140 295
5
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Curmamar

proximate Methods of Analysis of Multi-storey Frames

Analysis for vertical loads - Substitute frames-Loading
conditions for maximum positive and negative bending
moments in beams and maximum bending moment in
columns

Analysis for lateral loads - Portal method—Cantilever
method— Factor method.




Influence Line for Reaction , Moment & Shear for
Indeterminate Structure
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Variation of

Reaction, Shear, Moment or
Deflection

at a SPECIFIC POINT

due to a concentrated force moving on
member



SIGNIFICANCE

_IInfluence lines are important in the design of structures that
resist large live loads.

_I1If a structure is subjected to a live or moving load, the variation in
shear and moment is best described using influence lines.

[1Once the influence line 1s drawn, the location of the live load
which will cause the greatest influence on the structure can be
found very quickly



F G H

Figure 1. Bridge Truss Structure
Subjected to a Variable
Position Load

“1As the car moves across the bridge, the forces
In the truss members change with the position of
the

car and the maximum force in each member will
be at a different car location.

"1The design of each

member must be based on the
maximum probable load each
member will experience

C11f a structure is to be safely designed, members
must be proportioned such that the maximum
force produced by dead and live loads is less than
the available section capacity.



Structural analysis for variable loads Response Function = support reaction, axial force,
consists of two steps: shear force, or bending moment.

1.Determining the positions of
the loads at which the response function is
maximum:;

AND

2.Computing the maximum value of the
response function.



INFLUENCE LINE VS SFD/BMD
1 shear and moment diagrams represent the effect of

fixed loads at all points along the member.

1 Influence lines represent the effect of a moving load
only at a specified point on a member



! Influenc
e Lines

YPES OF INFLUENCE LINES

Reaction I.L.

Shear I.L.
Moment I.L.

loor Girder I.L.

ss Bar force I.L.




Influence Lines

Structure type Influence lines

] Determinate JFor Determinate Structure

1 Indeterminate 1 For Indeterminate Structure




T1UENC
e Lines

thods of constructing the shape of Influence Lines

[JTabulation Method.

] Muller —Breslau principles.




Influence Lines

-Breslau Principle

o er Principle: “Iif a function at a point on a beam. such as
reaction, or shear. or moment, is allowed to act without restraint, the
deflected shape of the beam, to some scale, represent the influence line of
the function™.




Indeterminate VS Determinate

Determinate

Indeterminate

Comparison between Indeterminate and Determinate

Indeterminate Determinate

O Influence lines for statically determinate structures are always piecewise linear.

1 For indeterminate structures, the influence line is not straight lines!
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