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Solving Statically Determinate  

Structures



Static Equilibrium

Asystem of particles is in static equilibrium

when all the particles of the system are at

rest and the total force on each particle is

permanently zero.



Statically Determinate

A member or structure that can be analyzed and the reactions  

and forces determined from the equations of equilibrium.

Statically Indeterminate

A member or structure that cannot be analyzed by the  

equations of statics. It contains unknowns in excess of the  

number of equilibrium equations available.



Determinacy

 r = 3n , statically determinate

 r > 3n , statically indeterminate

where,

n = the total parts of structuremembers

r = the total number of unknown reactive forces and  

moment components



Examples



RedundantsThe excess members or 
reactions of an  indeterminate 
structures are called  
redundants.

Redundant forces are chosen so 
that the  structure is stable and 
statically determinate  when they 
are removed.



How do we make an  

indeterminate  

structure statically  

determinate?



If there is two degrees of indeterminacy,  
we have to remove two reactive forces,  
remove three for three degrees and so  
forth.

 By removing excess supports.

 By introducing hinges.



What are the advantages  

of statically indeterminate  

structures over  

determinate structures?



There are several advantages in designing  

indeterminate structures. These include  

the design of lighter and more rigid  

structures. With added redundancy in  

the structural system, there is an increase  

in the overall factor of safety.
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Objective
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• To obtain slope and deflection of beam and frame  

structures using slope-deflection method



Introduction

16

• Structural analysis method for beams and frames  

introduced in 1914 by George A. Maney

• This method was later replaced by moment  

distribution method which is more advanced and  

useful (students are encouraged) to study this  

separately



Slope-Deflection Method
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• Sign convention:

• Moments, slopes,  
displacements,  
shear are all in  
positive direction as  
shown

• Axial forces are  
ignored

EI  M  S x AB AB
dx2

d 2v





x2 x3

x2 dv


EIv  M AB 2 

 SAB 6 
 C1x  C2

EI 
dx 

 M AB x  SAB 2 
 C1



Slope-Deflection Method
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A A
dx

@ x  0
dv

 ,v  v  



 dv


EIv  M AB 2 

 SAB 6 
 EI Ax  EIvA

EI 
dx 

 M AB x  SAB 2 
 EIA

x2 x3

x2

B B
dx

@ x  L
dv

 ,v  v  






EIvB  M AB 2 

 SAB 6 
 EI AL EIvA

EIB  M ABL  SAB 2 
 EI A

L2 L3

L2

Solving for MAB and SAB

A B A B 
AB

LL 
B A B 

AB
LL2 

AM  
2EI 

2   
3 v    v  S 

6EI   
2 v  v 

L
BA L 

A B A B 
M  

2EI  2
3 v  v  B A B 

BA
LL2 

AS  
6EI   

2 v  v 



Slope-Deflection Method
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• Last 4 equations obtained in previous slide are 

called  slope-deflection equations

• They establish force-displacement relationship

• This method can find exact solution to indeterminate

structures



Slope-Deflection Method
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• The beam we considered  

so far did not have any  

external loading from A to B

• In the presence of mid-span loading (commonengineering

problems) the equations become:

F

AB
L

A B A B 
AB

L 
M  

2EI 
2   

3 v  v  M F

AB
L

B A B 
AB


v  v  S

2 6EI 

L2 
AS      

F

L
M BA L 

A B A B 
BA 2 

3 v  v  M 
2EI   F

BA
L

B A B 
BA


v  v  S

26EI 

L2 
AS         



Fixed End Moment/Shear

21

• MAB
F, MBA

F are fixed end moments at nodes A and B,  

respectively.

• Moments at two ends of beam when beam is clamped at  

both ends under external loading (see next slides)

• SAB
F, SBA

F are fixed end shears at nodes A and B,

respectively.

• Shears at two ends of beam when beam is clamped at both  

ends under external loading (see next slides)



Fixed End Moment/Shear
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Fixed End Moment/Shear
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Example

• Find support reactions.

24



Solution
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• This beam has 2 degrees  

of indeterminacy

1-Assume all beams  
are fixed & calculate  

FEM

2- Establish Slope-
Deflection equations

3- Enforce boundary  
conditions &  

equilibrium conditions  
at joints

4- Solve simultaneous  
equations to get  

slopes/deflections



Solution
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F F

AB BA
8

61.0
M      M    0.75kNm F F

BC CB
8

101.0
M      M     1.25kNm F F

CD MDC 1.00kNm
2

12

121.0
M         



Solution
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F

ij
L

i j i j 
ij



L 
v  v  M

3
M    2

2EI 
    

F

L
j i j 

ji


ji L 

i v  v  M
32EI 

  M     2

vi=0 and vj=0 for all  

cases



Solution

• Equilibrium moments at the joints

MCB MCD

M AB 0

MBA MBC

MB  0 

MBA  MBC 0

MC  0 

MCBMCD  0

M DC 0

28



Solution

29

• Substitution into slope deflection equations gives 4  

equations and 4 unknown slopes.

• By simultaneously solving the equations



Solution

• Simply operation of substitution:

30



Solution

31

1.0
AB

RBA  6 1.85  4.15

R

• Now support reactions can easily be calculated as

6 10

1.0
BC

RCB 10  4.75  5.25


60.51.15

1.85 R

12

1.0


120.51.4
 7.4

CD

RDC 12  7.4  4.6


100.51.15 1.4

 4.75 R



Solution

1.85

32

4.15 4.75 5.25 7.4 4.6

1.85 8.9 12.65 4.60



Solution

33



Example 2
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• Obtain moment reaction at the clamped  

support B for 6m long beam if support A

settles  down by 5mm. EI=17×1012 Nmm2

A

4kN/m

B



Solution
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F

ij
L

i j i j 
ij



L 
v  v M

3
M    2

2EI 
     F

L


ji L 

i j i j 
ji

32EI 
  v  v  MM     2

A

4kN/m

5mm

B

 F

A B A B 
ABAB  v   M 

LL 
  

3 vM  
2EI 

2


12

3  
4000  L22EI 

M AB  0  
L 

2A  0 
L 
 0.005  0 



L
A

3

2
24EI 4

 9.3310 rad



0.0015 

 4000
 L 

  



Solution
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4kN/m

B

j iiij
L

j 
ij

 F

L 
v  v M

3
M    2

2EI 
     j i

L
j 

ji

 F

ji L 
i v  v  M

32EI 
  M     2

5mm   9.33 10 4 rad
A

A

 F

B A A B 
BABA  v   M 

LL 
M  

2EI 
2   

3 v

12
 4 

3 0.005 0 


  4000  L2


LL 

0  9.33 10 
2EI 

MB A

MB A  18705.3N.m



Case study
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Case study

t=3.552 mm
b=7.792 mm

F

ij
L

i j i j 
ij



L 
v  v M

3
M    2

2EI 
    

38



Case study

Rotation 
and 

displace
ment  

can be 
obtained 
from the  

FEM 39

Wire in compositebeam



Case study

Rotation 
and 

displace
ment  

can be 
obtained 
from the  

FEM 40



Q1

• Determine the support reactions in the beam 

shown  below.

41



Q2

• Calculate the support reactions in the beam 

shown  below.

42



Q3

• Determine the end moments in the members of 

the  portal frame shown. The second moment of 

areaof  the vertical members is 2.5I while that of 

the  horizontal members is I.

43



Q4

• Analyze two span continuous beam ABC by slope  

deflection method. Then draw Bending moment &

Shear  force diagram. Take EI constant.

44



Outline of thepresentation

• Introduction to moment distributionmethod.

• Important terms.

• Signconventions.

• Fixed end moments (FEM)

• Examples;

• (A) example of simply supportedbeam

• (B) example of fixed supported beam with sinking of  

support.



Introduct
ion

• The moment distribution method was first introduced  

by Prof. Hardy Cross of Illinois University in 1930.

• This method provides a convinient means of analysing  

statically indeterminate beams and rigid frames.

• It is used when number ofreduntants are large and  

when other method becomes verytedious.



Important terms

1. Stiffness

The moment required to produce a unit rotation(slope)  

at a simply supported end of a member is called  

Stiffness. It is denoted by'K'.

A) Stiffness when both ends arehinged.

B)Stiffness when both ends are fixed.



Cont...

A) Beam hinged at both ends:



Cont..

B) Beam hinged at near end and fixed at far end:



Cont..

Carry over factor
(C.O.F):



Cont
..

 Distribution factor (D.F.)

● The factor by which the applied moment is
distributed to the member is known as the
distribution factor.

 - far-end pined (DF = 1)

● Figure:

●

- far-end fixed (DF = 0)



Cont..



Cont.
...



SignConventions

A)Support moments :  

clockwise moment = +ve  

anticlockwise moment =-ve

B)Rotation (slope):  

clockwise moment = +ve  

anticlockwise moment =-ve



Cont.
..

C) Sinking (settlement)

● The settlement will be taken as +ve, if it rotates the  

beam as a whole in clockwise direction.

● The settlement will be taken as -ve, if it rotates the  

beam as a whole in anti-clockwise direction.



Fixed End
Moments

● The fixed end moments for the various load casesis  

as shown in figure;

● a) for centric loading;



Cont..

b) for eccentric loading, udl,rotation,sinking of  

supports & uvl



Cont
..



Cont.
..

● Fixed end moment for sinking of supports:



Examp
le  
1





Cont
..









Example
3
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Module

III

Approximate Methods of Analysis of Multi-storey Frames

• Analysis for vertical loads - Substitute frames-Loading  
conditions for maximum positive and negative bending  
moments in beams and maximum bending moment in
columns

• Analysis for lateral loads - Portal method–Cantilever 
method– Factor method.

2



Why approximate
analysis?

• Rapid check on computer aided analysis

• Preliminary dimensioning before exact

analysis

Advantage
?

• Faste

r

Disadvantage
?

• Results are

approximate

•Approximate methods are particularly useful for  

multi-storey frames taller than 3 storeys.



Approximate analysis for Vertical

Loads

SUBSTITUTE FRAME METHOD

• Analyse only a part of the frame – substitute

frame

• Carry out a two-cycle moment distribution



Substitute

frame

Actual frame



• Analysis done for:

• Beam span moments

• Beam support moments

• Column moments

• Liveload positioning for the worst condition

• For the same frame, liveload positions for maximum

span  moments, support moments and column moments 

may  be different

• For maximum moments at different points,

liveload  positions may de different



LL positions for maximum positive span moment at

B

B

Influence  
line for
MB

Dead
loads

Live
loads



LL positions for maximum negative support moment at

A

A
Influence  
line for
MA

Live loads

Dead
loads



LL positions for maximum column moment M1 at 

C

C

M1

Live
loads

Dead
loads



LL positions for maximum column moment M2 at 

D

M2

D

Live
loads

Dead
loads



Problem 1: Total dead load is 12 kN/m. Total live 

load is 20kN/m. Analyse the frame for midspan positive moment on
BC.

6 m 6 m 6 m

B C DA

4
m

4
m

11



12+20
kN/m12

kN/m

12
kN/m

B D
A 6 m 6 m C 6

m

wl2 1262

FEMAB 



 36kNm B

A

FEM  36kNm

Fixed end

moments

12

1

23262
FEM 

96kNm12
FEMBC 

96kNm

CB

FEMCD  FEMDC  36kNm



Distribution

factors

AB DC

K1 4 
EI

6

DF



  0.25

DFK1  K2  K3 4EI 64EI 44EI

4

4

BA

K1 4 EI

6
DF



 

0.2K1  K2  K3 K 4EI 44EI 64EI 44EI

6

DFBC  DFCD  DFCB  DFBA 0.2



A B C D

0.25 0.2 0.2 0.2 0.2 0.25

*

*

*

*

*

*

*

*

*

*

*

*
* *

*

*

*

*

*

*

DFs  

FE

M

Dis

t  

CO

Dist

Final

Moments



A B C D

0.2
0.

2
-36 36 -96 96 -36 36

FEM

0.2
0.

2

0.2
5

0.25
DF

s
9 12 12 -12 -12 -9

Dist

6 4.5 -6 6 -4.5 -6

CO
2.25 0.3 0.3 -0.3 -0.3 -2.25 Dist

-18.75 52.8 -89.7 89.7 52.8 18.75 Final

Moments



89.7kNm 89.7kNm
A B32kN m

Midspan positive moment on
BC,

32

2

326
ME  89.7  32 

2



3  54.3

kNm



Problem 2: Analyse the frame for beam negative 
moment at B.  Moment of inertia of beams is 1.5 times 
that of columns. Total dead  load is 14 kN/m and total 
live load is 9 kN/m.

6 m 4 m

4m
3
.5

m

B
A

3
.5

m

DC

3
.5

m
3
.5

m

17



14+9
kN/m

14+9
kN/m 14

kN/m

I

B D
A

I

6 m  
1.5I

4 m  
1.5I

C 4 
m  
1.5I

wl2 2362

FEMAB 



 69kNm B

A

FEM  69kNm

Fixed end

moments

12

1

2 2342



30.67kNm

FEMBC  FEMCB
12

1442



36kNm12
FEMCD  FEMDC 



Distribution

factors

AB

K1 4 E
1.5I 6

DF



 

0.304K1  K2 K3 4E 1.5I 64EI 3.54EI

3.5

K1

4

1.5I

6BA
DF



 

0.209K1  K2  K3 

K

1.5I 6  I 3.5  I 3.5 1.5I

4

4

BC

K1 1.5I

4
DF



 

0.313K1  K2  K3 

K

1.5I 6  I 3.5  I 3.5 1.5I

4

DFCB   0.284, DFCD   0.284, DFDC 

0.396



A B C D

0.304 0.209 0.313 0.284 0.284 0.396

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

DFs  

FE

M

Dis

t  

CO

Dist

Final

Moments



A B C D

0.209
0.31

3
-69 69 -30.67 30.67 -18.67

FEM

0.30
4

0.284 0.284 0.396
DFs

20.98 -8.01 -12 -3.41

Dist

10.49 -1.71

CO
-1.84 -2.75 Dist

69.64 -47.13 Final

Moments

B 69.64kNm47.13kNm

Max. beam negative moment at B  69.64

kNm



Approximate analysis for Horizontal

Loads

1. Portal method

2. Cantilever

method

3. Factor method

22



PORTAL METHOD

Assumptions

1. The points of contraflexure in all the members lie at 

their  midpoints.

2. Horizontal shear taken by each interior column is 

double  that taken by each exterior column.

Horizontal forces are assumed to act only at the
joints.



B C DA
P1

P

P

2P

2P

2P

2P

P

P

FE G
H

P2

Q 2Q 2Q Q

Q 2Q 2Q Q

J K LI

24



1
P  P2P2P

P
6 P

 P1



P1P2Q2Q2QQ
6

Q 
P1P2



Problem 3: Analyse the frame using portal

method.

B C DA120 
kN

7 m 3.5
m

5 m

FE G

3
.5

m

180
kN H

3
.5

m

J K LI

27



Horizontal shears:

1
6For the top storey, P  P

2P 2P P  P 
120

 20kNFor the bottom storey, Q 
P1

P2


120180



50kN6 6



120kN
Moments:

35
kN
m

A
3.5
m

1.
7

5
m 35kN

m
10k

N

20k

N

35kNm 35kNm

B

10k

N

70kNm
10k
N

40kN



Beam
moments:

B C D
35

A
35

35

35

35 35

FE G122.
5

122.
5

122.
5

122.
5

122.
5

H  
122.
5

J K LI



Column
moments:

C DB 70A 35 kNm

70

35
kNm

FE G
H

35
87.

5

87.
5

17
5

3570 70
17

5

J KI
87.
5

L
87.517

5
17
5



Beam and Column
moments:

3
5

D
3
5

35
B 3

5
7
0

35
35

35
7

0

35

87.
5

17
5

7
0

357
0 17

5

122.
5

122.
5

122.
5

3
5

87.
5

122.
5

122.
5

122.
5

87.
5

87.
5

17
5

17
5



Home
work

40
kN

B CA

F

3
.5

m

80
kN

5
m

I

5 m

D

7.5 m

E

G H



CANTILEVER

METHOD

• Frame considered as a vertical cantilever

Assumptions

1. The points of contraflexure in all the members lie 

at  their midpoints.

2. The direct stresses (axial stresses) in the columns 

are  directly proportional to their distance from the  

centroidal vertical axis of the frame.



P1

y1

y2 y3

y4

P2

A1 A2
A3 A4

Centroidal vertical
axis  of the frame

Area of

cross  

section

y 
A1d1  A2d2  A3d3  A4d4

To locate centroidal vertical
axis of the frame,

A1  A2  A3 A4



V1 V2 V3 V4

x
I

 
My

M

I
is constant at a given height (of the ‘vertical
cantilever’).

1  
2  

3 
4

y1 y2 y3 y4


V1 A1 

V2 1
y1

A2   
V3 A3 

V4

A4

y2 y3

y4



P1

m1

m2

H1 H2 H3 H4

h

2 B

V1 V2

V3

V4

B 1 2 1 1 2 2 3 3 4

4

M P 
h
Vm V m V m V

m

2

From 1and 2, V1,V2 ,V3,V4 can be

found.



P1

H1 H4H2

H
3

P1  H1  H2  H3 H4



Problem 4: Analyse the frame using cantilever 

method, if allthe columns have the same area of cross
section.

B C DA120 
kN

7 m 3.5
m

5 m

FE G

3
.5

m

180
kN H

3
.5

m

J K LI



To locate centroidal vertical axis of the
frame,

4
y 

A1  0  A1  7  A1 10.5  A1 15.5 


33 
 8.25mA1  A1  A1  A1

120

8.25
1.2

5
2.2

5

7.2

5

180

Also,
V1 A1  

V2 A2 
V3 A3 

V4

A4


V1 

V2 
V3 

V48.25 1.25 2.25

7.25

8.25 1.25 2.25

7.25



1 1 1

2 3 4
8.2

5

8.2

5

8.2

5

1.25V 2.25V 7.25V
V



, V



, V


P1

m1

m2

H1 H2 H3 H4

h

2 O

V1 V2 V3 V4

O 1 2 1 1 2 2 3 3 4

4

M P 
h
Vm V m V m V

m

For the top

storey,

1 2 3

42
120

3.5 
V 15.5 V 8.5 V 5V 

0



1
2120 3.5

V 15.5 
1.25V1

8.5
2.25V15
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
8.25

 
8.25


   

V1 13.615kN

2
8.2

5

V 
1.2513.615



2.063kN,

3
8.2

5

V 
2.2513.615 



3.713kN,

4
8.2

5

V 
7.2513.615 



11.965kN

Check : 13.6152.0633.71311.965

0



H1 H2 H3 H4

V4

O

V1 V2 V3

For the bottom

storey,

1 2 3

42
O

M 1203.5
3.5180

3.5
V 15.5V 8.5V 5V

0


2


 

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1 1
1

3.

5

3.

5 2

1.25V

Dr.RajeshKNDept. of CE, GCE Kannur

2.25V    
120



180



V 15.5



8.5





5

3.5




2


 


8.25


 


8.25


 

2
8.2

5

V1  61.267kN

V 
1.2561.267 



9.283kN,

3
8.2

5

V 
2.2561.267 



16.709kN,

4
V 

7.2561.267 


53.841kN8.2

5
Check : 61.2679.28316.70953.841

0



Moments:

47.652kN

mA120k

N
3.5
m

1.
7

5
m 47.652kN

m
13.615k

N

27.3kN

13.615k

N



Beam and Column
moments:

29.
9

D
47.
6

27.4
B 29.

9
7547.

6
47.
6

27.4 57.3 29.
9

74.
8

187.
8

57.
3

29.
9

75

143.
2

166.
8

9
6
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7

47.6
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2
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8

9
6
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7
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8
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8
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FACTOR

METHOD

• More accurate than Portal and Cantilever methods

• Specially useful when moments of inertia of 

various  members are different.

Basis:

• At any joint the total moment is shared by all the 

members  in proportion to their stiffnesses

• Half the moment gets carried over to the far end



Girder and column factors:

• Relative stiffness of a
member

k 
I

L

Girder factor at a joint

g  k, of all  columns meeting at the

joint

k, of all  members meeting at the

joint

Column factor at a jointc  1

g

k, of all beams meeting at the joint

k, of all  members meeting at the

joint



Moment factor for a member

C  cmk, for a

column
G  gmk, for abeam

where cm   chalf of column facor of far 

end  and gm   ghalf of

girder facor of far end

C  sum ofcolumn moment factors for a

storey

G  sum ofbeam moment factors for a joint



Problem 5: Analyse the frame using factor

method.

40
kN

H IG

5 m 7.5
m

FED

3
.5

m

80
kN

5
m

B CA



Total  column moment 

above DEF  403.5 

140kNm

Total  column moment above ABC  408.5805

740kNm



1 2 3 4 5 6 7 8 9 10 11 12
JOIN
T MEMBER k=I/L Ʃk FACTOR c/2,  

g/2  

fro

m  

far  

end

5+6 MOMEN

T  

FACTO

R

Tot

al  

Col

.

Mom, MT

Col

.  

Mo

m,

MC =

MT

×

C/Ʃ

C

DFB

=G/ƩG

Beam

M

o

= 

M  

D

F

m  

C

×

B

Col Beam Col Beam c

=Ʃk(b

e 

ams)/

Ʃ k

g

=Ʃk(

c

olum

n

s)/Ʃk

cm gm C=

cm

×

k

G =

gm

×

k

D

DA 0.2

0.686

0.29 0.5 0.79 0.15

8

740 99.4

DE 0.2 0.71 0.3 1.01 0.202 1 122 .6

DG 0.286 0.29 0.3 0.59 0.16

9

140 23.2

E

ED 0.2

0.819

0.59 0.36 0.95 0.19 0.59 83.2 5

EH 0.286 0.41 0.27 0.68 0.19

4

140 26.6

EF 0.133 0.59 0.4 0.99 0.132 0.41 57.8 5

EB 0.2 0.41 0.5 0.91 0.18

2

740 114.5

F

FE 0.133

0.772

0.79 0.3 1.09 0.145 1 13

3

.0

3

FI 0.286 0.21 0.16 0.37 0.10

6

140 14.6

FC 0.2 0.21 0.5 0.71 0.14

2

740 89.3

G
GD 0.286

0.486
0.59 0.15 0.74 0.21

2

140 29.1

GH 0.2 0.41 0.23 0.64 0.128 1 29. 1

H

HG 0.2

0.772

0.46 0.21 0.67 0.134 0.559 16. 5

HE 0.286 0.54 0.21 0.75 0.21

5

140 29.5

HI 0.133 0.46 0.34 0.8 0.106 0.441 13. 0

storey,C  0.1580.1820.1420.230.2420.26
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Summar

y

Approximate Methods of Analysis of Multi-storey Frames

• Analysis for vertical loads - Substitute frames-Loading  
conditions for maximum positive and negative bending  
moments in beams and maximum bending moment in
columns

• Analysis for lateral loads - Portal method–Cantilever 
method– Factor method.



 Influence Line for Reaction , Moment & Shear for  
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Influence Lines

Variation of

Reaction, Shear, Moment or  

Deflection

at a SPECIFIC POINT

due to a concentrated force moving on  

member



SIGNIFICANCE

Influence lines are important in the design of structures that  

resist large live loads.

If a structure is subjected to a live or moving load, the variation in  

shear and moment is best described using influence lines.

Once the influence line is drawn, the location of the live load  

which will cause the greatest influence on the structure can be  

found very quickly

Influenc
e Lines



Influenc
e Lines

As the car moves across the bridge, the forces

in the truss members change with the position of

the

car and the maximum force in each member will

be at a different car location.

The design of each  

member must be based on the  

maximum probable load each  

member will experience

If a structure is to be safely designed, members  

must be proportioned such that the maximum  

force produced by dead and live loads is less than  

the available section capacity.



Structural analysis for variable loads  

consists of two steps:

1.Determining the positions of

the loads at which the response function is  

maximum;

AND

2.Computing the maximum value of the  

response function.

Influenc
e Lines

Response Function = support reaction, axial force,  

shear force, or bending moment.



Influenc
e Lines

INFLUENCE LINE VS SFD/BMD

shear and moment diagrams represent the effect of  

fixed loads at all points along the member.

Influence lines represent the effect of a moving load  

only at a specified point on a member



TYPES OF INFLUENCE LINES

Reaction I.L.

Shear I.L.

Moment I.L.

Floor Girder I.L.

Truss Bar force I.L.

Influenc
e Lines



Influence Lines

Structure type

Indeterminate

Determinate

Influence lines

For Determinate Structure

For Indeterminate Structure



Methods of constructing the shape of Influence Lines

Tabulation Method.

Muller –Breslau principles.

Influenc
e Lines



Muller-Breslau Principle

Influence Lines



Influenc
e Lines

Indeterminate VS Determinate

Influence lines for statically determinate structures are always piecewise linear.

For indeterminate structures, the influence line is not straight lines!



Influenc
e Lines



Influenc
e Lines


