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™
Ratio Test
a

If >a |, IS apositive-term series and rI]LrQO ;*1 =L
then

Ya,is convergent if L<1
Ya,is divergent if L>1
The test Is Inconclusive If L=1




Example 1

Use the ratio test todetermine whether the following
series converge or diverge.

(a) zki

e gimYe L K K1
>0 U (K+1)! 1 (K+Dk! k+1

converges

<1




Example 2

Use the ratio test todetermine whether the following
series converge or diverge.

=k
CPI
k=1
k K
o= lim U,  k+1 2¢ 2 (k+1)_k+1_1 -1

>y, 25T ko 2.2k 2k 2
converges




Example 3

Usethe ratio test to determine whetherthe
following series converge or diverge.

© ¥

1 K!

k+1 K
I
Yoo J(KHD) K @2y —est
oeoue (ke K K e

diverges




Example 4

Usethe ratio test to determine whetherthe
following series converge or diverge.

(d) Z‘Z—kl
e tim Y J[20DI 4 k2K

K—+00 U 4k+1 (Zk)l - 4
diverges




Root Test

Let > Unbe anon negative series, and
assume that lim n—e~mUn=L  (possibly

«)
If O<=L<1, then Y Unconverges.
If L>1, then > Undiverges.

If L=1then from this test alone we can
not draw any conclusion about the
convergence or divergence of > Un.




e —
Example 1

Test the convergence of the series 2 : =
n=| (logn)
Solution
1
Let u. - (logn)n_
l
- 1
(u,)" =—
logn
L I
lim(u,)" = |im‘——
e n=logn

=0<]. [logw—)oo]

fence, by Cauchy’s root test, the series is convergent.




it converges




Thank you




Indeterminate
Forms




Indeterminate Forms

-1 What are indeterminate forms?

- In calculus and other branches of mathematical
analysis, limits involving an algebraic combination of
functions in an independent variable may often be
evaluated by replacing these functions by their limits.

- If the expression obtained after this substitution does
not give enough information to determine the original
limit, it is said to take on an indeterminate form.




Types of Indeterminate forms

1 There are seven types of indeterminate forms :

0/0
co/oo
0 X oo
0 — 00
0o

1o

o000

p—

NouhswN e



0/0 Form
f(x)

- Limit of the form 300 where lim f(x) = limg(x) = 0
are called indeterminate form of the type 0/0.

x* —4

Consider: lim-=
x—2 x_2

0
If we try to evaluate this by direct substitution, we get: 6

Zero divided by zero can not be evaluated, and is an
example of indeterminate form.

In this case, we can evaluate this limit by factoring and
canceling:

P i G _im(er2) —4

x—=2 x—2 x—=2 _x//z x—2




L’ Hopital’s Rule

- L'Hopital's rule is a general method for evaluating the
indeterminate forms 0/0 and oco/co. Thisrule states that
(under appropriate conditions)

3 N i
[im L) = lim L
T—C g(l) T—C g'(l)
where f' and g’ are the derivatives of fandg.
- Note that this rule does not apply to expressions c/0, 1/0,

and so on.

- These derivatives will allow one to perform algebraic
simplification and eventually evaluate the limit.



https://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
https://en.wikipedia.org/wiki/Derivative_(calculus)

L’ Hopital’s Rule

7 Rules to evaluate 0/0 form :
1. Check whether the limit is an indeterminate form. If itis
not, then we cannot apply L’ Hopital’srule.
2. Differentiate f(x) and g(x) separately.

3. Ifg'(a) # 0, then the limit will exist. It may be finite, +oo
or -0, If g'(a)=0 then follow rule 4.

4. Differentiate f'(x) & g'(x) separately.
Continue the process till required value is reached.

5.




Example:

l1—cosx figy SO

}clino v+ x —I-r"%l+2x =0
i & Ifit's no longer
indeterminate, then
STOP!

ontinue with L'Hdpital's rule;

which is wrong,




lim

On the other hand, you can apply L'Hbpital’s rule as
many times as necessary as long as the fraction is still
indeterminate:

\/1+x—1—% 0

: = 1

B 0 __4
1 1 o %
(1 + x)i —1—-=—x (Rewrittenin
2 exponential "
=0 % form.) =g
1
l(l+x)—5 —— 0
lim 2 = =
x—0 .3 O
1 =3
= 2 0
(1+.7C) = not —




xl

Example 1: lim —hm =A2)=4

=1 X— 2 -2

tan3x . 3sec’3x 30 3

Example 2: | = o
g E}) sin 2x %2% 2coslx 2(1) 2
L+
T, . 3 . 1 1
Example 3: lim n = lim 1 =lim 2 - 7 = =
e e YR L B 38y
CosX— y _ —sinx

Example 4: M x—f"f/ xg% : =_5ﬁ1(\%.)_-__12_

&



oo /oo Form

o If limfz) =o0, limg(z) =cc then it is indeterminate

r—C

form of type 0/0.

EXAMPLES:

=

I, Find lm ——
=% fT + 3

Solution 1; We have

mx-" x

lim ———=|=| = lim 7= = i 7—= =
14X (1-{-3 X r-m-l- 14X r+m I [ o

&

)L = [x




Oxoco Form

- Limit of the form lim f(z) =0, lim g(x) = oc

I—C T=>C

are called indeterminate form of the type
Oxoo.

o If we write f(x) g(x) = f(x)/[1/g(x)], then the
limit becomes of the form (0/0).

7 This can be evaluated by using L" Hopital’s
rule.




Example

2
Erxample 3.1. Consider lim |z -sin (;

T—oc I

)) This has the form ~c - 0 if you try to evaluate directly. But if
you flip the x to the denominator

(sn2)
,15?;( 1z )

then this limit has the form 3. We have simply taken the oo. and transformed it into a 0 in the
denominator. This limit can be done with L'Hdopital’s rule.

o fsn(2)) _ L cos(3) (—F)
ds (—1/7) ol

2
lim 2cos ( -)
Ir—+o0 A

2cos(2/xc)
2 cos(0)
2

So in this case. we could evaluate the limit by flipping it to -g- and using L'Hoépital's rule.




co-00 Form

o Limit of the form lm f(z) = oo, lim g(x) = oo
are called indeterminate form of the type
CO-00,

< If we write lm(/(x) — o) = tim ZEDCE) then
the limit becomes of the form (0/0) and can
be evaluated by using the L' Hopital’s rule.




Example

1 1
11. Find lim — i
=1 \ Inr x—1
Solution: We have
. 1 1 ; 1-(x—1) Inx-1
1 — = Joc — =] = lim —
sy (lu;c T — 1) Ico—e) =1 \Inx - (xr— 1) Inx - (x— 1)
Y Sl W T 1
= fim * 1 —Inx _ 0 = Tiin (z —1—1Inwx)
=1 Inxr(er — 1) 0 z—1 (Inx(x — 1))
1 1
' — 1 — (Inx) S
= Ty (a1 (lur) e
x (nz) - (r—1)+Inzx- -(xr—1) x +in
x
1
(1 = ; @T- 13— l -
= lim ——— =lm —— L
xr—1 (. +111.L‘).L r—1 -.'I.’+l.l.l;lf~.’l'
xr @
xr— 1 0 (_t_.l)' 2 — ¥
= 1j = — = lir — 1'
otz — 1 + rinrx [O] =1 (r — 1+ xInx) =t " — 1/ + x'Inx + r(lnx)
=i 1 1—0 =13 1 . 1 1
= I~ -N% e 2+0 2

1—0+1-Inaxr + x -
xr




" Form

- Limit of the form lim f(z)=07,lim g(z) =0
are called indeterminate form of the type 0.

- If we writelin /@ —ewlin 20— then the
limit becomes of the form (0/0) and can be
evaluated by using the L' Hopital’s rule.




Example

Example 1: Find | x°.

=07

Thisis an indeterminate form of the type 0", Let y=x"=hy=hx"=

l
. . M hlx ~ <
xlnx. ]lmlny=hmx1nx=hml_=11m1_x=11m(-x)=0.
=0 x=0" x=0" /x =07 T /f ) x=0"

Thus, Jypx*=¢'=1.

x=0"

—



“ Form

o Limit of the form 1im f(=) = 1. 1im g(2) =
are called indeterminate form of the type

o If we write m f(2)™ = explim ‘f‘/j; , then the limit
becomes of the form (0/0) and can be
evaluated by using the L' Hopital’s rule.




Example

Example 3: Find [im (cosx)% .

x=0"

- * Y . . o ul lv
This is an indeterminate form of the type 1" . Let v = (cosx)z = |

Iny= hl[(cos X)% } . o) . limny= 11m Inipose)

X x=0 X
]im(—tanx)=0. Thus, lim (cosx% =g’ =1.

x=0" x=0"

—




=0 Form

o Limit of the form lim f(z) = oo, lim g(x) = 0

Tr—C

are called indeterminate form of the type
. In £(z)

- If we write /(@) =eplm o5 then the limit
becomes of the form (0/0) and can be
evaluated by using the L' Hopital’s rule.




Example

Example 2: Find |jm (¢’ +1).%.

X=—+0

This is an indeterminate form of the type «°. Let y = (¢* + 1)-% =

(. ¥ =2In(ef +1) . . —2In(e* +1
Iny=In (" +1) 4]= (x , lim Iny = lim ol
A€ J
; e + . =28 . =2 . G vaed
lim — =lim——=lim ——==2.Thus, lim (" +1) =
X—s+m 1 tosm @ +]1 o € X—3+0




The following table lists the most common indeterminate forms and the transformations for applying I'anpital's rule.

'“ﬂ‘-‘:zfr"n‘f“f'“ conditions Transformation to 0/0 Transformation to wfe

o il g : I

o I fl)=00, Liglﬂy(x)=m£iglc% l‘ﬂ%% -

e fle) =0, lmgle) =0 1 lr)fs) = 1% m f(1)g(r) = 1%
e I fla)= o0, gle) = finf(n) - gfo) = iy Uf/(u}( )g{i)()x) I{fle)-glz))=h ‘%
¢ Infl=0"lngle) =0 e = exmﬂ/ﬂf?() yggf(x)“”:expm%
X im f(z) =1, mglz) =00 fim f(sc)g{”wxp}gglc% i f{z)*" —EXPLH/?H(?(I)
A I fla) = 00, Img(z) =0 i f{2)?*) = explim - /fﬁ)() i f(2)*) = explin T EI;



Thank You

—



Eigenvalues and Eigenvectors

5.1 EIGENVECTORS AND EIGENVALUES

Slide 5.1-1



EIGENVECTORS AND EIGENVALUES

Definition: An eigenvector of an N X N matrix A Is
a nonzero vector x such that AX = Ax for some
scalar L. A scalar A is called an eigenvalue of A if
there is a nontrivial solution x of AX =AX ; such an
X 1s called an eigenvector corresponding to A.

A Is an eigenvalue of an N x N matrix A if and only
If the equation

(A=Al)x=0 --—--(1)
has a nontrivial solution.

The set of all solutions of (1) is just the null space
of the matrix A—Al.

Slide 5.1- 2



EIGENVECTORS AND EIGENVALUES

So this set Is a subspace of R and is called the

eigenspace of A corresponding to A.

The eigenspace consists of the zero vector and all the

elgenvectors corresponding to A.

A —

1§

Example 1: Show that 7 Is an eigenvalue of matrix

and find the corresponding eigenvectors.

Slide 5.1- 3



EIGENVECTORS AND EIGENVALUES

= Solution: The scalar 7 Is an eigenvalue of A if and
only if the equation

has a nontrivial solution.

A-T7l =

AX =7X

= But (2) is equivalentto AX —7X =0, or
(A-71)x=0

1 6| |7 0] [-6

5 2] |0 7] 5

--(2)

+-<(3)

= To solve this homogeneous equation, form the matrix

0
-5

Slide 5.1- 4



EIGENVECTORS AND EIGENVALUES

The columns of A— /71| are obviously linearly
dependent, so (3) has nontrivial solutions.

To find the corresponding eigenvectors, use row

operations:

The general solution has the form X,

6 6 0

5 5 0

1
0

-1 0
0 0
=

1

Each vector of this form with X, # 0 is an
eigenvector correspondingto A = 7.

Slide 5.1-5



EIGENVECTORS AND EIGENVA
4 -1 6

= Example2: Let A=2 1 ©
2 -1 8

LUES

. An eigenvalue of

A is 2. Find a basis for the corresponding eigenspace.

= Solution: Form

A-21 =

A
2
2

-1
1
-1

0
0
8

O O N

O N O

N O O

2 -1 6
2 -1 6
2 -1 6

and row reduce the augmented matrix for (A—21)x =0.

Slide 5.1- 6



EIGENVECTORS AND EIGENVALUES

2 -1 6 0] [2 -1 6 0
2 -1 6 0[]0 O O O

2 -1 6 0] [0 00 O

= At this point, it is clear that 2 is indeed an eigenvalue
of A because the equation (A—21)x =0 has free
variables.

= The general solution is
X, 1/2 -3
=X,| 1 |+X,| O |,X,and X, free.
. 0 1

Slide 5.1- 7



EIGENVECTORS AND EIGENVALUES

= The eigenspace, shown in the following figure, Is a

two-dimensional subspace of R3.

= Abasisis

3

-

Multiplication
by A

Slide 5.1- 8



EIGENVECTORS AND EIGENVALUES

= Theorem 1: The eigenvalues of a triangular matrix
are the entries on its main diagonal.

= Proof: For simplicity, consider the 3x 3 case.
= If Ais upper triangular, the A— Al has the form

a, a, a,| [~ 0 0
A-Al=0 a, a,|[—-|0 A O
0 0 a,| |0 0 A
a,-h &, A,
= 0 a,—A a,
L 0 0 aas_}“_

Slide 5.1-9



EIGENVECTORS AND EIGENVALUES

= The scalar A is an eigenvalue of A if and only if the
equation (A—Al)x =0 has a nontrivial solution,
that Is, If and only iIf the equation has a free variable.

= Because of the zero entries in A—Al, it is easy to see
that (A—Al)x =0 has a free variable if and only if
at least one of the entries on the diagonal of A— Al is
ZEro.

= This happens if and only if A equals one of the entries
811, 899, 835 IN A.

Slide 5.1- 10



EIGENVECTORS AND EIGENVALUES

= Theorem 2: If v, ..., v, are eigenvectors that
correspond to distinct eigenvalues A, ..., A, of an N x N

matrix A, then the set {v,, ..., v, } Is linearly
Independent.

= Proof: Suppose {vy, ..., V. } Is linearly dependent.

= Since v, IS nonzero, Theorem 7 in Section 1.7 says that
one of the vectors in the set 1s a linear combination of
the preceding vectors.

= Letp be the least index such that vV, Is a linear
combination of the preceding (linearly independent)
vectors.

Slide 5.1- 11



EIGENVECTORS AND EIGENVALUES

= Then there exist scalars c,, ..., ¢, such that
CV,+-+CV =V | ----(4)

= Multiplying both sides of (4) by A and using the fact

that
CAV,+---+C AV =Av_,

CAV,+++CAV =A__V ----(5)

1”171 P Tp " p p+1 * p+l

= Multiplying both sides of (4) by A . and subtracting
the result from (5), we have

C,(h, —h, IV, ++C (A, —h )V, =0 -(6)

p+1

Slide 5.1- 12



EIGENVECTORS AND EIGENVALUES

= Since {vy, ..., V,} Is linearly independent, the weights
In (6) are all zero.

= But none of the factors A, — A, are zero, because the
eigenvalues are distinct.

= Hence ¢ =0 fori=1,...,p.

= Butthen (4) says that v, =0, which is impossible.

Slide 5.1- 13



EIGENVECTORS AND DIFFERENCE EQUATIONS

= Hence {v,, ..., V,} cannot be linearly dependent and
therefore must be linearly independent.

= |f Aisan NxnN matrix, then
Xea =AX, (k=012..) -—(7)
is a recursive description of a sequence {x,} in[] ".

= Asolution of (7) is an explicit description of {x,}
whose formula for each x, does not depend directly on
A or on the preceding terms In the sequence other than

the initial term X,,.

Slide 5.1- 14



EIGENVECTORS AND DIFFERENCE EQUATIONS

= The simplest way to build a solution of (7) Is to take
an eigenvector x, and its corresponding eigenvalue A
and let

x, =A%, (k=12,..) ----(8)

= This sequence Is a solution because
AX, = A(Mx,) =1 (Ax,) =LA"(Ax,) =L1"x, =X, ,

Slide 5.1- 15



DOUBLE INTEGRALS



m) DEHNITELINE INTEGRAL

b
f Fx) dx
m) DOUBLE INTEGRAL

We integrate afunction f(x,y),called
iIntegrand , over aclosed bounded region R
In the xy-plane , whose boundary curve has
aunigue tangent at each point, but may
have finitely many cusps ( such asvertices of
atriangle or rectangle).



« We subdivide the region Rbydrawing parallel

1} 7 11 N

to “x” and "y” axes. We number the rectangles
that are within Rfrom 1 to n. In each such
rectangle we choose a point, say, (x;., y;.) Inthe
kth rectangle, and then we form thesum

L, = X T, Vo) Ay,
PR |




* Where A4, . Isthe area of the kth rectangle. This
we do for 1arger and larger positive integers n in
a completely independent manner but so that
the length of the maximum diagonal of the
rectangles approaches zero asn approaches
Infinity.

* In this fashion we obtain a sequence of real
numbers

» Assuming /> Jn,> * * * continuous in Rand Ris
bounded by finitely many smooth curves , one
can show that this sequence converges and Its
limit is independent of the choice of subdivisions
and corresponding points (x;., y;.)-



* Thislimit is called the DOUBLE INTEGRAL of
f(x,y) over the region Rand is denoted by

fjf(x, v) dx dy or fff(x, y) dA.
R R

X4




PROPERTIES

* f(X,y) & g(X,y) continuous in aregionR

fjkfdxdy=kJdexdy
R R

ff(f+g)dxdy=Jffdxdy+ffgdxdy
R R

R



| Jffdxc{)’:fffdxd}’Jr Jffdxdy
R R, .

Furthermore, there exists at least one point (xqg, Yo)
INn Rsuch that we have

f |
: f F(x, y) dx dy = f(xo, yo)A
R

Where A isthe area of R; this is called the MEAN
VALUE THEOREM for doubleintegrals.




EVALUATION OF DOUBLE INTEGRAL

(1) Suppose that Rcan be described by
Inequalities of the form

g§EF=D e=jy=2d
* represents the boundary of R. Then

j flx,y)dxdy = f f flx, yldx dy

R C



.............. -t oo
................ Cl. )
{la b

i



(2)Suppose that Rcan be described by inequalities
of the form

§EF=D glx) = 3 = Blx)
* sothat y = g(x) and y = h(x) represents the
boundary of R. Then

 h(x)

fff(X,y)dxdy:fb J f(x, y)dy | dx
R a

L g(@)




a =
=x=b

gx) =y = hx)

5T
h(x)

fRff(x,y)dxdy=J |
fx, y)dy
dx

a
T g@




d[ g

jff(x, y)axdy = f j fx, y)dx | dy

R c | “pw ‘|




* NOTE:-If Rcan not be represented by
those inequalities, but can be subdivided
Into finitely many portions thathave that
property , we may integrate f(x,y) over
each portion separately and add the
results; this will give us the value of the

double integral of f(x,y) over that region
R.



APPLICATION OF DOUBLE INTEGRALS

 The AREA Aof aregion Rin the xy-plane
IS given by the double integral

A = fjdxa’y
R

* The VOLUME V beneath the surface z=
f(x,y)>0 and above aregion Rin the xy-planeis

Vs fff(x, y) dx dy
R




because the term f (xx, y)AA, In J,, atthe
beginning of this section represents the volume of
arectangular parallelepiped with base AA, and
altitude f (x5, vi.)

Z
~




* Letf(x,y) bethe density ( massper unitvolume)
of adistribution of the massin the xy-plane.
Thenthe total mass M in Ris

M = f J f(x, y) dx dy
R

 The CENTER OF GRAVITY of the massin
Rhas the co-orcx, y.e  where

] ff |
X = — xf(x,y)dxdy & y= — f X, v)dxdy
v fx, y) : o yf(x, y) dx dy

R



» The MOMENT OF INERTIA /, and /, of the mass

1} 7

In Rabout the “x” and “y” axis respectively , are

L= f f y2f(x, y) dx dy, L= f f x*f(x, y) dx dy;
R R

e The POLAR MOMENT OF INERTIA I, aboutthe

origin of the massin Ris

~

L; = J j (x* + yA)f(x, y) dx dy.

R



CHANGE OF VARIABLES IN DOUBLE INTEGRALS

fbf(\‘) dx = fﬁf(\'(u)) i{l du
 fl dx F o du

* Here assume that x=x(u) is continuous and has a
continuous derivative in someinterval o =y =
suchthat x(«) = a, x(B) = b [or x(a) = b, x(B) = 4]
and x(u) varies between “a” and “b”when “u”
varies from a andf3.



* The formula for the change of variables infrom

kL, N N (179 b A 11 b -

X", ”y” to “u”, “v” is

d(x, y)
f J f(x, y) dxdy = f Jf(X(u, v), y(u, v)) du dv:
R*

- d(u, v)

that Is the Integrand Is expressed In terms of “u”
and “v” , and “dx dy” Is replaced by “"du dv”
times the absolute value of the JACOBIAN.

ox ox
o a9 YY) ¢ Su gu| - ax Gy dx Ody
i3 d(u, v) = ay Ay ¥ du ov 2 ov Ju
E du



* Here we assume the following. Thefunctions
x=x(u,v) y=y(u,v)
effecting the change are continuous and have
continuous partial derivatives in some region R*
In the uv-plane such that the point (x,y)
corresponding to any (u,v) In R* lies in r and,
conversely , to every (X,y) in Rthere corresponds
one and only one (u,v) in R*; furthermore the
JACOBIAN Jis either positive throughout R*
or negative throughout R*.




For polar co-ordinate “r” and "6~
X=rcosB and y=rsinB

a(x, y)

o(r, 6)

= ¥

cos & —r sin 9)

sin 6 y cos 6

fff(xa y)dxdy = fff(r cos 0, rsin 0) r dr d6
R Rt

where R* is the region in therB-plane
corresponding to Rin the xy-plane.



