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Ratio Test

nIf ∑a is a positive-term series and

then

i. ∑an is convergent if L<1

ii. ∑an is divergent if L>1

iii. The test is inconclusive if L=1
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Use the ratio test to determine whetherthe  

following series converge or diverge.
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Use the ratio test to determine whetherthe  

following series converge or diverge.
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Root Test

Let ∑Un be a non negative series,and

(possiblyassume that lim n→∞n√Un=L

∞)

a. If 0<=L<1 , then ∑Un converges.

b. If L>1 , then ∑ Undiverges.

If L=1then from this test alone we can  

not draw any conclusion about the  

convergence or divergence of∑Un.
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Thank you 





What are indeterminate forms?

◦ In calculus and other branches of mathematical  
analysis, limits involving an algebraic combination of  
functions in an independent variable may often be  
evaluated by replacing these functions by their limits.

◦ If the expression obtained after this substitution does
not give enough information to determine the original
limit, it is said to take on an indeterminateform.



There are seven types of indeterminate forms :

1. 0/0

2. ∞/∞

3. 0 × ∞

4. ∞ − ∞

5. 00

6. 1∞

7. ∞0



Limit of the form

are called indeterminate form of the type 0/0.



L'Hopital's rule is a general method for evaluating the  
indeterminate forms 0/0 and ∞/∞. Thisrule states that  
(under appropriate conditions)

where f' and g' are the derivatives of f andg.

Note that this rule does not apply to expressions ∞/0, 1/0,

and so on.

These derivatives will allow one to perform algebraic  
simplification and eventually evaluate the limit.

https://en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
https://en.wikipedia.org/wiki/Derivative_(calculus)


Rules to evaluate 0/0 form :
1. Check whether the limit is an indeterminate form. If itis

not, then we cannot apply L’ Hopital’s rule.

2. Differentiate f(x) and g(x) separately.

3. If g’(a) ≠ 0, then the limit will exist. It may be finite, +∞  
or -∞. If g’(a)=0 then follow rule4.

4. Differentiate f’(x) & g’(x) separately.

5. Continue the process till required value is reached.









If
form of type 0/0.

, then it is indeterminate



Limit of the form

are called indeterminate form of the type  
0x∞.

If we write f(x) g(x) = f(x)/[1/g(x)], then the  
limit becomes of the form (0/0).

This can be evaluated by using L’ Hopital’s  
rule.





Limit of the form

are called indeterminate form of the type
∞-∞.

If we write , then
the limit becomes of the form (0/0) and can  
be evaluated by using the L’ Hopital’s rule.





Limit of the form

are called indeterminate form of the type .

If we write , then the  
limit becomes of the form (0/0) and can be  
evaluated by using the L’ Hopital’s rule.





Limit of the form

are called indeterminate form of the type
.

If we write , then the limit  
becomes of the form (0/0) and can be  
evaluated by using the L’ Hopital’s rule.





Limit of the form

are called indeterminate form of the type
.

If we write , then the limit  
becomes of the form (0/0) and can be  
evaluated by using the L’ Hopital’s rule.
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EIGENVECTORS AND EIGENVALUES

▪ Definition: An eigenvector of an          matrix A is 

a nonzero vector x such that                 for some 

scalar λ. A scalar λ is called an eigenvalue of A if 

there is a nontrivial solution x of                 ; such an 

x is called an eigenvector corresponding to λ.

▪ λ is an eigenvalue of an           matrix A if and only 

if the equation

----(1)

has a nontrivial solution.

▪ The set of all solutions of (1) is just the null space 

of the matrix            .

n n
x λxA =

x λxA =

( λ )x 0A I− =

n n

λA I−
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EIGENVECTORS AND EIGENVALUES

▪ So this set is a subspace of  ℝn and is called the 

eigenspace of A corresponding to λ.

▪ The eigenspace consists of the zero vector and all the 

eigenvectors corresponding to λ.

▪ Example 1: Show that 7 is an eigenvalue of matrix

and find the corresponding eigenvectors.
1 6

5 2
A

 
=  
 
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EIGENVECTORS AND EIGENVALUES

▪ Solution: The scalar 7 is an eigenvalue of A if and 

only if the equation

----(2)

has a nontrivial solution.

▪ But (2) is equivalent to                      , or 

----(3)

▪ To solve this homogeneous equation, form the matrix

x 7xA =

x 7x 0A − =

( 7 )x 0A I− =

1 6 7 0 6 6
7

5 2 0 7 5 5
A I

−     
− = − =     −     
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EIGENVECTORS AND EIGENVALUES

▪ The columns of               are obviously linearly 
dependent, so (3) has nontrivial solutions.

▪ To find the corresponding eigenvectors, use row 
operations:

▪ The general solution has the form           .

▪ Each vector of this form with              is an 
eigenvector corresponding to          .

7A I−

6 6 0 1 1 0

5 5 0 0 0 0

− −   
   −   

2

1

1
x
 
 
 

2
0x 

λ 7=
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EIGENVECTORS AND EIGENVALUES

▪ Example 2: Let                              . An eigenvalue of 

A is 2. Find a basis for the corresponding eigenspace.

▪ Solution: Form

and row reduce the augmented matrix for                         .  

4 1 6

2 1 6

2 1 8

A

− 
 =
 

−  

4 1 6 2 0 0 2 1 6

2 2 1 6 0 2 0 2 1 6

2 1 8 0 0 2 2 1 6

A I

− −     
     − = − = −
     

− −          

( 2 )x 0A I− =
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EIGENVECTORS AND EIGENVALUES

▪ At this point, it is clear that 2 is indeed an eigenvalue 

of A because the equation                        has free 

variables.

▪ The general solution is

, x2 and x3 free.

2 1 6 0 2 1 6 0

2 1 6 0 0 0 0 0

2 1 6 0 0 0 0 0

− −   
   −
   

−      

( 2 )x 0A I− =

1

2 2 3

3

1/ 2 3

1 0

0 1

x

x x x

x

−     
     = +
     
          
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▪ The eigenspace, shown in the following figure, is a 

two-dimensional subspace of  ℝ3.

▪ A basis is 

1 3

2 , 0

0 1

 −   
    
    
        
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▪ Theorem 1: The eigenvalues of a triangular matrix 

are the entries on its main diagonal.

▪ Proof: For simplicity, consider the          case.

▪ If A is upper triangular, the             has the form

3 3

λA I−

11 12 13

22 23

33

11 12 13

22 23

33

λ 0 0

λ 0 0 λ 0

0 0 0 0 λ

λ

0 λ

0 0 λ

a a a

A I a a

a

a a a

a a

a

   
   − = −
   
      

− 
 = −
 

−  
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▪ The scalar λ is an eigenvalue of A if and only if the 
equation                           has a nontrivial solution, 
that is, if and only if the equation has a free variable.

▪ Because of the zero entries in            , it is easy to see 
that                          has a free variable if and only if 
at least one of the entries on the diagonal of             is 
zero. 

▪ This happens if and only if λ equals one of the entries 
a11, a22, a33 in A.       

( λ )x 0A I− =

λA I−
( λ )x 0A I− =

λA I−
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▪ Theorem 2: If v1, …, vr are eigenvectors that 

correspond to distinct eigenvalues λ1, …, λr of an

matrix A, then the set {v1, …, vr} is linearly 

independent. 

▪ Proof: Suppose {v1, …, vr} is linearly dependent.

▪ Since v1 is nonzero, Theorem 7 in Section 1.7 says that 

one of the vectors in the set is a linear combination of 

the preceding vectors.

▪ Let p be the least index such that         is a linear 

combination of the preceding (linearly independent) 

vectors.

n n

1
v

p+
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▪ Then there exist scalars c1, …, cp such that

----(4)

▪ Multiplying both sides of (4) by A and using the fact 

that 

----(5)

▪ Multiplying both sides of (4) by and subtracting 

the result from (5), we have

----(6)

1 1 1
v v v

p p p
c c

+
+ + =

1 1 1

1 1 1 1 1

v v v

λ v λ v λ v

p p p

p p p p p

c A c A A

c c

+

+ +

+ + =

+ + =

1
λ

p+

1 1 1 1 1
(λ λ )v (λ λ )v 0

p p p p p
c c

+ +
− + + − =
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▪ Since {v1, …, vp} is linearly independent, the weights 

in (6) are all zero.

▪ But none of the factors                are zero, because the 

eigenvalues are distinct.

▪ Hence             for                  .

▪ But then (4) says that               , which is impossible.

1
λ λ

i p+
−

0
i

c = 1, ,i p=

1
v 0

p+
=
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▪ Hence {v1, …, vr} cannot be linearly dependent and 

therefore must be linearly independent. 

▪ If A is an           matrix, then  

----(7)                                        

is a recursive description of a sequence {xk} in      .

▪ A solution of (7) is an explicit description of {xk} 

whose formula for each xk does not depend directly on 

A or on the preceding terms in the sequence other than 

the initial term x0.

n n

1
x x

k k
A

+
= ( 0,1,2 )k =

n
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▪ The simplest way to build a solution of (7) is to take 

an eigenvector x0 and its corresponding eigenvalue λ

and let

----(8)

▪ This sequence is a solution because

0
x λ xk

k
= ( 1,2, )k =

1

0 0 0 0 1
x (λ x ) λ ( x ) λ (λx ) λ x xk k k k

k k
A A A +

+
= = = = =



DOUBLE INTEGRALS



DEFINITE LINE INTEGRAL

DOUBLEINTEGRAL

We integrate a function f(x,y),called  

integrand , over a closed bounded region R  

in the xy-plane , whose boundary curve has  

a unique tangent at each point, but may  

have finitely many cusps ( such as vertices of  

a triangle or rectangle).



• We subdivide the region R bydrawing parallel

to “x” and “y” axes. We number the rectangles  

that are within R from 1 to n. In each such  

rectangle we choose a point, say, in the  

kth rectangle, and then we form thesum



• Where is the area of the kth rectangle.This  
we do for larger and larger positive integers n in  
a completely independent manner but so that  
the length of the maximum diagonal of the  
rectangles approaches zero as n approaches  
infinity.

• In this fashion we obtain a sequence of real  
numbers

• Assuming that f(x,y) is continuous in R and R is  
bounded by finitely many smooth curves , one  
can show that this sequence converges and its  
limit is independent of the choice of subdivisions  
and corresponding points .



• This limit is called the DOUBLE INTEGRAL of 

f(x,y)  over the region R and is denotedby



PROPERTIES
• f(x,y) & g(x,y) continuous in a regionR



•

Furthermore, there exists at least onepoint  

in R such that wehave

Where A is the area of R ; this is called the MEAN 

VALUE THEOREM for doubleintegrals.



EVALUATION OF DOUBLE INTEGRAL

(1) Suppose that R can be described by 

inequalities  of the form

• represents the boundary of R .Then



•

a b

c

d

R



(2)Suppose that R can be described by inequalities  

of the form

• so that represents the  

boundary of R .Then



•





• NOTE:- if R can not be represented by  

those inequalities, but can besubdivided  

into finitely many portions thathave that  

property , we may integrate f(x,y) over  

each portion separately and add the  

results; this will give us the value of the  

double integral of f(x,y) over that region  

R.



APPLICATION OF DOUBLE INTEGRALS

• The AREAA of a region R in the xy-plane 

is  given by the double integral

• The VOLUME V beneath the surface z= 

f(x,y)>0  and above a region R in the xy-plane is



• because the term f in at the  

beginning of this section represents thevolume of  

a rectangular parallelepiped with base and  

altitude f



• Let f(x,y) be the density ( mass per unit volume)  

of a distribution of the mass in the xy-plane.  

Then the total mass M in Ris

• The CENTER OF GRAVITY of the mass in 

R has  the co-ordinate where

• &



• The MOMENT OF INERTIA of themass  

in Rabout the “x” and “y” axis respectively , are

• The POLAR MOMENT OF INERTIA

origin of the mass in Ris

about the



CHANGE OF VARIABLES IN DOUBLE INTEGRALS

• Here assume that x=x(u) is continuous and has a  

continuous derivative in someinterval

such that

and x(u) varies between “a” and “b”when “u”  

varies from α andβ.



• The formula for the change of variables infrom  

“x”, ”y” to “u”, “v” is

• that is the integrand is expressed in terms of “u”  

and “v” , and “dx dy” is replaced by “du dv”  

times the absolute value of the JACOBIAN.



• Here we assume the following. Thefunctions  

x=x(u,v) y=y(u,v)

• effecting the change are continuous and have  

continuous partial derivatives in some region R*  

in the uv-plane such that the point (x,y)  

corresponding to any (u,v) in R* lies in r and,  

conversely , to every (x,y) in R therecorresponds  

one and only one (u,v) in R*; furthermore the  

JACOBIAN J is either positive throughout R* 

or  negative throughout R*.



• For polar co-ordinate “r” and “θ”

• x= rcosθ and y= rsinθ

• where R* is the region in therθ-plane  
corresponding to R in thexy-plane.


