
Chapter 1

Introduction to Fluid Mechanics



Definition

 Mechanics is the oldest physical science that deals with

both stationary and moving bodies under the influence of

forces.

 The branch of mechanics that deals with bodies at rest is

called statics, while the branch that deals with bodies in

motion is called dynamics.

 The subcategory fluid mechanics is defined as the science

that deals with the behavior of fluids at rest (fluid statics)

or in motion (fluid dynamics), and the interaction of fluids

with solids or other fluids at the boundaries.

 The study of fluids at rest is called fluid statics.
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Definition

 The study of f1uids in motion, where pressure forces are

not considered, is called fluid kinematics and if the

pressure forces are also considered for the fluids in

motion. that branch of science is called fluid dynamics.

 Fluid mechanics itself is also divided into several

categories.

 The study of the motion of fluids that are practically

incompressible (such as liquids, especially water, and

gases at low speeds) is usually referred to as

hydrodynamics.

 A subcategory of hydrodynamics is hydraulics, which

deals with liquid flows in pipes and open channels.
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 Gas dynamics deals with the flow of fluids that undergo

significant density changes, such as the flow of gases

through nozzles at high speeds.

 The category aerodynamics deals with the flow of gases

(especially air) over bodies such as aircraft, rockets, and

automobiles at high or low speeds.

 Some other specialized categories such as meteorology,

oceanography, and hydrology deal with naturally

occurring flows.

Definition
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What is a Fluid?

 A substance exists in three primary phases: solid, liquid,  

and gas. A substance in the liquid or gas phase is referred  

to as a fluid.

 Distinction between a solid and a fluid is made on the basis  

of the substance’s ability to resist an applied shear (or  

tangential) stress that tends to change its shape.

 A solid can resist an applied shear stress by deforming,  

whereas a fluid deforms continuously under the influence  

of shear stress, no matter how small.

 In solids stress is proportional to strain, but in fluids stress

is proportional to strain rate.
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What is a Fluid?

 When a constant  

shear force is  

applied, a solid  

eventually stops  

deforming, at some  

fixed strain angle,  

whereas a fluid  

never stops  

deforming and  

approaches a certain  

rate of strain.

Figure.

Deformation of a rubber eraser  

placed between two parallel plates  

under the influence of a shear force.
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 In a liquid, molecules can move

relative to each other, but the volume

remains relatively constant because of

the strong cohesive forces between the

molecules.

 As a result, a liquid takes the shape of

the container it is in, and it forms a

free surface in a larger container in a

gravitational field.

 A gas, on the other hand, expands until

it encounters the walls of the container

and fills the entire available space.

 This is because the gas molecules are

widely spaced, and the cohesive forces

between them are very small.

 Unlike liquids, gases cannot form a

free surface7

What is a Fluid?
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 Differences between liquid and gases

Liquid Gases

Difficult to compress and  

often regarded as  

incompressible

Easily to compress – changes of  

volume is large, cannot normally  

be neglected and are related to  

temperature

Occupies a fixed volume

and will take the shape of

the container

No fixed volume, it changes

volume to expand to fill the

containing vessels

A free surface is formed if

the volume of container is

greater than the liquid.

Completely fill the vessel so that  

no free surface is formed.

What is a Fluid?



Application areas of Fluid Mechanics

 Mechanics of fluids is extremely important in many areas  
of engineering and science. Examples are:

 Biomechanics

 Blood flow through arteries and veins

 Airflow in the lungs

 Flow of cerebral fluid

 Households

 Piping systems for cold water, natural gas, and sewage

 Piping and ducting network of heating and air-
conditioning systems

 refrigerator, vacuum cleaner, dish washer, washing
machine, water meter, natural gas meter, air conditioner,
radiator, etc.

 Meteorology and Ocean Engineering

 Movements of air currents and water currents9



Application areas of Fluid Mechanics

 Mechanical Engineering
 Design of pumps, turbines, air-conditioning equipment,

pollution-control equipment, etc.

 Design and analysis of aircraft, boats, submarines,  

rockets, jet engines, wind turbines, biomedical devices,  

the cooling of electronic components, and the  

transportation of water, crude oil, and natural gas.

 Civil Engineering

 Transport of river sediments

 Pollution of air and water

 Design of piping systems

 Flood control systems

 Chemical Engineering

 Design of chemical processing equipment
10



 Turbomachines: pump, turbine, fan, blower, propeller, etc.

 Military: Missile, aircraft, ship, underwater vehicle, dispersion  

of chemical agents, etc.

 Automobile: IC engine, air conditioning, fuel flow, external

aerodynamics, etc.

 Medicine: Heart assist device, artificial heart valve, Lab-on-a-

Chip device, glucose monitor, controlled drug delivery, etc.

 Electronics: Convective cooling of generated heat.

 Energy: Combuster, burner, boiler, gas, hydro and wind  

turbine, etc.

 Oil and Gas: Pipeline, pump, valve, offshore rig, oil spill  

cleanup, etc.

 Almost everything in our world is either in contact with a fluid

or is itself a fluid.11

Application areas of Fluid Mechanics



 The number of fluid engineering applications is enormous:  

breathing, blood flow, swimming, pumps, fans, turbines,  

airplanes, ships, rivers, windmills, pipes, missiles, icebergs,  

engines, filters, jets, and sprinklers, to name a few.

 When you think about it, almost everything on this planet

either is a fluid or moves within or near a fluid.

Application areas of Fluid Mechanics
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Application areas of Fluid Mechanics
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Application areas of Fluid Mechanics
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Application areas of Fluid Mechanics
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Classification of Fluid Flows

 There is a wide variety of fluid flow problems encountered  

in practice, and it is usually convenient to classify them on  

the basis of some common characteristics to make it  

feasible to study them in groups.

Viscous versus Inviscid Regions of Flow

 When two fluid layers move relative to each other, a  

friction force develops between them and the slower layer  

tries to slow down the faster layer.

 This internal resistance to flow is quantified by the fluid  

property viscosity, which is a measure of internal stickiness  

of the fluid.

 Viscosity is caused by cohesive forces between the  

molecules in liquids and by molecular collisions in gases.
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Viscous versus Inviscid Regions of Flow…

 There is no fluid with zero viscosity, and thus all fluid

flows involve viscous effects to some degree.

 Flows in which the frictional effects are significant are  

called viscous flows.

 However, in many flows of practical interest, there are  

regions (typically regions not close to solid surfaces) where  

viscous forces are negligibly small compared to inertial or  

pressure forces.

 Neglecting the viscous terms in such inviscid flow regions  

greatly simplifies the analysis without much loss in  

accuracy.

Classification of Fluid Flows

17



Viscous versus Inviscid Regions of Flow

Classification of Fluid Flows
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Internal versus External Flow

 A fluid flow is classified as being internal or external,  

depending on whether the fluid is forced to flow in a  

confined channel or over a surface.

 The flow of an unbounded fluid over a surface such as a

plate, a wire, or a pipe is external flow.

 The flow in a pipe or duct is internal flow if the fluid is  

completely bounded by solid surfaces.

 Water flow in a pipe, for example, is internal flow, and  

airflow over a ball or over an exposed pipe during a windy  

day is external flow .

Classification of Fluid Flows
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Compressible versus Incompressible Flow

 A flow is classified as being compressible or  

incompressible, depending on the level of variation of  

density during flow.

 Incompressibility is an approximation, and a flow is said to  

be incompressible if the density remains nearly constant  

throughout.

 Therefore, the volume of every portion of fluid remains  

unchanged over the course of its motion when the flow (or  

the fluid) is incompressible.

 The densities of liquids are essentially constant, and thus  

the flow of liquids is typically incompressible. Therefore,  

liquids are usually referred to as incompressible substances.

Classification of Fluid Flows
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Compressible versus Incompressible Flow…

 A pressure of 210 atm, for example, causes the density of  

liquid water at 1 atm to change by just 1 percent.

 Gases, on the other hand, are highly compressible. A  

pressure change of just 0.01 atm, for example, causes a  

change of 1 percent in the density of atmospheric air.

 Gas flows can often be approximated as incompressible if  

the density changes are under about 5 percent.

 The compressibility effects of air can be neglected at  

speeds under about 100 m/s.

Classification of Fluid Flows
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Classification of Fluid Flows

Laminar versus Turbulent Flow

 Some flows are smooth and orderly  

while others are rather chaotic.

 The highly ordered fluid motion  

characterized by smooth layers of  

fluid is called laminar.

 The flow of high-viscosity fluids  

such as oils at low velocities is  

typically laminar.

 The highly disordered fluid motion  

that typically occurs at high  

velocities and is characterized by  

velocity fluctuations is called  

turbulent .
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Classification of Fluid Flows

Laminar versus Turbulent Flow

 The flow of low-viscosity fluids  

such as air at high velocities is  

typically turbulent.

 A flow that alternates between

being laminar and turbulent is

called transitional.
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Natural (or Unforced) versus Forced Flow

 A fluid flow is said to be natural or forced, depending on  

how the fluid motion is initiated.

 In forced flow, a fluid is forced to flow over a surface or in

a pipe by external means such as a pump or a fan.

 In natural flows, any fluid motion is due to natural means

such as the buoyancy effect, which manifests itself as the

rise of the warmer (and thus lighter) fluid and the fall of

cooler (and thus denser) fluid .

 In solar hot-water systems, for example, the

thermosiphoning effect is commonly used to replace pumps

by placing the water tank sufficiently above the solar

collectors.

Classification of Fluid Flows
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Steady versus Unsteady Flow

 The terms steady and uniform are used frequently in

engineering, and thus it is important to have a clear

understanding of their meanings.

 The term steady implies no change at a point with time.

 The opposite of steady is unsteady.

 The term uniform implies no change with location

over a specified region.

Classification of Fluid Flows
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Properties of Fluids

 Any characteristic of a system is called a property.

 Some familiar properties are pressure P, temperature T,

volume V, and massm.

 Other less familiar properties include viscosity, thermal

conductivity, modulus of elasticity, thermal expansion

coefficient, electric resistivity, and even velocity and

elevation.

 Properties are considered to be either intensive or extensive.

 Intensive properties are those that are independent of the mass

of a system, such as temperature, pressure, and density.

 Extensive properties are those whose values depend on the

size—or extent—of the system. Total mass, total volume V, and

total momentum are some examples of extensive properties.
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Properties of Fluids

 An easy way to determine  

whether a property is  

intensive or extensive is to  

divide the system into two  

equal parts with an imaginary  

partition.

 Each part will have the same  

value of intensive properties  

as the original system, but  

half the value of the extensive  

properties.

27



Properties of Fluids

Density or Mass Density

 Density or mass density of a fluid is defined as the ratio of  

the mass of a f1uid to its volume. Thus mass per unit  

volume of a fluid is called density. It is denoted the symbol  

ρ (rho). The unit of mass density in SI unit is kg per cubic  

meter, i.e ., kg/m3.

 The density of liquids may be considered as constant while  

that of gases changes with the variation of pressure and  

temperature.

 Mathematically mass density is written as.

 The value of density of water is 1 gm/cm3 or 1000 kg/m3.

Volume of fluid

28

Mass of fluid
 =



Density or Mass Density

 The density of a substance, in general, depends on  

temperature and pressure.

 The density of most gases is proportional to pressure and  

inversely proportional to temperature.

 Liquids and solids, on the other hand, are essentially

incompressible substances, and the variation of their

density with pressure is usually negligible.

Properties of Fluids

29



Properties of Fluids

Specific weight or Weight Density

 Specific weight or weight density of a fluid is the ratio  

between the weight of a fluid to its volume.

 Thus weight per unit volume of a fluid is called weight

density and it is denoted by the symbol w.

 Mathematically,

w =
Weight of fluid 

=
(Mass of fluid) x Acceleration due to gravity  

Volume of fluid Volume of fluid

=
Mass of fluid x g

Volume of fluid

=  x g

w = g
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Properties of Fluids

Specific Volume

 Specific volume of a fluid is defined as the volume of a  

fluid occupied by a unit mass or volume per unit mass of a  

fluid is called specific volume.

 Mathematically, it is expressed as

 Thus specific volume is the reciprocal of mass density. It is  

expressed as m3/kg.

 It is commonly applied to gases.



1

Mass of fluid

Volume

Mass of fluid
=

1
Specific volume =

Volume offluid 
=
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Properties of Fluids
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Weight density (density)of air

Thus weight density of a liquid = S x Weight densityof water

= S x 1000x 9.81N/m3  

Thus density of a liquid = S x Densityof water

= S x 1000kg/m3

Specific Gravity.

 Specific gravity is defined as the ratio of the weight density (or  

density) of a fluid to the weight density (or density) of a standard  

fluid.

 For liquids, the standard fluid is taken water and for gases, the  

standard fluid is taken air. Specific gravity is also called relative  

density. It is dimensionless quantity and is denoted by the symbol S.

S(for liquids) =
Weight density (density)of liquid

Weight density (density)of water

S(for gases) =
Weight density (density)of gas



Properties of Fluids

Specific Gravity.

 If the specific gravity of a  

fluid is known, then the  

density of the fluid will be  

equal to specific gravity of  

fluid multiplied by the  

density of water.

 For example the specific  

gravity of mercury is 13.6,  

hence density of mercury

= 13.6 x 1000 = 13600

kg/m3.
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Properties of Fluids

Example 1.

Calculate the specific weight, density and specific gravity of one  

liter of a liquid which weighs 7 N.
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Example 2. Calculate the density, specific weight and weight of  

one liter of petrol of specific gravity = 0.7
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Viscosity

 Viscosity is defined as the property of a fluid which offers  

resistance to the movement of one layer of fluid over another  

adjacent layer of the fluid.

 When two layers of a fluid, a distance 'dy' apart move one over  

the other at different velocities say u and u+ du as shown in Fig.

1.1 , the viscosity together with relative velocity causes a shear  

stress acting between the fluid layers:

Properties of Fluids
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Properties of Fluids

Viscosity

 The top layer causes a shear stress on the adjacent lower  

layer while the lower layer causes a shear stress on the  

adjacent top layer.

 This shear stress is proportional to the rate of change of  

velocity with respect to y. It is denoted by symbol τ called  

Tau.

 Mathematically,

 or

(1.2)
dy

 = 
du
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represents the rate of shear strain or rate of shear

deformation or velocity gradient.

 From equation (1.2) we have

 Thus viscosity is also defined as the shear stress  

required to produce unit rate of shear strain.

 dy

Properties of Fluids

 where μ (called mu) is the constant of proportionality  

and is known as the coefficient of dynamic viscosity or  

only viscosity.

du

(1.3)
du  

dy

 =

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Unit of Viscosity.

 The unit of viscosity is obtained by putting the  

dimension of the quantities in equation ( 1.3)

Properties of Fluids

SI unit of viscosity =
Newton second

=
Ns

m2 m2
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Properties of Fluids

Kinematic Viscosity.

 It is defined as the ratio between the dynamic viscosity and

density of fluid.lt is denoted by the Greek symbol (ν) called

'nu' . Thus, mathematically,

 =
Viscosity 

=


Density 

 The SI unit of kinematic viscosity is m2/s.

Newton's Law of Viscosity.

 It states that the shear stress (τ) on a fluid element layer is  

directly proportional to the rate of shear strain. The constant  

of proportionality is called the co-efficient viscosity.  

Mathematically, it is expressed as given by equation (1 . 2).
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Properties of Fluids

 Fluids which obey the above relation are known as 

Newtonian fluids and the fluids which do not obey the  

above relation are called Non-newtonian fluids.

Variation of Viscosity with Temperature

 Temperature affects the viscosity.

 The viscosity of liquids decreases with the increase of  

temperature while the viscosity of gases increases with  

increase of temperature. This is due to reason that the  

viscous forces in a fluid are due to cohesive forces and  

molecular momentum transfer.

 In liquids the cohesive forces predominates the molecular  

momentum transfer due to closely packed molecules and  

with the increase in temperature, the cohesive forces  

decreases with the result of decreasing viscosity.
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Properties of Fluids

 But in the case of gases the cohesive force are small and

molecular momentum transfer predominates. With the

increase in temperature, molecular momentum transfer

increases and hence viscosity increases. The relation between

viscosity and temperature for liquids and gases are:

42
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2

(ii) For a gas,




 1 

where for air o = 0.000017,  = 0.000000056,  = 0.1189x 10
-9

,  = are constants for theliquid
For water, μo = 1.79 x 10 poise, = 0.03368and  =0.000221

-3

(i) For liquids,  =  

 = o + t −t
2

where  =Viscosityof liquid at t oC, in poise

o = Viscosity of liquid at 0 C,in poise

10 m2
1poise=

1 Ns

o 1+t + t



Types of Fluids

1. Ideal Fluid. A fluid, which is incompressible and is  

having no viscosity, is known as an ideal fluid. Ideal  

fluid is only an imaginary fluid as all the fluids, which  

exist, have some viscosity.

2. Real fluid. A fluid, which possesses viscosity, is knownas

real fluid. All the fluids: in actual practice, are real fluids.

3. Newtonian Fluid. A real fluid, in which the shear stressis  

directly, proportional to the rate of shear strain (or  

velocity gradient), is known as a Newtonian fluid.

4. Non-Newtonian fluid. A real fluid, in which shear stress

is not proportional to the rate of shear strain (or velocity

gradient), known as a Non-Newtonian fluid.
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Types of Fluids

5. Ideal Plastic Fluid.

A fluid, in which shear  

stress is more than the  

yield value and shear  

stress is proportional  

to the rate of shear  

strain (or velocity  

gradient), is known as  

ideal plastic fluid.
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Example 3

If the velocity distribution over a plate is given by

metre above the plate, determine the shear stress at y = 0

and y= 0.15 m. Take dynamic viscosity of fluid as 8.63

poises.

3
in which u is velocity in metre per second at a distance y

45

u =
2 

y − y2
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Example 4

Calculate the dynamic viscosity of an oil, which is used for

lubrication between a square plate of size 0.8 m x 0.8 m and an

inclined plane with angle of inclination 30o as shown in Fig. 1.4.

The weight of the square plate is 300 N and it slides down the

inclined plane with a uniform velocity of 0.3 m/s. The thickness

of oil film is 1.5 mm.

Fig.1.4
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Example 5

The space between two square flat parallel plates is filled with  

oil. Each side of the plate is 60 cm. The thickness of the oil  

film is 12.5 mm. The upper plate, which moves at 2.5 metre per  

sec requires a force of 98.1 N to maintain the speed.

Determine : ·

i.the dynamic viscosity of the oil, and

ii.the kinematic viscosity of the oil if the specific gravity of the  

oil is 0.95.

Solution. Given:

Each side of a square plate = 60 cm = 0.6 m

Area A= 0.6 x 0.6 = 0.36 m2

49

Thickness of oil film  

Velocity of upper plate

dy = 12.5 mm = 12.5 x 10-3 m  

u = 2.5 m/s
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Thermodynamic Properties

 Fluids consist of liquids or gases. But gases are compressible

fluids and hence thermodynamic properties play an important

role.

 With the change of pressure and temperature, the gases undergo

large variation in density.

 The relationship between pressure (absolute), specific volume

and temperature (absolute) of a gas is given by the equation of

state as
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 Isothermal Process. If the changes in density occurs at  

constant temperature, then the process is called isothermal  

and relationship between pressure (p) and density (ρ) is

given by

J

kg.K
 The value of gas constant R is R = 287

Thermodynamic Properties

ρ

 Adiabatic Process. If the change in density occurs with no  

heat exchange to and from the gas, the process is called  

adiabatic. And if no heat is generated within the gas due to  

friction, the relationship between pressure and density is  

given by

p 
= constant

p

52
ρk

= constant



 where k = Ratio of specific heat of a gas at constant  

pressure and constant volume.

 k = 1.4 for air

Thermodynamic Properties
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Compressibility and Bulk Modulus

 Compressibility is the reciprocal of the bulk modulus of

elasticity, K which is defined as the ratio of compressive

stress to volumetric strain.

 Consider a cylinder fitted with a piston as shown in the Fig.

 Let V= Volume of a gas enclosed in the cylinder

p =Pressure of gas when volume is V

 Let the pressure is increased to p+ dp, the volume of gas

decreases from V to V – dV.

 Then increase in pressure = dp

 Decrease in volume = dV

 Volumetric strain = - dV/V
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 - ve sign means the volume  

decreases with increase of pressure.

dV
= −

dp
V=

V

 Compressibility is given by = 1/K

dp

-dV

Volumetricstrain
K =

Increase of pressure
Bulk modules

Compressibility and Bulk Modulus
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Surface Tension and Capillarity

 Surface tension is defined as the tensile force acting on the  

surface of a liquid in contact with a gas or on the surface  

between two immiscible liquids such that the contact  

surface behaves like a membrane under tension.

 Surface tension is created due to the unbalanced cohesive  

forces acting on the liquid molecules at the fluid surface.

 Molecules in the interior of the fluid mass are surrounded

by molecules that are attracted to each other equally.

 However, molecules along the surface are subjected to a net  

force toward the interior.

 The apparent physical consequence of this unbalanced  

force along the surface is to create the hypothetical skin or  

membrane.
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Surface Tension and Capillarity

 A tensile force may be  

considered to be acting in the  

plane of the surface along any  

line in the surface.

 The intensity of the molecular  

attraction per unit length along  

any line in the surface is  

called the surface tension.

 It is denoted by Greek letter σ  

(called sigma).

 The SI unit is N/m.
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Surface Tension and Capillarity

Surface Tension on liquid Droplet and  

Bubble

 Consider a small spherical droplet of a  

liquid of radius ‘R'. On the entire  

surface of the droplet, the tensile force  

due to surface tension will be acting.

 Let σ = surface tension of the liquid

 P= Pressure intensity inside the  

droplet (in excess of the outside  

pressure intensity)

 R= Radius of droplet.

 Let the droplet is cut into two halves.  

The forces acting on one half (say left  

half) will be
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 (i) tensile force due to  

surface tension acting  

around the circumference  

of the cut portion as  

shown and this is equal to

= σ x Circumference

= σ x 2πR

 (ii) pressure force on the  

area (π/4)d2 and

 = P x πR2 asshown

Surface Tension and Capillarity

59



 These two forces will be equal and opposite under  

equilibrium conditions, i.e.,

 A hollow bubble like a soap bubble in air has two surfaces

in contact with air, one inside and other outside. Thus two

surfaces are subjected surface tension.

Surface Tension and Capillarity
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Surface Tension……. Example 1

 Find the surface tension in a soap bubble of 40 mm  

diameter when the inside pressure is 2.5 N/m2 above  

atmospheric pressure.
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Surface Tension……. Example 2

 The pressure outside the droplet of water of diameter

0.04 mm is 10.32 N/cm2 (atmospheric pressure).  

Calculate the pressure within the droplet if surface  

tension is given as 0.0725 N/m of water.
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Surface Tension and Capillarity

Capillarity

 Capillarity is defined as a phenomenon of rise or fall of a

liquid surface in a small tube relative to the adjacent general

level of liquid when the tube is held vertically in the liquid.

 The rise of liquid surface is known as capillary rise while

the fall of the liquid surface is known as capillary

depression.

 The attraction (adhesion) between the wall of the tube and

liquid molecules is strong enough to overcome the mutual

attraction (cohesion) of the molecules and pull them up the

wall. Hence, the liquid is said to wet the solid surface.

 It is expressed in terms of cm or mm of liquid. Its value

depends upon the specific weight of the liquid, diameter of

the tube and surface tension of the liquid.
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Surface Tension and Capillarity

Expression for Capillary Rise

 Consider a glass tube of small  

diameter ‘d’ opened at both ends  

and is inserted in a liquid, say water.

 The liquid will rise in the tube

above the level of the liquid.

 Let h = the height of the liquid in  

the tube . Under a state of  

equilibrium, the weight of the liquid  

of height h is balanced by the force  

at the surface of the liquid in the  

tube. But the force at the surface of  

the liquid in the tube is due to  

surface tension.
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Expression for Capillary Rise…

 Let σ = Surface tension of liquid

θ = Angle of contact between the liquid and glass tube

 The weight of the liquid of height h in the tube

= (Area of the tube x h) x ρ x g
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Expression for Capillary Rise…

 The value of θ between water and clean glass tube is  

approximately equal to zero and hence cos θ is equal to  

unity. Then rise of water is given by

 Contact angle depends on both the liquid and the solid.

 If θ is less than 90o, the liquid is said to "wet" the solid.  

However, if θ is greater than 90o, the liquid is repelled by  

the solid, and tries not to "wet" it.

 For example, water wets glass, but not wax. Mercury on the  

other hand does not wet glass.
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Capillarity

Expression for Capillary Fall

 lf the glass tube is dipped in mercury, the revel of  

mercury in the tube will be lower than the general level  

of the outside liquid as shown above.
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Capillarity

Expression for Capillary Fall

 Let h = Height of depression in

tube.

 Then in equilibrium, two forces

arc acting on the mercury inside

the tube.

 First one is due to surface tension

acting in the downward direction

and is equal to σ x πd x cos θ.

 Second force is due to hydrostatic  

force acting upward and is equal  

to intensity of pressure at a depth  

'h' x Area
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Expression for Capillary Fall

69

Capillarity

Value of θ for mercury and glass tube is 128o



Capillarity…Example 1

 Calculate the capillary rise in a glass tube of 2.5 mm  

diameter when immersed vertically in (a) water and (b)  

mercury. Take surface tensions σ = 0.0725 N/m for  

water and σ = 0.52 N/m for mercury in contact with  

air. The specific gravity for mercury is given as 13.6  

and angle of contact = 130o.
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Capillarity…Example 1
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 Find out the minimum size of glass tube that can be used to  

measure water level if the capillary rise in the tube is to be  

restricted to 2 mm. Consider surface tension of water in  

contact with air as 0.073575 N/m.

Capillarity…Example 2
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Flow Analysis Techniques

 In analyzing fluid motion,

we might take one of two

paths:

1. Seeking an estimate of  

gross effects (mass flow,  

induced force, energy  

change) over a finite  

region or control volume  

or

2. Seeking the point-by-

point details of a flow  

pattern by analyzing an  

infinitesimal region of  

the flow.
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 The control volume technique is useful when we are  

interested in the overall features of a flow, such as mass  

flow rate into and out of the control volume or net forces  

applied to bodies.

 Differential analysis, on the other hand, involves  

application of differential equations of fluid motion to any  

and every point in the flow field over a region called the  

flow domain.

 When solved, these differential equations yield details  

about the velocity, density, pressure, etc., at every point  

throughout the entire flow domain.

Flow Analysis Techniques
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Flow Patterns

 Fluid mechanics is a highly visual subject. The patterns of flow  

can be visualized in a dozen different ways, and you can view  

these sketches or photographs and learn a great deal  

qualitatively and often quantitatively about the flow.

 Four basic types of line patterns are used to visualize flows:

1. A streamline is a line everywhere tangent to the velocity  

vector at a given instant.

2. A pathline is the actual path traversed by a given fluid

particle.

3. A streakline is the locus of particles that have earlierpassed  

through a prescribed point.

4. A timeline is a set of fluid particles that form a line at a  

given instant.
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 The streamline is convenient to calculate mathematically,  

while the other three are easier to generate experimentally.

 Note that a streamline and a timeline are instantaneous lines,  

while the pathline and the streakline are generated by the  

passage of time.

 A streamline is a line that is everywhere tangent to the  

velocity field. If the flow is steady, nothing at a fixed point  

(including the velocity direction) changes with time, so the  

streamlines are fixed lines in space.

 For unsteady flows the streamlines may change shape with  

time.

 A pathline is the line traced out by a given particle as it flows  

from one point to another.

Flow Patterns
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 A streakline consists of all particles in a flow that have

previously passed through a common point. Streaklines are

more of a laboratory tool than an analytical tool.

 They can be obtained by taking instantaneous photographs of

marked particles that all passed through a given location in

the flow field at some earlier time.

 Such a line can be produced by continuously injecting

marked fluid (neutrally buoyant smoke in air, or dye in water)

at a given location.

 If the flow is steady, each successively injected particle

follows precisely behind the previous one forming a steady

streakline that is exactly the same as the streamline through

the injection point.

Flow Patterns
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Flow Patterns

(a) Streamlines
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(b) Streaklines



 Streaklines are often confused with streamlines or pathlines.

 While the three flow patterns are identical in steady flow, they  

can be quite different in unsteady flow.

 The main difference is that a streamline represents an  

instantaneous flow pattern at a given instant in time, while a  

streakline and a pathline are flow patterns that have some age  

and thus a time history associated with them.

 If the flow is steady, streamlines, pathlines, and streaklines are  

identical

Flow Patterns
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Dimensions and Units

 Fluid mechanics deals with the measurement of many  

variables of many different types of units. Hence we need  

to be very careful to be consistent.

Dimensions and Base Units

 The dimension of a measure is independent of any  

particular system of units. For example, velocity may be  

inmetres per second or miles per hour, but dimensionally, it  

is always length per time, or L/T = LT−1 .

 The dimensions of the relevant base units of the Système

International (SI) system are:
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Dimensions and Units

Derived Units
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Unit Table

Quantity SI Unit English Unit

Length (L) Meter (m) Foot (ft)

Mass (m) Kilogram (kg) Slug (slug) =

lb*sec2/ft

Time (T) Second (s) Second (sec)

Temperature ( ) Celcius (oC) Farenheit (oF)

Force Newton

(N)=kg*m/s2

Pound (lb)
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Dimensions and Units…

 1 Newton – Force required to accelerate a 1 kg of mass  

to 1 m/s2

 1 slug – is the mass that accelerates at 1 ft/s2 when acted  

upon by a force of 1 lb

 To remember units of a Newton use F=ma (Newton’s 2nd 

Law)

 [F] = [m][a]= kg*m/s2 = N

 To remember units of a slug also use F=ma => m = F / a

 [m] = [F] / [a] = lb / (ft / sec2) = lb*sec2 / ft
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End of Chapter 1

Next Lecture

Chapter 2: Fluid Statics
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Bernoulli

Along a Streamline

j
i

z

y

x

k
ŝ

n̂

ˆp g − = +a k
Separate acceleration due to gravity. Coordinate 

system may be in any orientation!

k is vertical, s is in direction of flow, n is normal.

s

zp

ss

d

d
a g 


− = +


Component of g in s direction

Note: No shear forces! 

Therefore flow must be 

frictionless. 

Steady state (no change in 

p wrt time)



Bernoulli

Along a Streamline

s

dV V
a

dt s


= =



s

p dz
a

s ds
 


− = +


p p
dp ds dn

s n

 
= +
 

0  (n is constant along streamline, dn=0)

dp dV dz
V

ds ds ds
 − = +

Write acceleration as derivative wrt s

Chain rule

ds

dt
=

dp ds p s =   dV ds V s=  and

Can we eliminate the partial derivative?

V
V

s







Integrate F=ma Along a 

Streamline

0dp VdV dz + + =

0
dp

VdV g dz

+ + =  

21

2
p

dp
V gz C


+ + =

2

'

1

2
pp V z C + + =

If density is constant…

But density is a function 

of ________.pressure

Eliminate ds

Now let’s integrate…

dp dV dz
V

ds ds ds
 − = +



➢Assumptions needed for Bernoulli Equation

➢Eliminate the constant in the Bernoulli equation? 

_______________________________________

➢Bernoulli equation does not include

➢ ___________________________

➢ ___________________________

Bernoulli Equation

Apply at two points along a streamline.

Mechanical energy to thermal energy

Heat transfer, Shaft Work

Frictionless
Steady
Constant density (incompressible)
Along a streamline



Bernoulli Equation

The Bernoulli Equation is a 

statement of the conservation 

of ____________________Mechanical Energy p.e. k.e.

21

2
p

p
gz V C


+ + =

2

"
2

p

p V
z C

g
+ + =

Pressure head
p


=

z =

p
z


+ =

2

2

V

g
=

Elevation head

Velocity head

Piezometric head

2

2

p V
z

g
+ + =

Total head

Energy Grade Line

Hydraulic Grade Line



Bernoulli Equation: Simple Case 

(V = 0)

➢Reservoir (V = 0)

➢Put one point on the surface, 

one point anywhere else

z

Elevation datum

2
1 2

p
z z

g
- =

Pressure datum 1

2

Same as we found using statics 

2

"
2

p

p V
z C

g
+ + =

1 2
1 2

p p
z z

 
+ = +

We didn’t cross any streamlines 

so this analysis is okay!



Mechanical Energy 

Conserved

Hydraulic and Energy Grade 

Lines (neglecting losses for now)

The 2 cm diameter jet is 

5 m lower than the 

surface of the reservoir. 

What is the flow rate 

(Q)?p



z

2

2

V

g

Elevation datum

z

Pressure datum? __________________Atmospheric pressure

Teams

z

2

2

V

g

2

"
2

p

p V
z C

g
+ + =

Mechanical energy



Bernoulli Equation: Simple Case 

(p = 0 or constant)

➢What is an example of a fluid experiencing 

a change in elevation, but remaining at a 

constant pressure? ________
2 2

1 1 2 2
1 2

2 2

p V p V
z z

g g 
+ + = + +

( ) 2

2 1 2 12V g z z V= - +

2 2

1 2
1 2

2 2

V V
z z

g g
+ = +

Free jet 

Munson Movies/V3_5 free jet soda bottle and dam.mov


Pitot Tubes

➢Used to measure air speed on airplanes

➢Can connect a differential pressure 

transducer to directly measure V2/2g

➢Can be used to measure the flow of water 

in pipelines Point measurement!

http://www.airflow.co.uk/instr/stat-pit.htm
Munson Movies/V3_4 Pitot tube airplane.mov


Pitot Tube

V
V1 =

1

2

Connect two ports to differential pressure transducer. 

Make sure Pitot tube is completely filled with the fluid 

that is being measured.

Solve for velocity as function of pressure difference

z1 = z2

( )1 2

2
V p p


= −

Static pressure tap
Stagnation pressure tap

0

2 2

1 1 2 2
1 2

2 2

p V p V
z z

g g 
+ + = + +



Relaxed Assumptions for 

Bernoulli Equation

➢Frictionless (velocity not influenced by viscosity)

➢Steady

➢Constant density (incompressible)

➢Along a streamline

Small energy loss (accelerating flow, short distances)

Or gradually varying

Small changes in density

Don’t cross streamlines



Bernoulli Equation Applications

➢Stagnation tube

➢Pitot tube

➢Free Jets

➢Orifice

➢Venturi

➢Sluice gate

➢Sharp-crested weir

Applicable to contracting

streamlines 

(accelerating
flow).



Summary

➢By integrating F=ma along a streamline we 
found…

➢That energy can be converted between pressure, 
elevation, and velocity

➢That we can understand many simple flows by 
applying the Bernoulli equation

➢However, the Bernoulli equation can not be 
applied to flows where viscosity is large, where 
mechanical energy is converted into thermal 
energy, or where there is shaft work.

mechanical



Example: Venturi

Munson Movies/V3_6 Venturi.mov


Example: Venturi

How would you find the flow (Q) given the pressure drop 

between point 1 and 2 and the diameters of the two sections? 

You may assume the head loss is negligible. Draw the EGL and 

the HGL over the contracting section of the Venturi.

1 2

Dh 

How many unknowns?

What equations will you use?



Example Venturi
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Chapter 5

Dimensional Analysis And Similitude



Introduction. DIMENSIONS AND UNITS

 A dimension is a measure of a physical quantity (without  

numerical values), while a unit is a way to assign a number to  

that dimension. For example, length is a dimension that is  

measured in units such as microns (μm), feet (ft), centimeters  

(cm), meters (m), kilometers (km), etc.

 There are seven primary dimensions (also called fundamental or  

basic dimensions)—mass, length, time, temperature, electric  

current, amount of light, and amount of matter.

 All nonprimary dimensions can be formed by some combination  

of the seven primary dimensions.

 For example, force has the same dimensions as mass times  

acceleration (by Newton’s second law). Thus, in terms of primary  

dimensions,

2



 Surface tension (σs), has dimensions of force per unit length.  

The dimensions of surface tension in terms of primary  

dimensions is

Introduction. DIMENSIONS AND UNITS
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DIMENSIONAL HOMOGENEITY

 Law of dimensional homogeneity: Every additive term in an

equation must have the same dimensions.

 Consider, for example, the change in total energy of a simple

compressible closed system from one state and/or time (1) to

another (2), as shown in the figure

 The change in total energy of the  

system (∆E) is given by

 where E has three components:  

internal energy (U), kinetic energy  

(KE), and potential energy (PE).
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 These components can be written in terms of the system mass (m);  

measurable quantities and thermodynamic properties at each of the  

two states, such as speed (V), elevation (z), and specific internal  

energy (u); and the known gravitational acceleration constant (g),

 It is straightforward to verify that the left side of the change in  

Energy equation and all three additive terms on the right side have  

the same dimensions—energy.

DIMENSIONAL HOMOGENEITY
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 In addition to dimensional homogeneity, calculations are valid  

only when the units are also homogeneous in each additive term.

 For example, units of energy in the above terms may be J, N·m ,  

or kg·m2/s2, all of which are equivalent.

 Suppose, however, that kJ were used in place of J for one of the  

terms. This term would be off by a factor of 1000 compared to  

the other terms.

 It is wise to write out all units when performing mathematical  

calculations in order to avoid such errors.

DIMENSIONAL HOMOGENEITY
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Example 1. Dimensional Homogeneity of the Bernoulli  

Equation

 Probably the most well-known equation in fluid mechanics is  

the Bernoulli equation . One standard form of the Bernoulli  

equation for incompressible irrotational fluid flow is

 (a) Verify that each additive term in the Bernoulli equation  

has the same dimensions. (b) What are the dimensions of the  

constant C?

7
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Example 2 . Dimensional Homogeneity

 In Chap. 4 we discussed the differential equation for conservation  

of mass, the continuity equation. In cylindrical coordinates, and for  

steady flow,

9

 Write the primary dimensions of each additive term in the equation,  

and verify that the equation is dimensionally homogeneous.

 Solution. We are to determine the primary dimensions of each  

additive term, and we are to verify that the equation is dimensionally  

homogeneous.

 Analysis .The primary dimensions of the velocity components are  

length/time. The primary dimensions of coordinates r and z are  

length, and the primary dimensions of coordinate θ are unity (it is a  

dimensionless angle). Thus each term in the equation can be written  

in terms of primary dimensions,



10

Example 2 . Dimensional Homogeneity

 Indeed, all three additive terms have the same dimensions,  

namely {t-1}.



Nondimensionalization of Equations

 The law of dimensional  

homogeneity guarantees that  

every additive term in an  

equation has the same  

dimensions.

 It follows that if we divide

each term in the equation by a  

collection of variables and  

constants whose product has  

those same dimensions, the  

equation is rendered  

nondimensional.

11

 If, in addition, the nondimensional terms in the equation are of  

order unity, the equation is called normalized.

 Each term in a nondimensional equation is dimensionless.

A nondimensionalized form of the  

Bernoulli equation is formed by  

dividing each additive term by a  

pressure (here we use ). Each  

resulting term is dimensionless  

(dimensions of {1}).



 In the process of nondimensionalizing an equation of motion,  

nondimensional parameters often appear—most of which are  

named after a notable scientist or engineer (e.g., the Reynolds  

number and the Froude number).

 This process is sometimes called inspectional analysis.

 As a simple example, consider the equation of motion  

describing the elevation z of an object falling by gravity  

through a vacuum (no air drag).

 The initial location of the object is z0 and its initial velocityis

w0 in the z-direction. From high school physics,

……………… (1)

 Dimensional variables are defined as dimensional quantities  

that change or vary in the problem.

Nondimensionalization of Equations
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 For the simple differential equation given in Eq. 1, there are  

two dimensional variables: z (dimension of length) and t  

(dimension of time).

 Nondimensional (or dimensionless) variables are defined as  

quantities that change or vary in the problem, but have no  

dimensions; an example is angle of rotation, measured in  

degrees or radians which are dimensionless units. Gravitational  

constant g, while dimensional, remains constant and is called a 

dimensional constant.

 Other dimensional constants are relevant to this particular  

problem are initial location z0 and initial vertical speedw0.

 While dimensional constants may change from problem to  

problem, they are fixed for a particular problem and are thus  

distinguished from dimensional variables.

Nondimensionalization of Equations
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 We use the term parameters for the combined set of  

dimensional variables, nondimensional variables, and  

dimensional constants in the problem.

 Equation 1 is easily solved by integrating twice and  

applying the initial conditions. The result is an expression  

for elevation z at any time t:

……………(2)

 The constant ½ and the exponent 2 in Eq. 2 are  

dimensionless results of the integration. Such constants are  

called pure constants. Other common examples of pure  

constants are Π and e.

Nondimensionalization of Equations
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 To nondimensionalize Eq.  

1, we need to select  

scaling parameters,  

based on the primary  

dimensions contained in  

the original equation.

 In fluid flow problems  

there are typically at least

three scaling parameters,

e.g., L, V, and ,  

since there are at least  

three primary dimensions  

in the general problem  

(e.g., mass, length, and  

time).
15

Nondimensionalization of Equations

In a typical fluid flow problem, the  

scaling parameters usually include a  

characteristic length L, a characteristic  

velocity V, and a reference pressure  

difference . Other parameters  

and fluid properties such as density,  

viscosity, and gravitational acceleration  

enter the problem as well.



 In the case of the falling object being discussed here, there are  

only two primary dimensions, length and time, and thus we are  

limited to selecting only two scaling parameters.

 We have some options in the selection of the scaling parameters  

since we have three available dimensional constants g, z0, and  

w0. We choose z0 and w0. we can also do the analysis using g and  

z0 and/or with g and w0

 With these two chosen scaling parameters we nondimensionalize  

the dimensional variables z and t.

 The first step is to list the primary dimensions of all dimensional  

variables and dimensional constants in the problem,

Primary dimensions of all parameters:

16

Nondimensionalization of Equations





 The second step is to use our two scaling parameters to  

nondimensionalize z and t (by inspection) into nondimensional  

variables z* and t*,

Nondimensionalized variables:

………………(3)

 Substitution of Eq. 3 into Eq. 1 gives

…...(4)

 which is the desired nondimensional equation. The grouping of  

dimensional constants in Eq. 4 is the square of a well-known  

nondimensional parameter or dimensionless group called the 

Froude number,17

Nondimensionalization of Equations



 Froude number: ………... (5)

 Substitution of Eq. 5 into Eq. 4 yields

 Nondimensionalized equation of motion: …..(6)

 In dimensionless form, only one parameter remains, namely the  

Froude number.

 Equation 6 is easily solved by integrating twice and applying the  

initial conditions. The result is an expression for dimensionless  

elevation z* as a function of dimensionless time t*:

 Nondimensional result:

 …………(7)

Nondimensionalization of Equations
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 There are two key advantages of nondimensionalization

 First, it increases our insight about the relationships between  

key parameters. Equation 5 reveals, for example, that doubling  

w0 has the same effect as decreasing z0 by a factor of 4.

 Second, it reduces the number of parameters in the problem. 

For example, the original problem contains one dependent  

variable, z; one independent variable, t; and three additional  

dimensional constants, g, w0, and z0. The nondimensionalized  

problem contains one dependent parameter, z*; one  

independent parameter, t*; and only one additional parameter,  

namely the dimensionless Froude number, Fr. The number of  

additional parameters has been reduced from three to one!

Nondimensionalization of Equations
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Dimensional Analysis and Similarity

 Nondimensionalization of an equation by inspection is useful  

only when we know the equation to begin with.

 However, in many cases in real-life engineering, the equations  

are either not known or too difficult to solve; often times 

experimentation is the only method of obtaining reliable  

information.

 In most experiments, to save time and money, tests are  

performed on a geometrically scaled model, rather than on the  

full-scale prototype. In such cases, care must be taken to  

properly scale the results. We introduce here a powerful  

technique called dimensional analysis.
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 The three primary purposes of dimensional analysis are

✓To generate nondimensional parameters that help in the  

design of experiments (physical and/or numerical) and in  

the reporting of experimental results

✓To obtain scaling laws so that prototype performance can  

be predicted from model performance

✓To (sometimes) predict trends in the relationship between  

parameters

 There are three necessary conditions for complete similarity  

between a model and a prototype.

 The first condition is geometric similarity—the model must  

be the same shape as the prototype, but may be scaled by  

some constant scale factor.

Dimensional Analysis and Similarity
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 The second condition is 

kinematic similarity, which  

means that the velocity at  

any point in the model flow  

must be proportional (by a  

constant scale factor) to the  

velocity at the  

corresponding point in the  

prototype flow.

 Specifically, for kinematic  

similarity the velocity at  

corresponding points must  

scale in magnitude and must  

point in the same relative

direction.

Dimensional Analysis and Similarity

Fig. Kinematic similarity
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 Kinematic similarity is achieved when, at all locations, the speed in

the model flow is proportional to that at corresponding locations in

the prototype flow, and points in the same direction.

 Geometric similarity is a prerequisite for kinematic similarity

 Just as the geometric scale factor can be less than, equal to, or  

greater than one, so can the velocity scale factor.

 In Fig. above, for example, the geometric scale factor is less than  

one (model smaller than prototype), but the velocity scale is greater  

than one (velocities around the model are greater than those around  

the prototype).

 The third and most restrictive similarity condition is that of 

dynamic similarity. Dynamic similarity is achieved when all  

forces in the model flow scale by a constant factor to corresponding  

forces in the prototype flow (force-scale equivalence).

23
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 As with geometric and kinematic similarity, the scale factor for  

forces can be less than, equal to, or greater than one.

 In Fig. shown in slide 20 above for example, the force-scale  

factor is less than one since the force on the model building is  

less than that on the prototype.

 Kinematic similarity is a necessary but insufficient condition  

for dynamic similarity.

 It is thus possible for a model flow and a prototype flow to  

achieve both geometric and kinematic similarity, yet not  

dynamic similarity. All three similarity conditions must exist for  

complete similarity to be ensured.

 In a general flow field, complete similarity between a model  

and prototype is achieved only when there is geometric,  

kinematic, and dynamic similarity.

Dimensional Analysis and Similarity
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 We let uppercase Greek letter Pi (Π) denote a nondimensional  

parameter. We have already discussed one Π, namely the  

Froude number, Fr.

 In a general dimensional analysis problem, there is one Π that  

we call the dependent Π, giving it the notation Π1. The  

parameter Π1 is in general a function of several other Π’s,  

which we call independent Π’s. The functional relationship is

 Functional relationship between Π’s:

 where k is the total number of Π’s.

 Consider an experiment in which a scale model is tested to  

simulate a prototype flow.

Dimensional Analysis and Similarity
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 To ensure complete similarity between the model and the  

prototype, each independent P of the model (subscript m) must  

be identical to the corresponding independent Π of the prototype  

(subscript p),

i.e., Π2, m = Π2, p , Π3, m = Π3, p, . . . .., Πk, m = Πk, p.

 To ensure complete similarity, the model and prototype must be

geometrically similar, and all independent Π groups must match

between model and prototype.

 Under these conditions the dependent Π of the model (Π1, m) is

guaranteed to also equal the dependent Π of the prototype (Π1, p).

 Mathematically, we write a conditional statement for achieving

similarity,
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 Consider, for example, the  

design of a new sports car, the  

aerodynamics of which is to  

be tested in a wind tunnel. To  

save money, it is desirable to  

test a small, geometrically  

scaled model of the car rather  

than a full-scale prototype of  

the car.

 In the case of aerodynamic  

drag on an automobile, it  

turns out that if the flow is  

approximated as  

incompressible, there are only  

two Π’s in the problem,

Dimensional Analysis and Similarity
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 Where

 The procedure used to generate these Π’s will be discussed  

later in this chapter.

 In the above equation FD is the magnitude of the aerodynamic  

drag on the car, ρ is the air density, V is the car’s speed (or the  

speed of the air in the wind tunnel), L is the length of the car,  

and μ is the viscosity of the air. Π1 is a nonstandard form of the  

drag coefficient, and Π2 is the Reynolds number, Re.

 The Reynolds number is the most well known and useful  

dimensionless parameter in all of fluid mechanics
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 In the problem at hand there is only one independent Π, and  

the above Eq. ensures that if the independent Π’s match (the  

Reynolds numbers match: Π2, m = Π2, p ), then the dependent  

Π’s also match (Π1, m = Π1, p).

 This enables engineers to measure the aerodynamic drag on  

the model car and then use this value to predict the  

aerodynamic drag on the prototype car.
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Example 3: Similarity between Model and Prototype Cars

 The aerodynamic drag of a new sports car is to be predicted at a  

speed of 50.0 mi/h at an air temperature of 25°C. Automotive  

engineers build a one fifth scale model of the car to test in a wind  

tunnel. It is winter and the wind tunnel is located in an unheated  

building; the temperature of the wind tunnel air is only about  

5°C. Determine how fast the engineers should run the wind  

tunnel in order to achieve similarity between the model and the  

prototype.

Solution:

 We are to utilize the concept of similarity to determine the speed  

of the wind tunnel.

Assumptions:

 The model is geometrically similar to the prototype

 The wind tunnel walls are far enough away so as to not interfere  

with the aerodynamic drag on the model car.30



Example 3: Similarity between Model and Prototype Cars

 The wind tunnel has a moving belt to simulate the ground under  

the car. (The moving belt is necessary in order to achieve  

kinematic similarity everywhere in the flow, in particular  

underneath the car.)

A drag balance is a device  

used in a wind tunnel to  

measure the aerodynamic  

drag of a body. When  

testing automobile models,  

a moving belt is often  

added to the floor of the  

wind tunnel to simulate the  

moving ground

(from the car’s frame of  

reference).
31



 Properties: For air at atmospheric pressure and at T = 25°C, ρ =

1.184 kg/m3 and μ = 1.849 x 10-5 kg/m·s. Similarly, at T =5°C,

ρ = 1.269 kg/m3 and μ = 1.754 x 10-5 kg/m·s.

 Analysis: Since there is only one independent Π in this problem,  

the similarity equation holds if Π2, m = Π2, p, where Π2 is the  

Reynolds number. Thus, we write

 Thus

Example 3: Similarity between Model and Prototype Cars

32



 The power of using dimensional analysis and similarity to  

supplement experimental analysis is further illustrated by the fact  

that the actual values of the dimensional parameters (density,  

velocity, etc.) are irrelevant. As long as the corresponding  

independent Π’s are set equal to each other, similarity is achieved 

even if different fluids are used.

 This explains why automobile or aircraft performance can be  

simulated in a water tunnel, and the performance of a submarine can  

be simulated in a wind tunnel.

 Suppose, for example, that the engineers in Example above use a  

water tunnel instead of a wind tunnel to test their one-fifth scale  

model. Using the properties of water at room temperature (20°C is  

assumed), the water tunnel speed required to achieve similarity is  

easily calculated as

Example 3: Similarity between Model and Prototype Cars

33



 As can be seen, one advantage of a water tunnel is that the  

required water tunnel speed is much lower than that required  

for a wind tunnel using the same size model

Example 3: Similarity between Model and Prototype Cars
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The Method of Repeating Variables and the  

Buckingham Pi Theorem

 In this section we will learn how to generate the nondimensional  

parameters, i.e., the Π’s.

 There are several methods that have been developed for this  

purpose, but the most popular (and simplest) method is the method  

of repeating variables, popularized by Edgar Buckingham (1867–

1940).

 We can think of this method as a step-by-step procedure or  

“recipe” for obtaining nondimensional parameters. There are six  

steps in this method as described below in detail
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Buckingham Pi Theorem
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 Fig. A concise  

summary of the six  

steps that comprise  

the method of  

repeating variables

The Method of Repeating Variables and the  

Buckingham Pi Theorem
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The Method of Repeating Variables and the  

Buckingham Pi Theorem

 As a simple first example, consider a ball falling in a vacuum. Let  

us pretend that we do not know that Eq. 1 is appropriate for this  

problem, nor do we know much physics concerning falling objects.

 In fact, suppose that all we know is that the instantaneous  

elevation z of the ball must be a function of time t, initial vertical  

speed w0, initial elevation z0, and gravitational constant g.

 The beauty of dimensional analysis is that the only other thing we  

need to know is the primary dimensions of each of these  

quantities.

 As we go through each step of the method of repeating variables,

we explain some of the subtleties of the technique in more detail

using the falling ball as an example.
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The Method of Repeating Variables

Step 1

 There are five parameters  

(dimensional variables,  

nondimensional  

variables, and  

dimensional constants) in  

this problem; n = 5. They  

are listed in functional  

form, with the dependent  

variable listed as a  

function of the  

independent variables

and constants:

 List of relevant  

parameters:

Fig. Setup for dimensional analysis of a ball falling  

in a vacuum. Elevation z is a function of time t,  

initial vertical speed w0, initial elevation z0, and  

gravitational constant g.
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Step 4

 We need to choose two repeating parameters since j = 2. Since  

this is often the hardest (or at least the most mysterious) part of  

the method of repeating variables, several guidelines about  

choosing repeating parameters are listed in Table 1.

 Following the guidelines of Table 1 on the next page, the wisest  

choice of two repeating parameters is w0 and z0.

Repeating parameters: w0 and z0

Step 5

 Now we combine these repeating parameters into products with  

each of the remaining parameters, one at a time, to create the Π’s.  

The first Π is always the dependent Π and is formed with the  

dependent variable z.

Dependent Π : ……………….(1)

 where a1 and b1 are constant exponents that need to be determined.42

The Method of Repeating Variables



 We apply the primary dimensions of step 2 into Eq. 1 and force  

the Π to be dimensionless by setting the exponent of each  

primary dimension to zero:

 Dimensions of Π1:

 Since primary dimensions are by definition independent of each  

other, we equate the exponents of each primary dimension  

independently to solve for exponents a1 and b1

 Thus

The Method of Repeating Variables
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 In similar fashion we create the first independent Π (Π2) by  

combining the repeating parameters with independent variable t.

The Method of Repeating Variables
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The Method of Repeating Variables

 Finally we create the second independent Π (Π3) by combining  

the repeating parameters with g and forcing the P to be  

dimensionless
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 We can see that Π1 and Π2 are the same as the nondimensionalized  

variables z* and t* defined by Eq. 3 (See slide number 15)—no  

manipulation is necessary for these.

 However, we recognize that the third P must be raised to the power  

of -1/2 to be of the same form as an established dimensionless  

parameter, namely the Froude number of

 Such manipulation is often necessary to put the Π’s into proper  

established form (“socially acceptable form” since it is a named,  

established nondimensional parameter that is commonly used in  

the literature.

The Method of Repeating Variables
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Step 6

 We should double-check that the Π’s are indeed dimensionless

 We are finally ready to write the functional relationship between  

the nondimensional parameters

Relationship between Π’s:

 The method of repeating variables properly predicts the functional  

relationship between dimensionless groups.

 However, the method of repeating variables cannot predict the  

exact mathematical form of the equation. This is a fundamental  

limitation of dimensional analysis and the method of repeating  

variables.

The Method of Repeating Variables
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The Method of Repeating Variables
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Table 2



Table 3. Some common established nondimensional parameters
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EXAMPLE 4. Pressure in a Soap Bubble

 Some children are playing with soap  

bubbles, and you become curious as to the  

relationship between soap bubble radius and  

the pressure inside the soap bubble. You  

reason that the pressure inside the soap  

bubble must be greater than atmospheric  

pressure, and that the shell of the soap  

bubble is under tension, much like the skin  

of a balloon. You also know that the  

property surface tension must be important  

in this problem. Not knowing any other  

physics, you decide to approach the  

problem using dimensional analysis.  

Establish a relationship between pressure  

difference

 soap bubble radius R, and the surface  

tension σs of the soap film.55

The pressure inside a soap

bubble is greater than that

surrounding the soap

bubble due to surface tension

in the soap film.



 SOLUTION. The pressure difference between the inside of a soap  

bubble and the outside air is to be analyzed by the method of  

repeating variables.

 Assumptions 1. The soap bubble is neutrally buoyant in the air, and  

gravity is not relevant. 2 No other variables or constants are  

important in this problem.

 Analysis The step-by-step method of repeating variables is  

employed.

EXAMPLE 4. Pressure in a Soap Bubble
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 Step 2 The primary dimensions of each parameter are listed.

 Step 3 As a first guess, j is set equal to 3, the number of primary  

dimensions represented in the problem (m, L, and t).

Reduction (first guess): j = 3

 If this value of j is correct, the expected number of Π’s is  

k = n - j = 3 - 3 = 0.

But how can we have zero P’s? Something is obviously not right

 At times like this, we need to first go back and make sure that we are  

not neglecting some important variable or constant in the problem.

 Since we are confident that the pressure difference should depend only  

on soap bubble radius and surface tension, we reduce the value of j by  

one,

EXAMPLE 4. Pressure in a Soap Bubble
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EXAMPLE 4. Pressure in a Soap Bubble

Reduction (second guess): j = 2

 If this value of j is correct, k = n - j = 3 - 2 = 1. Thus we expect one  

Π, which is more physically realistic than zero Π’s.

 Step 4 We need to choose two repeating parameters since j = 2.  

Following the guidelines of Table 1, our only choices are R and σs,  

since ∆P is the dependent variable.

 Step 5 We combine these repeating parameters into a product with  

the dependent variable ∆P to create the dependent Π,

Dependent Π: ………(1)

 We apply the primary dimensions of step 2 into Eq. 1 and force the  

Π to be dimensionless.
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 From Table 3, the established nondimensional parameter most  

similar to Eq. 2 is the Weber number, defined as a pressure  

(ρV2) times a length divided by surface tension. There is no need  

to further manipulate this Π.

EXAMPLE 4. Pressure in a Soap Bubble
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 This is an example of how we can sometimes predict trends with  

dimensional analysis, even without knowing much of the physics  

of the problem. For example, we know from our result that if the  

radius of the soap bubble doubles, the pressure difference  

decreases by a factor of 2. Similarly, if the value of surface  

tension doubles, ∆P increases by a factor of 2.

 Dimensional analysis cannot predict the value of the constant in  

Eq. 3; further analysis (or one experiment) reveals that the  

constant is equal to 4 (Chap. 1).

EXAMPLE 4. Pressure in a Soap Bubble

 Step 6 We write the final functional relationship. In the case at  

hand, there is only one Π, which is a function of nothing. This is  

possible only if the Π is constant.

 Relationship between Π’s:
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Example 5

 When small aerosol particles or microorganisms move through  

air or water, the Reynolds number is very small (Re << 1). Such  

flows are called creeping flows. The aerodynamic drag on an  

object in creeping flow is a function only of its speed V, some  

characteristic length scale L of the object, and fluid viscosity μ.  

Use dimensional analysis to generate a relationship for FD as a  

function of the independent variables.
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Example 6

 Consider fully developed Couette flow—flow between two infinite  

parallel plates separated by distance h, with the top plate moving  

and the bottom plate stationary as illustrated in the Fig. shown. The  

flow is steady, incompressible, and two-dimensional in the xy-plane.  

Use the method of repeating variables to generate a dimensionless  

relationship for the x component of fluid velocity u as a function of  

fluid viscosity μ, top plate speed V, distance h, fluid density ρ, and  

distance y.

65



66



67



68



69


