Chapter 1

Introduction to Fluid Mechanics
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Definition

» Mechanics is the oldest physical science that deals with
both stationary and moving bodies under the influence of
forces.

e The branch of mechanics that deals with bodies at rest iIs
called statics, while the branch that deals with bodies in
motion Is called dynamics.

» The subcategory fluid mechanics is defined as the science
that deals with the behavior of fluids at rest (fluid statics)
or in motion (fluid dynamics), and the interaction of fluids
with solids or other fluids at the boundaries.

* The study of fluids at rest is called fluid statics.
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Definition

e The study of fluids in motion, where pressure forces are
not considered, Is called fluid kinematics and if the
pressure forces are also considered for the fluids In
motion. that branch of science is called fluid dynamics.

e Fluid mechanics itself is also divided into several
categories.

e The study of the motion of fluids that are practically
Incompressible (such as liquids, especially water, and
gases at low speeds) is usually referred to as
hydrodynamics.

e A subcategory of hydrodynamics is hydraulics, which
deals with liquid flows in pipes and open channels.
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Definition

e Gas dynamics deals with the flow of fluids that undergo
significant density changes, such as the flow of gases
through nozzles at high speeds.

e The category aerodynamics deals with the flow of gases
(especially air) over bodies such as aircraft, rockets, and
automobiles at high or low speeds.

e Some other specialized categories such as meteorology,
oceanography, and hydrology deal with naturally
occurring flows.
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What is a Fluid?

» A substance exists in three primary phases: solid, liquid,
and gas. A substance in the liquid or gas phase is referred
to as a fluid.

 Distinction between a solid and a fluid is made on the basis
of the substance’s ability to resist an applied shear (or
tangential) stress that tends to change its shape.

» Asolid can resist an applied shear stress by deforming,
whereas a fluid deforms continuously under the influence
of shear stress, no matter how small.

* In solids stress Is proportional to strain, but in fluids stress
IS proportional to strain rate.




What i1s a Fluid?

e \WWhen a constant Contact area, Shear stress
) A 7=FA
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deforming, at some -, B
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whereas a fluid strain, «
never stops Figure.

deforming and
approaches a certain
rate of strain.

Deformation of a rubber eraser
placed between two parallel plates
under the influence of a shear force.
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What i1s a Fluid?

 In a liquid, molecules can move
relative to each other, but the volume
remains relatively constant because of
the strong cohesive forces between the
molecules.

o As a result, a liquid takes the shape of
the container it is in, and it forms a
free surface in a larger container in a
gravitational field.

e A gas, on the other hand, expands until
it encounters the walls of the container
and fills the entire available space.

e This Is because the gas molecules are
widely spaced, and the cohesive forces
between them are very small.

o Unlike liquids, gases cannot form a
free surface

Free surface

Gas
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What i1s a Fluid?

 Differences between liquid and gases

Liquid

(Gases

Difficult to compress and
often regarded as
Incompressible

Easily to compress — changes of
volume is large, cannot normally
be neglected and are related to
temperature

Occupies a fixed volume
and will take the shape of
the container

No fixed volume, it changes
volume to expand to fill the
containing vessels

A free surface is formed if
the volume of container is
greater than the liquid.

Completely fill the vessel so that
no free surface is formed.




e

Application areas of Fluid Mechanics

» Mechanics of fluids is extremely important in many areas
of engineering and science. Examples are:

e Biomechanics
e Blood flow through arteries and veins
e Airflow In the lungs
e Flow of cerebral fluid

e Households
e Piping systems for cold water, natural gas, and sewage

e Piping and ducting network of heating and air-
conditioning systems

e refrigerator, vacuum cleaner, dish washer, washing
machine, water meter, natural gas meter, air conditioner,
radiator, etc.

e Meteorology and Ocean Engineering
@ e Movements of air currents and water currents




Application areas of Fluid Mechanics

e Mechanical Engineering

e Design of pumps, turbines, air-conditioning equipment,
pollution-control equipment, etc.

e Design and analysis of aircraft, boats, submarines,
rockets, jet engines, wind turbines, biomedical devices,
the cooling of electronic components, and the
transportation of water, crude oil, and natural gas.

e Civil Engineering

e Transport of river sediments

e Pollution of air and water

e Design of piping systems

e Flood control systems
e Chemical Engineering

e Design of chemical processing equipment

(-,
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Application areas of Fluid Mechanics

Turbomachines: pump, turbine, fan, blower, propeller, etc.

Military: Missile, aircraft, ship, underwater vehicle, dispersion
of chemical agents, etc.

Automobile: IC engine, air conditioning, fuel flow, external
aerodynamics, etc.

Medicine: Heart assist device, artificial heart valve, Lab-on-a-
Chip device, glucose monitor, controlled drug delivery, etc.

Electronics: Convective cooling of generated heat.

Energy: Combuster, burner, boiler, gas, hydro and wind
turbine, etc.

Oil and Gas: Pipeline, pump, valve, offshore rig, oil spill
cleanup, etc.

Almost everything in our world is either in contact with a fluid

or is itself a fluid.
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Application areas of Fluid Mechanics

e The number of fluid engineering applications is enormous:
breathing, blood flow, swimming, pumps, fans, turbines,
airplanes, ships, rivers, windmills, pipes, missiles, icebergs,
engines, filters, jets, and sprinklers, to name a few.

* When you think about it, almost everything on this planet
either is a fluid or moves within or near a fluid.

Missile

Automobile
aerodynamics




Application areas of Fluid Mechanics

High speed train

turbines

Smoke from
a stack




Application areas of Fluid Mechanics
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Propeller

Centrifugal Pump

Jet Engine
Propulsion

Crossflow fan /




Application areas of Fluid Mechanics

Ski Jumping

Swimming

Indy Car Racing
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Classification of Fluid Flows

» There is a wide variety of fluid flow problems encountered
In practice, and it is usually convenient to classify them on
the basis of some common characteristics to make it
feasible to study them in groups.

Viscous versus Inviscid Regions of Flow

* When two fluid layers move relative to each other, a
friction force develops between them and the slower layer
tries to slow down the faster layer.

» This internal resistance to flow is quantified by the fluid

property viscosity, which is a measure of internal stickiness
of the fluid.

* Viscosity iIs caused by cohesive forces between the
molecules in liquids and by molecular collisions in gases.
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Classification of Fluid Flows

Viscous versus Inviscid Regions of Flow...

e There is no fluid with zero viscosity, and thus all fluid
flows involve viscous effects to some degree.

- Flows in which the frictional effects are significant are
called viscous flows.

e However, in many flows of practical interest, there are
regions (typically regions not close to solid surfaces) where
viscous forces are negligibly small compared to inertial or
pressure forces.

* Neglecting the viscous terms in such inviscid flow regions
greatly simplifies the analysis without much loss in

accuracy.
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Classification of Fluid Flows

Viscous versus Inviscid Regions of Flow

Inviscid external flow ——- Separation
—— D=
—__Boundary layer =
- . -
Boundary layer — ully
Freestream e Inviscid internal core === — VISCOUS
Boundary layer — flow
\ _ 7 . :.'n
oun ayer
— L2 Oy

Inviscid external flow = Separation
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Classification of Fluid Flows

Internal versus External Flow

o A fluid flow is classified as being internal or external,
depending on whether the fluid is forced to flow in a
confined channel or over a surface.

e The flow of an unbounded fluid over a surface such as a
plate, a wire, or a pipe is external flow.

e The flow In a pipe or duct is internal flow if the fluid is
completely bounded by solid surfaces.

» Water flow in a pipe, for example, is internal flow, and
airflow over a ball or over an exposed pipe during awindy
day Is external flow .
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Classification of Fluid Flows

Compressible versus Incompressible Flow

o Aflow is classified as being compressible or
Incompressible, depending on the level of variation of
density during flow.

* Incompressibility is an approximation, and a flow is said to
be incompressible if the density remains nearly constant
throughout.

» Therefore, the volume of every portion of fluid remains
unchanged over the course of its motion when the flow (or
the fluid) is incompressible.

e The densities of liquids are essentially constant, and thus
the flow of liquids is typically incompressible. Therefore,
liquids are usually referred to as incompressible substances.
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Classification of Fluid Flows

Compressible versus Incompressible Flow...

o Apressure of 210 atm, for example, causes the density of
liquid water at 1 atm to change by just 1 percent.

» Gases, on the other hand, are highly compressible. A
pressure change of just 0.01 atm, for example, causes a
change of 1 percent in the density of atmospheric air.

» Gas flows can often be approximated as incompressible if
the density changes are under about 5 percent.

» The compressibility effects of air can be neglected at
speeds under about 100 m/s.




Classification of Fluid Flows

Laminar versus Turbulent Flow
» Some flows are smooth and orderly

while others are rather chaotic. —

e The highly ordered fluid motion —
characterized by smooth layers of Laminar
fluid is called laminar.

* The flow of high-viscosity fluids -
such as oils at low velocities is -
typically laminar. Transitional

* The highly disordered fluid motion
that typically occurs at high ' —
velocities and is characterized by

velocity fluctuations is called
turbulent.
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Classification of Fluid Flows
Laminar versus Turbulent Flow

e The flow of low-viscosity fluids —
such as air at high velocities is S
- — —————————————
typically turbulent. Laminar
o A flow that alternates between e
being laminar and turbulent is = |
called transitional. - =
Transitional
W
. Tetbutens
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Classification of Fluid Flows

Natural (or Unforced) versus Forced Flow

o Afluid flow is said to be natural or forced, depending on
how the fluid motion is initiated.

* In forced flow, a fluid is forced to flow over a surface or in
a pipe by external means such as a pump or a fan.

 In natural flows, any fluid motion is due to natural means
such as the buoyancy effect, which manifests itself as the
rise of the warmer (and thus lighter) fluid and the fall of
cooler (and thus denser) fluid .

e In solar hot-water systems, for example, the
thermosiphoning effect is commonly used to replace pumps
by placing the water tank sufficiently above the solar
collectors.




e

Classification of Fluid Flows

Steady versus Unsteady Flow

The terms steady and uniform are used frequently In
engineering, and thus it is important to have a clear
understanding of their meanings.

The term steady implies no change at a point with time.
The opposite of steady Is unsteadly.

The term uniform implies no change with location
over a specified region.
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Properties of Fluids

» Any characteristic of a system is called a property.

o Some familiar properties are pressure P, temperature T,
volume V, and mass m.

e Other less familiar properties include viscosity, thermal
conductivity, modulus of elasticity, thermal expansion
coefficient, electric resistivity, and even velocity and
elevation.

» Properties are considered to be either intensive or extensive.

 Intensive properties are those that are independent of the mass
of a system, such as temperature, pressure, and density.

» Extensive properties are those whose values depend on the
size—or extent—of the system. Total mass, total volume V and
total momentum are some examples of extensive properties.
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Properties of Fluids

e An easy way to determine
whether a property is
Intensive or extensive Is to
divide the system into two
equal parts with an imaginary
partition. l

» Each part will have the same
value of intensive properties
as the original system, but
half the value of the extensive
properties.

- T < 3

Extensive
properties

|

|

|

|

|

T _

I } Intensive
|

|

Pl |t o] ==

P = P ==
<~ =

properties

= T
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Properties of Fluids

Density or Mass Density

Density or mass density of a fluid is defined as the ratio of
the mass of a fluid to its volume. Thus mass per unit
volume of a fluid is called density. It is denoted the symbol
p (rho). The unit of mass density in Sl unit is kg per cubic
meter, 1.e ., kg/ms.

The density of liquids may be considered as constant while
that of gases changes with the variation of pressure and
temperature.

Mathematically mass density is written as.
_ Mass of fluid

P = Nolume of fluid

The value of density of water is 1 gm/cm3 or 1000 kg/ms.

/
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Properties of Fluids

Density or Mass Density

» The density of a substance, in general, depends on
temperature and pressure.

» The density of most gases is proportional to pressure and
Inversely proportional to temperature.

 Liquids and solids, on the other hand, are essentially
Incompressible substances, and the variation of their
density with pressure is usually negligible.




Properties of Fluids

Specific weight or Weight Density

» Specific weight or weight density of a fluid is the ratio
between the weight of a fluid to its volume.

» Thus weight per unit volume of a fluid is called weight
density and it is denoted by the symbol w.

* Mathematically,

w = Weight of fluid _ (Mass of fluid) x Acceleration due to gravity

\Volume of fluid \Volume of fluid
_ Mass of fluid x g
\Volume of fluid

= pX g
W = pg




Properties of Fluids

Specific Volume

» Specific volume of a fluid is defined as the volume of a
fluid occupied by a unit mass or volume per unit mass of a
fluid is called specific volume.

» Mathematically, it is expressed as

Specific volume = Volume offll_ud _ 1 _: 1
Mass of fluid Mass of fluid 5
Volume

e Thus specific volume is the reciprocal of mass density. It is
expressed as m3/kg.

e |t is commonly applied to gases.




Properties of Fluids
Specific Gravity.

o Specific gravity Is defined as the ratio of the weight density (or
density) of a fluid to the weight density (or density) of a standard
fluid.

 For liquids, the standard fluid is taken water and for gases, the
standard fluid is taken air. Specific gravity is also called relative
density. It is dimensionless quantity and is denoted by the symbol S.

S(for liquids) = Wei_ght densi_ty (densi_ty) of liquid
Weight density (density) of water
Weight density (density) of gas
Weight density (density) of air
Thus weight density of a liquid = S x Weight densityof water
=S x1000x 9.81N/m?*
Thus density of a liquid = S x Density of water

@ = S x1000kg/m?

S(for gases) =
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Properties of Fluids

Specific Gravity:.

* |If the specific gravity of a
fluid i1s known, then the
density of the fluid will be
equal to specific gravity of
fluid multiplied by the
density of water.

» For example the specific
gravity of mercury is 13.6,
hence density of mercury
= 13.6 x 1000 = 13600
kg/m3.

Specific gravities of some

substances at 0°C

Substance SG
Water 1.0
Blood 1.05
Seawater 1.025
Gasoline 0.7
Ethyl alcohol 0.79
Mercury 13.6
Wood 0.3-0.9
Gold 19.2
Bones 1.7-2.0
Ice 0.92
Air (at 1 atm) 0.0013




Properties of Fluids

Example 1.
Calculate the specific weight, density and specific gravity of one
liter of a liquid which weighs 7 N.

Solution. Given :

1
Volume = 1 litre = —— m> ( llim:ﬁ m? or1 litre = lOOOcm’)

1000
Weight=7 N
() Specificweight(w) =—vobbt _ TN o 2000 m®. Ans.
Volume ( 1 )m’
. 1000
(i7) Density (p) =2 = -720—0 kg/m3=7l3.5 kg/m’. Ans.
g 98I
; . Density of liquid 7135 A 1
iii) Specific gravit = = "+ Density of water = ¥
(it} Spec i Density of water 1000 { eipyolmers 1000y

= 0.7135. Ans.

(- Y




Example 2. Calculate the density, specific weight and weight of
one liter of petrol of specific gravity = 0.7

Solution. Given:  Volume = 1 litre = 1 x 1000 cm’ = ll?‘o m® = 0.001 m?

Sp. gravity $§=0.7
(i) Density (p)
Density (p) = § x 1000 kg/m’ = 0.7 x 1000 = 700 kg/m>. Ans.

(it) Specific weight (w)
w=pXg=700x9.81 N/m’= 6867 N/m>, Ans.
(iii) Weight (W)

We know that specific weight = \.\ Sign
Volume
or W= L or 6867:-&'—
001 0.001

W = 6867 x 0.001 = 6.867 N. Ans.




Properties of Fluids

Viscosity

* Viscosity Is defined as the property of a fluid which offers
resistance to the movement of one layer of fluid over another
adjacent layer of the fluid.

* When two layers of a fluid, a distance 'dy' apart move one over
the other at different velocities say u and u+ du as shown in Fig.
1.1, the viscosity together with relative velocity causes a shear
stress acting between the fluid layers:

- l u+du

@ Fig. 1.1 Velocity variation near a solid boundary.
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Properties of Fluids

Viscosity

e The top layer causes a shear stress on the adjacent lower
layer while the lower layer causes a shear stress on the
adjacent top layer.

» This shear stress Is proportional to the rate of change of
velocity with respect to y. It Is denoted by symbol t called
Tau.

* Mathematically,

T=pH—— (1.2)




Properties of Fluids

» where u (called mu) is the constant of proportionality
and is known as the coefficient of dynamic viscosity or
only viscosity.

du

 dy represents the rate of shear strain or rate of shear
deformation or velocity gradient.

» From equation (1.2) we have
T
H= du (1.3)

dy
e Thus viscosity Is also defined as the shear stress

required to produce unit rate of shear strain.
(-




Properties of Fluids

Unit of Viscosity:.

» The unit of viscosity Is obtained by putting the
dimension of the quantities in equation ( 1.3)

_ . Shear stress _ Force/Area
i Change of velocity ( Length ) y 1

Change of distance Time )~ Length

- Force/(length)’ _ Force X Time
1 (Length)*
Time

SI unit of viscosity = Newtonsecond _ Ns

m? m?
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Properties of Fluids

Kinematic Viscosity.

e It is defined as the ratio between the dynamic viscosity and
density of fluid.It is denoted by the Greek symbol (v) called
'nu’ . Thus, mathematically,

b Viscosity _ u

Density p
e The Sl unit of kinematic viscosity Is m2/s.

Newton's Law of Viscosity.

e |t states that the shear stress (t) on a fluid element layer is
directly proportional to the rate of shear strain. The constant
of proportionality is called the co-efficient viscosity.
Mathematically, it is expressed as given by equation (1 . 2).




Properties of Fluids

 Fluids which obey the above relation are known as
Newtonian fluids and the fluids which do not obey the
above relation are called Non-newtonian fluids.

Variation of Viscosity with Temperature
o Temperature affects the viscosity.

» The viscosity of liquids decreases with the increase of
temperature while the viscosity of gases increases with
Increase of temperature. This is due to reason that the
viscous forces in a fluid are due to cohesive forces and
molecular momentum transfer.

e In liquids the cohesive forces predominates the molecular
momentum transfer due to closely packed molecules and
with the increase In temperature, the cohesive forces
decreases with the result of decreasing viscosity.
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Properties of Fluids

e But in the case of gases the cohesive force are small and
molecular momentum transfer predominates. With the
Increase In temperature, molecular momentum transfer
Increases and hence viscosity increases. The relation between
viscosity and temperature for liquids and gases are:

. . 1

1) For liquids, u=

where u = Viscosityof liquid at t°C, in poise lpoisezﬁ—Nf
m

u,= Viscosity of liquid at 0°C,in poise

a, [f =are constants for theliquid
For water, p,=1.79x10_poise,a=0.03368and £=0.000221

= U+ oA —
(ii) For a gas, H=Ho A,
where forair z,=0.000017, = 0.000000056, 5= 0.1189x 10 _




Types of Fluids

1.

Ideal Fluid. A fluid, which is incompressible and is
having no viscosity, is known as an ideal fluid. Ideal
fluid is only an imaginary fluid as all the fluids, which
exist, have some viscosity.

Real fluid. A fluid, which possesses viscosity, i1s knownas
real fluid. All the fluids: in actual practice, are real fluids.

Newtonian Fluid. A real fluid, in which the shear stressis
directly, proportional to the rate of shear strain (or
velocity gradient), is known as a Newtonian fluid.

Non-Newtonian fluid. A real fluid, in which shear stress
IS not proportional to the rate of shear strain (or velocity
gradient), known as a Non-Newtonian fluid.




Types of Fluids

D.

Ideal Plastic Fluid.

A fluid, in which shear
stress is more than the
yield value and shear
stress is proportional
to the rate of shear
strain (or velocity
gradient), is known as
Ideal plastic fluid.

— SHEAR STRESS

/IDEALFLUIJ

. du
VELOCITY GRADIENT (W)
Fig. 1.2 Types of fluids.
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Example 3

If the velocity distribution over a plate is given by
2 2
Uu=-=y-—
3)’ y

In which u is velocity in metre per second at a distance y
metre above the plate, determine the shear stress at y = 0
and y= 0.15 m. Take dynamic viscosity of fluid as 8.63

pOISes.




2 du 2
jution. Given : =—y - S == =2
So iv u 3y y .3 y
[ du
[ﬂ) or iﬁ = -2- -2(0)= g’ --0.667
d". wtyv=l) \d)'J’_-o 3 3
(g )
Also (-dl) or -4-“- = 2— -2%.15=.667-.30=0.367
d)’ at y=015 \dy/y-l').ls 3

Value of p = 8.63 poise = %%3- SI units = 0.863 N §lmz

d
Now shear stress is given by equation (1.2) as T=H :1—:-. ;

(i) Shear stress aty =0 is given by
To=H (;—) = 0.863 x 0.667 = 0.5756 N/m’. Ans.
Y/)y=0
(ii) Shearstressaty=0.15m is given by

(t). =015 1 [?) = 0.863 X 0.367 = 0.3167 N/mz. Ans.
y v=0.15

(-




Example 4

Calculate the dynamic viscosity of an oil, which is used for
lubrication between a square plate of size 0.8 m x 0.8 m and an
Inclined plane with angle of inclination 30°as shown in Fig. 1.4.
The weight of the square plate is 300 N and it slides down the
Inclined plane with a uniform velocity of 0.3 m/s. The thickness
of oil film is 1.5 mm.

il

= 1.5 mm

W = 300N
Fig.1.4
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Solution. Given :
Area of plate, A=08x0.8=0.64 m’
Angle of plane, ‘ 0 =30°
Weight of plate, W=300N
Velocity of plate, u=03m/s
Thicknessofoil film, ~ r=dv=15mm=15x10"m

Let the viscosity of fluid between plate and inclined plane is p.
Component of weight W, along the plane = W cos 60° = 300 cos 60° = 150 N
Thus the shear force, F , on the bottom surface of the plate = 150 N

F 150 .
and shear stress, 1= —— - 0_64, N/m?
Now using equation (1.2), we have
oy 4
dy

where du = change of velocity =1 -0 =u = 0.3 m/s
dy=t1t=15x 103 m
150 0.3
064 -F 15x107?

-3 )
_ 150Xx15X10°7 _ | 17 N s/m® = 1,17 x 10 = 11.7 poise. Ans.

H 64x03
- m Y




Example 5

The space between two square flat parallel plates is filled with
oil. Each side of the plate i1s 60 cm. The thickness of the oil
film is 12.5 mm. The upper plate, which moves at 2.5 metre per
sec requires a force of 98.1 N to maintain the speed.

Determine : -

I.the dynamic viscosity of the oil, and

li.the kinematic viscosity of the oil if the specific gravity of the
oil is 0.95.

Solution. Given:

Each side of a square plate=60cm =0.6 m

Area  A=0.6x0.6=0.36 m2

Thickness of oil film dy=12.5mm=12.5x103m
\elocity of upper plate u=2.5m/s




Change of velocity between plates, du = 2.5 m/sec
Force required on upper plate, F =98.1 N
- Force F _ 981N

" Area A 0.36m’
(¥) Let p = Dynamic viscosity of oil '

Shear stress,

. : du 98.1 25

Using equation (1.2), T=0 — Or — = U X

G eauatian (s 2y 036 "M 125107

981 _ 125%x107 Ns
= X —— = 1.3635 — A
H=036 ° T 25 ml
(if) Sp. gr. of 0il, S =0.95
Let v = kinematic viscosity of oil
Using equation (1.1 A),
Mass density of oil, p =S x 1000 = 0.95 x 1000 = 950 kg/m’
1.3635 (E:_)

Using the relation, v = % we getv = 950"' =.001435 m%/sec Ans.
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Thermodynamic Properties

Fluids consist of liguids or gases. But gases are compressible
fluids and hence thermodynamic properties play an important

role.

With the change of pressure and temperature, the gases undergo
large variation in density.

The relationship between pressure (absolute), specific volume
and temperature (absolute) of a gas is given by the equation of

State as

where

pV=RTOt§=RT

p = Absolute pressure of a gas in N/m*

V = Specific volume = 1

0
R = Gas constant

T = Absolute temperature in °K
p = Density of a gas.
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Thermodynamic Properties

J
e The value of gas constant R is R =287 ——

kg.K

 Isothermal Process. If the changes in density occurs at
constant temperature, then the process is called isothermal
and relationship between pressure (p) and density (p) Is

given by P = constant

Y
o Adiabatic Process. If the change in density occurs with no

heat exchange to and from the gas, the process is called
adiabatic. And If no heat is generated within the gas due to
friction, the relationship between pressure and density Is
given by )

— = constant

@ P
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Thermodynamic Properties

» where k = Ratio of specific heat of a gas at constant
pressure and constant volume.

e k=1.4forair
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Compressibility and Bulk Modulus

o Compressibility is the reciprocal of the bulk modulus of
elasticity, K which is defined as the ratio of compressive
stress to volumetric strain.

e Consider a cylinder fitted with a piston as shown in the Fig.
e Let V= \olume of a gas enclosed in the cylinder
p =Pressure of gas when volume is V

 Let the pressure is increased to p+ dp, the volume of gas
decreases from Vto V —dV.

e Then increase In pressure = dp
e Decrease in volume =dV
e \olumetric strain = - dV/V

(-




Compressibility and Bulk Modulus

* - Ve sign means the volume
decreases with increase of pressure.

Increase of pressure
Volumetricstrain

-.Bulk modules K=

_Gp _ _dp
TtV v
V

o Compressibility is given by = 1/K

«— V-—»

% J
2
}

»

—

A’ \ N\ L
W\ \'.\\\\\\".

[ . e e
o

N ——
A . ]

-
CYLINDER




Surface Tension and Capillarity

 Surface tension is defined as the tensile force acting on the
surface of a liquid in contact with a gas or on the surface
between two immiscible liquids such that the contact
surface behaves like a membrane under tension.

o Surface tension is created due to the unbalanced cohesive
forces acting on the liquid molecules at the fluid surface.

* Molecules in the interior of the fluid mass are surrounded
by molecules that are attracted to each other equally.

» However, molecules along the surface are subjected to a net
force toward the interior.

» The apparent physical consequence of this unbalanced
force along the surface is to create the hypothetical skin or
membrane.

o
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Surface Tension and Capillarity

» Atensile force may be
considered to be acting in the
plane of the surface along any
line In the surface.

* The intensity of the molecular
attraction per unit length along
any line in the surface is
called the surface tension.

* |t is denoted by Greek letter ¢
(called sigma).

— A molecule
on the surface

— A molecule
inside the
liquid

e The Sl unit 1s N/m.

@
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Surface Tension and Capillarity

Surface Tension on liquid Droplet and
Bubble

e Consider a small spherical droplet of a
liquid of radius ‘R’ On the entire
surface of the droplet, the tensile force
due to surface tension will be acting.

» Let o = surface tension of the liquid

* AP= Pressure intensity inside the
droplet (in excess of the outside
pressure intensity)

* R= Radius of droplet.

 Let the droplet is cut into two halves.
The forces acting on one half (say left
half) will be

(22R)os

(7R) AP gropiet

(a) Half a droplet

2(22R) o

(ﬂRZ)Apbtbble

(b) Half a bubble
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Surface Tension and Capillarity

e (i) tensile force due to
surface tension acting
around the circumference
of the cut portion as
shown and this is equal to

= o x Circumference
= o x 2nR
e (1) pressure force on the
area (m/4)d? and

e = AP x tR2asshown

2(27R) o

(7R%)APpubbie

(b) Half a bubble




Surface Tension and Capillarity

» These two forces will be equal and opposite under
equilibrium conditions, I.e.,

2o

Droplet: (27R)as = (TR AP ygpiet — APgropies = Py — Pp = ?‘5
2 4o,

Bubble: E[ETTR}EI'S = {’?TR }ﬂpmuﬂe — ﬁPI:le:IJI-E = Pi — Pn = R

* A hollow bubble like a soap bubble in air has two surfaces
In contact with air, one inside and other outside. Thus two
surfaces are subjected surface tension.




Surface Tension....... Example 1

 Find the surface tension in a soap bubble of 40 mm
diameter when the inside pressure is 2.5 N/m2above
atmospheric pressure.

Solution. Given :

Dia. of bubble, d=40mm=40x 10" m
Pressure in excess of outside, p = 2.5 N/m?

For a soap bubble, using equation (1.15), we get

25x40x107°
o= =

N/m = 0.0125 N/m. Ans.

/
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Surface Tension....... Example 2

e The pressure outside the droplet of water of diameter
0.04 mm is 10.32 N/cm2 (atmospheric pressure).
Calculate the pressure within the droplet if surface
tension is given as 0.0725 N/m of water.

Solution. Given :

Dia. of droplet, d=0.04mm=.04x10"m
Pressure outside the droplet = 10.32 N/cm? = 10.32 x 10* N/m’
Surface tension, 0 =0.0725 N/m
The pressure inside the droplet, in excess of outside pressure is given by
or pu 28 AX001D _ fogh im?= 22T 2 0.725 Nicm?
d 04x107° 10* cm?

. Pressure inside the droplet = p + Pressure outside the droplet
=0.725 + 10.32 = 11.045 N/cm’. Ans.

- ’ )
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Surface Tension and Capillarity

Capillarity
o Capillarity is defined as a phenomenon of rise or fall of a

liquid surface in a small tube relative to the adjacent general
level of liquid when the tube is held vertically in the liquid.

The rise of liquid surface is known as capillary rise while
the fall of the liquid surface iIs known as capillary
depression.

The attraction (adhesion) between the wall of the tube and
liquid molecules Is strong enough to overcome the mutual
attraction (cohesion) of the molecules and pull them up the
wall. Hence, the liquid is said to wet the solid surface.

It is expressed in terms of cm or mm of liquid. Its value
depends upon the specific weight of the liquid, diameter of
the tube and surface tension of the liquid.
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Surface Tension and Capillarity

Expression for Capillary Rise

e Consider a glass tube of small
diameter ‘d’ opened at both ends
and Is inserted in a liquid, say water.

e The liquid will rise in the tube
above the level of the liquid.

e Let h =the height of the liquid in
the tube . Under a state of
equilibrium, the weight of the liquid
of height h is balanced by the force
at the surface of the liquid in the
tube. But the force at the surface of
the liquid in the tube is due to

surface tension.
(- J
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Expression for Capillary Rise...
» Let o = Surface tension of liquid
0 = Angle of contact between the liquid and glass tube
» The weight of the liquid of height h in the tube
= (Area of the tube x h) x px g

=-§dthxpxg

where p = Density of liquid
Vertical compoanent of the surface tensile force

= (0 X Circumference) X cos 6
=0 XndXxXcosB
For<quilibrium, equating (1.17) and (1.18), we get

%:-d’xh'xpxg=ox1tdxcosﬁ

oXxXndxXcos® 40cosO

or h=

@ %dzprg pXgxd




e

Expression for Capillary Rise...

» The value of 0 between water and clean glass tube iIs
approximately equal to zero and hence cos 6 is equal to
unity. Then rise of water is given by

- 40
pxgxd

» Contact angle depends on both the liquid and the solid.

- If 0 1s less than 900, the liquid is said to "wet" the solid.
However, if 0 is greater than 90°, the liquid is repelled by
the solid, and tries not to "wet" it.

» For example, water wets glass, but not wax. Mercury on the
other hand does not wet glass.

o
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Capillarity
7

Water

o

(a) Wetting
fluid

Mercury

N

() Nonwetting
fluid

Meniscus—

|

h L4

Water

Expression for Capillary Fall

o |If the glass tube is dipped in mercury, the revel of
mercury in the tube will be lower than the general level
of the outside liquid as shown above.

T

h >

Mercury /\

0

Meniscus |




Capillarity

Expression for Capillary Fall

* Let h = Height of depression iIn
tube.

e Then in equilibrium, two forces
arc acting on the mercury inside

the tube. ¢ -

o First one is due to surface tension g / 0 ','
acting in the downward direction Y
and is equal to o X 7d X cos 6. : A Skt

o . . \1
Second force Is due to hydrostatic MERCURY

force acting upward and is equal
to intensity of pressure at a depth
'h' x Area




Capillarity

Expression for Capillary Fall

Tt n
=px gy d'=pgxhx = d (= p=pgh)
Equating the two, we get
oxXndxcos 0 =pghx -:-:- d’

b= 4c cosO
pgd

Value of 6 for mercury and glass tube is 128°
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Capillarity...Example 1

e Calculate the capillary rise in a glass tube of 2.5 mm
diameter when immersed vertically in (a) water and (b)
mercury. Take surface tensions ¢ = 0.0725 N/m for
water and 6 = 0.52 N/m for mercury In contact with
air. The specific gravity for mercury is given as 13.6
and angle of contact = 130°

Solution. Given :

Dia. of tube, d=25mm=25x10"m
Surface tenstion, ¢ for water ="0.0725N/m
¢ for mercury =(0.52 N/m

Sp. gr. of mercury =13.6
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Capillarity...Example 1

. Density S = 13.6 x 1000 kg/m’.
(a) Capillary rise for water (0 = 0)

46 4 x 00725
pXgxd 1000x981x25x10~
=.0118 m = 1.18 cm. Ans.

Using equation (1.20), we get h =

(b) For mercury

Angle of constant between mercury and glass tube, 8 = 130°

40 cos® _ 4 x0.52 X cos 130°

pxgxd 13.6x1000x981x25x10
= ~.004 m =- 0.4 cm. Ans.

The negative sign indicates the capillary depression.

Using equation (1.21), we get h =
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Capillarity...Example 2

* Find out the minimum size of glass tube that can be used to
measure water level if the capillary rise in the tube is to be
restricted to 2 mm. Consider surface tension of water in
contact with air as 0.073575 N/m.

Solution. Given :

Capillary rise, h=20mm=20x10"m
Surface tension, ¢ =0.073575 N/m

Let dia. of tube -

The angle 0 for water ©o=

"~ 1000 % 9.81x2x10~°
Thus minimum diameter of the tube should be 1.5.cm.

@

The density for water, p = 1000 kg/m>
_. 4o o6 D 01655 4 x 0.073575
pxXgxd 1000 x 981 x d
d S =0.015 i = 1.5 6w AR:

/
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Flow Analysis Techniques

 In analyzing fluid motion,
we might take one of two
paths:

1. Seeking an estimate of
gross effects (mass flow,
Induced force, energy
change) over a finite
region or control volume
or

2. Seeking the point-by-

point details of a flow
pattern by analyzing an
Infinitesimal region of
the flow.

Control volume

Flow out

n

™ Flow out

—
I

| J—
]

a

g

Flow domain

Flow out

:—n-——~—'—'—__.'_:

Flow out
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Flow Analysis Techniques

» The control volume technique is useful when we are
Interested in the overall features of a flow, such as mass
flow rate into and out of the control volume or net forces
applied to bodies.

 Differential analysis, on the other hand, involves
application of differential equations of fluid motion to any
and every point in the flow field over a region called the
flow domain.

* When solved, these differential equations yield details
about the velocity, density, pressure, etc., at every point
throughout the entire flow domain.
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Flow Patterns

* Fluid mechanics is a highly visual subject. The patterns of flow
can be visualized in a dozen different ways, and you can view
these sketches or photographs and learn a great deal
qualitatively and often quantitatively about the flow.

» Four basic types of line patterns are used to visualize flows:

1. Astreamline is a line everywhere tangent to the velocity
vector at a given instant.

2. A pathline is the actual path traversed by a given fluid
particle.

3. Astreakline is the locus of particles that have earlier passed
through a prescribed point.

4. Atimeline is a set of fluid particles that form a line ata
given instant.
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Flow Patterns

The streamline is convenient to calculate mathematically,
while the other three are easier to generate experimentally.

Note that a streamline and a timeline are instantaneous lines,
while the pathline and the streakline are generated by the
passage of time.

A streamline is a line that Is everywhere tangent to the
velocity field. If the flow Is steady, nothing at a fixed point
(including the velocity direction) changes with time, so the
streamlines are fixed lines in space.

For unsteady flows the streamlines may change shape with
time.

o A pathline is the line traced out by a given particle as itflows

from one point to another.




Flow Patterns

» A streakline consists of all particles in a flow that have
previously passed through a common point. Streaklines are
more of a laboratory tool than an analytical tool.

» They can be obtained by taking instantaneous photographs of
marked particles that all passed through a given location in
the flow field at some earlier time.

e Such a line can be produced by continuously injecting
marked fluid (neutrally buoyant smoke in air, or dye in water)
at a given location.

o If the flow Is steady, each successively injected particle
follows precisely behind the previous one forming a steady
streakline that Is exactly the same as the streamline through
the Injection point.




Flow Patterns

l Dye or smoke
Injected fluid particle
Streakline

(a) Streamlines (b) Streaklines




Flow Patterns

 Streaklines are often confused with streamlines or pathlines.

» While the three flow patterns are identical in steady flow, they
can be quite different in unsteady flow.

e The main difference is that a streamline represents an
Instantaneous flow pattern at a given instant in time, while a
streakline and a pathline are flow patterns that have some age
and thus a time history associated with them.

« If the flow is steady, streamlines, pathlines, and streaklines are
Identical
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Dimensions and Units

» Fluid mechanics deals with the measurement of many
variables of many different types of units. Hence we need
to be very careful to be consistent.

Dimensions and Base Units

» The dimension of a measure Is independent of any
particular system of units. For example, velocity may be
Inmetres per second or miles per hour, but dimensionally, it
Is always length per time, or L/T = LT!.

» The dimensions of the relevant base units of the Systeme
International (SI) system are:
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Dimensions and Units
Unit-Free SI Units
Dimension Symbol Unit Symbol
Mass M kilogram kg
Length L metre m
Time T second S
Temperature 0 kelvin K
Derived Units
SI Unit
Quantity Dimension

Derived Base

Velocity LT m/s ms™

Acceleration LT m/s> ms™>

@ Force MILT ™2 Newton, N kgms™




Pressure Pascal, Pa -
ML'T? ) kgm™ s”
Stress N/m
Density ML? kg/m’ kg m?
Specific weight MI 2T N/m? kgm? s~
Relative density Ratio Ratio Ratio
Viscosity MIT! Ns/m? kgm™s™
Joule, J )
Energy (work) MI T kgm”s
Nm
Watt, W
Power MI 2T Nm/s kg m®s™

@ Note: The acceleration due to gravity will always be taken as 9.81 m/s’.
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Unit Table
Quantity SI Unit English Unit
Length (L) Meter (m) Foot (ft)
Mass (m) Kilogram (kg) |Slug (slug) =
Ib*sec?/ft
Time (T) Second (s) Second (sec)
Temperature (6 ) |Celcius (°C) Farenheit (°F)
Force Newton Pound (Ib)

(N)=kg*m/s?

O
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N

l:l; |

Dimensions and Units...

» 1 Newton — Force required to accelerate a 1 kg of mass
to 1 m/s?

» 1 slug — is the mass that accelerates at 1 ft/s2when acted
upon by a force of 1 Ib

» To remember units of a Newton use F=ma (Newton’s 2nd
Law)

[F] = [m][a]= kg*m/s2= N
» Toremember units of a slug also use F=ma=>m=F/a
e [m] =[F]/[a] =1b/ (ft/sec?) = Ib*sec?/ ft




End of Chapter 1

Next Lecture
Chapter 2: Fluid Statics




Fluids and Fluid Mechanics



Fluids

Continuous media that flow

Some new quantities and new units.

Density
= am
P = AV
Mass per unit volume.
Units are kg/m3 :

Pressure
AF
P = —
AA

Force per unit area.
Units are N/m? = Pa.

1 atm = 14.7 Ib/in2 = 1.01x10° Pa =101 kPa



Pressure and Depth

Consider the weight of a block of water inside a
swimming pool. Why doesn’t it fall?

P
F=p1AL e

ajay P,A = P A+W

pzAf#

In terms of density, W=pAAy,and this is simply
P, = P, +pgAy
This is commonly written in terms of depth A:

P is called the “absolute” pressure
Py is usually just atmospheric pressure

P-P is called the “gauge” pressure



. F,
., +
] Level 1, p,
: Sample | Sample g m
— Level 2, po W= mg
F,

(a) (0)
FIGURE 15-2 (a) A tank of water in which a sample of water is
contained in an imaginary cylinder of horizontal base area A. (b)
A free-body diagram of the water sample. The water in the sam-
ple is in static equilibrium, its weight being balanced by the net
upward buoyant force that acts on it.



/Po

—Level 1

‘|

' Level 2

Manometer



Archimedes’ Principle

A slug of water stays in place inside the pool
because pressure balances all the forces on it.

If you repiace the slug with some other material,
those forces still act on the surface of the “sing”.

= A body fully or parviaily immersed in & fwd
is buoyed up by a force equal 10 tive weighn of e

Archimedes’ principle:

A body fully or partially immersed in a fiwid is
buoyed up by a force equal to the weigit of the fiwid
that the body displaces.
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Bernoulli’s Equation

Conservation of energy in a moving fluid

p+ %pv2 + pgy = constant

If the fluid is motionless, then v=0 and

P+ pgy = constant

which we’ve already seen.

If the fluid moves without changing it height,

p+ %pv2 = constant

This tells you how pressure changes with speed.



Ideal fluid

(a)

t+ At

(b)



Alr - p, Level 1 [¥=0
——
Water ?
h
pl————— Level 2

FIGURE 15-3 The pressure p increases with depth /1 below the
water surface according to Eq. 15-5.



p1 + ipvi + pgyy = p2 t 4pvi + pgy,.  (15-16)
We can also write this equation as

p + 3pv? + pgy = a constant. (15-17)






TABLE 15-2 SOME PRESSURES

PRESSURE (Pa)

Center of the Sun

Center of Earth

Highest sustained laboratory pressure
Deepest ocean trench (bottom)

Spike heels on a dance floor
Automobile tire?

Atmosphere at sea level

Normal blood pressure®®

Best laboratory vacuum

2 X 106
4 x 10! "
1.5 x 10© (2X10 Pa.)
1.1 X 108
1 X 109
2 X 105
1.0 X 1053
1.6 X 104
10—12

a Pressure in excess of atmospheric pressure.

>The systolic pressure, corresponding to 120 torr on the physician’s

pressure gauge.



TABLE 15-1 SOME DENSITIES

MATERIAL OR OB_]ECT DENSITY (kg/m3)
Interstellar space 10—20
Best laboratory vacuum 10—17
Air: 20°C and 1 atm 1.21
20°C and 50 atm 60.5
Styrofoam 1 X 102
Water: 20°C and 1 atm 0.998 X 103
20°C and 50 atm 1.000 X 103
Seawater: 20°C and 1 atm 1.024 X 103
Whole blood - 1.060 < 103
Ice 0.917 X 103
Iron 7.9 X 103
Mercury 13.6 X 103
Earth: average 5.5 X 103
core 9.5 X 103
crust 2.8 X 103
Sun: average 1.4 < 103
core 1.6 X 105
White dwarf star (core) 1010
Uranium nucleus 3 X< 107
Neutron star (core) 10!8

Black hole (1 solar mass) 1012




A container is filled with oil and fitted on
both ends with pistons. The area of the left
piston is 10 mm?; that of the right piston
10,000 mmZ?. What force must be exerted on
the left piston to keep the 10,000-N car on
the right at the same height?

F=7N 10,000 N

10 N

100 N

10,000 N

105N

108 N

insufficient information

AR N



When a hole is made 1n the side of a con-
tainer holding water, water tlows out and fol-
lows a parabolic trajectory. If the container
is dropped in free fall, the water flow

diminishes.

stops altogether.

goes out in a straight line.
curves upward.

B =



A blood platelet drifts along with the flow
of blood through an artery that is partially
blocked by deposits. As the platelet moves
from the narrow region to the wider region,
it experiences

1. an increase in pressure.
2. no change in pressure.
3. a decrease in pressure.



Blood flows through a coronary artery that
is partially blocked by deposits along the
artery wall. Through which part of the artery
is the flow speed largest?

1. The narrow part.
2. The wide part.
3. The flux is the same in both parts.



Two cups are filled to the same level with
water. One of the two cups has ice cubes
floating in it. Which weighs more?

1. The cup without ice cubes.
2. The glass with ice cubes.
3. The two weigh the same.



Bernoulli

Alcng a Streamline

. Separate acceleration due to gravity. Coordinate
—Vp=pa+pgK  system may be in any orientation!
op % K is vertical, s is in direction of flow, n is normal.

T pa. + p Component of g in s direction

Note: No shear forces!
Therefore flow must be
frictionless.

Steady state (no change In
P wrt time)




Bernoulli

Alcng a Streamline

P a2 Can we eliminate the partial derivative?

0s ﬁdSK' Chain rule

dv. oVds oV : : —
a =—= NES _Ny Write acceleration as derivative wrt s
dt osdt 0Js

%O (n Is constant along streamline, dn=0)

dp=—ds+— ~.dp/ds=op/os and dV/ds=oV/os

_|_ —_—
ds ds ! ds



Integrate F=ma Along a

Streamline
dp dv.  dz .
LoV — ity — El
i =p i +y i Iminate ds
dp+ pVdV + ydz = Now let’s integrate...

But density Is a function

'Fj VdV + gj dz = of pressure .
_I_

V ‘10z = If density is constant...

1,
p+§pV +yz=C,




Bernoulli Equation

» Assumptions needed for Bernoulli Equation

> FErictionless

> Steady

> Constant density (incompressible)
> Along a streamline

» Eliminate the constant in the Bernoulli equation?
Apply at two points along a streamline.
» Bernoulli equation does not include
» Mechanical energy to thermal energy
» Heat transfer, Shaft Work




Bernoulli Equation

The Bernoulli Equation is a Pgrelye —c,
statement of the conservation P
of _Mechanical Energy p.e. ke.
p, VvV’
—+z+—=C..
y 29
P Pressure head ) Hydraulic Grade Line
4 ;+ z = Plezometric head
z= Elevation head .
0 vz Energy Grade Line
\VE —+Z7+—=
— = Velocity head y 29 Total head

29



Bernoulli Equation: Simple Case

. (V=20)

z
» Reservoir (V = 0) Pressure datum 1 o

»Put one point on the surface,
one point anywhere else

2 Elevation datum
p+z+%z;cw
/4 g
by, , P, We didn’t cross any streamlines
y Ly so this analysis is okay!
_P : :
- 2,=-*  Same as we found using statics

9



Hydraulic ang ko %r,gé"%yGrade

Lines (negalectina losses for now

Pizs¥ C,. Mechanical Energy The 2 cm diameter jet Is
yo 29 Conserved 5 m lower than the

i 1 surface of the reservoir.
V? What is the flow rate

25 (@

Z

L VA
I l ____________ - Elevation datum

Pressure datum? Atmospheric pressure




Bernoulli Equation: Simple Case

SE =0 or constantz

»What iIs an example of a fluid experiencing
a change In elevation, but remaining at a
constant pressure’> Free jet



Munson Movies/V3_5 free jet soda bottle and dam.mov

Pitot Tubes

-
o
o
3

> Used to measure air speed on airplanes

» Can connect a differential pressure
transducer to directly measure V?4/2g

» Can be used to measure the flow of water
In pipelines Point measurement!



http://www.airflow.co.uk/instr/stat-pit.htm
Munson Movies/V3_4 Pitot tube airplane.mov

Pitot Tube

Stagnation pressure tap ~.,

e Static pressure tap

4 ]:Jﬂ/ 2
— N i / v

1 o 2
— Y ég Y 29
2 0
— ) V=l 2
Vo1 4 _ V=\/—(p1—p2)
L1= 14y P

—
— Connect two ports to differential pressure transducer.
— Make sure Pitot tube is completely filled with the fluid

that Is being measured.
Solve for velocity as function of pressure difference



Relaxed Assumptions for

Bernoulli Eguation

» Frictionless (velocity not influenced by viscosity)
Small energy loss (accelerating flow, short distances)

» Steady
Or gradually varying

» Constant density (incompressible)
Small changes in density

» Along a streamline
Don’t cross streamlines




Bernoulli Equation Applications

» Stagnation tube Applicable to contracting

> Pitot tube streamlines

> Free Jets (accelerating
> Orifice flow).

»>Venturi [l

» Sluice gate
» Sharp-crested welr




Summary

» By Integrating F=ma along a streamline we

found... .
echanical
> That energy can be converted between pressure,

elevation, and velocity

» That we can understand many simple flows by
applying the Bernoulli equation

» However, the Bernoulli equation can not be
applied to flows where viscosity Is large, where
mechanical energy Is converted into thermal
energy, or where there Is shaft work.



Example: Venturi



Munson Movies/V3_6 Venturi.mov

Example: Venturi

How would you find the flow (Q) given the pressure drop
between point 1 and 2 and the diameters of the two sections?
You may assume the head loss is negligible. Draw the EGL and
the HGL over the contracting section of the Venturi.

T How many unknowns?
What equations will you use?




Example Venturi

&+21+?_&+22+L
71 g 7 29 Q =VA
P._ P> :\2/22 \2/12 VA =V, A,
Y Y g g 2 2
T 4] V, 720 =V, 72
P P2 :VZ 1{dzJ 4 4
Y Y 29 i d, i V1d12 :Vzdéz
2
sz\/ 29(p; — p,) V, :V2d_2
2
7/[1_(d2/d1)4] d;

Q=CVA2\/ 29(p1—p2)4
yh-(d, d,)"]




Chapter 5

Dimensional Analysis And Similitude
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Introduction. DIMENSIONS AND UNITS

o Adimension is a measure of a physical quantity (without

numerical values), while a unit is a way to assign a number to
that dimension. For example, length is a dimension that is
measured In units such as microns (um), feet (ft), centimeters
(cm), meters (m), kilometers (km), etc.

There are seven primary dimensions (also called fundamental or
basic dimensions)—mass, length, time, temperature, electric
current, amount of light, and amount of matter.

e All nonprimary dimensions can be formed by some combination

of the seven primary dimensions.

For example, force has the same dimensions as mass times
acceleration (by Newton’s second law). Thus, in terms of primary
dimensions,

. . Length ;
Dimensions of force: {Force} = {Mass — = {mL/t¢}

Time?
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Introduction. DIMENSIONS AND UNITS

Primary dimensions and their associated primary S| and English units

Dimension Symbol* S| Unit English Unit
Mass m kg (kilogram) Ibm (pound-mass)
Length L m (meter) ft (foot)

Time! t s (second) s (second)
Temperature T K (kelvin) R (rankine)
Electric current | A (ampere) A (ampere)
Amount of light C cd (candela) cd (candela)
Amount of matter N mol (mole) mol (mole)

 Surface tension (o), has dimensions of force per unit length.
The dimensions of surface tension in terms of primary
dimensions Is

: : . _JForce |  Jm-LA"| )
Dimensions of surface tension: {o.} = {Len gth} = { . Z} = {m/t}

o




/
DIMENSIONAL HOMOGENEITY

o Law of dimensional homogeneity: Every additive term in an
equation must have the same dimensions.

» Consider, for example, the change in total energy of a simple
compressible closed system from one state and/or time (1) to
another (2), as shown in the figure

_— T .,
! .

e The change In total energy of the « - k
system (AE) is given by b
AE = AU + AKE + APE | Es bl )

e where E has three components: / ‘x\ y

“ /

— o —

Internal energy (U), kinetic energy
(KE), and potential energy (PE).

System at state 1

E1 = U1 + KE1 + PE-|

(-




DIMENSIONAL HOMOGENEITY

» These components can be written in terms of the system mass (m);
measurable quantities and thermodynamic properties at each of the
two states, such as speed (V), elevation (z), and specific internal
energy (u); and the known gravitational acceleration constant (g),

AU=m(u, —u,) AKE = % m(V5—V3)  APE =mg(z, — z,)

e Itis straightforward to verify that the left side of the change in
Energy equation and all three additive terms on the right side have
the same dimensions—energy.

{AE} = {Energy} = {Force - Length} — {AE} = {mL*t*}

nerg>'}={Energy} - {AU} = (ML)

E
AU} = <M
AU} { = Mass

@




. DIMENSIONAL HOMOGENEITY

Length? }
Time?

{AKE} = {Mass — {AKE} = {mL*/t?}

Length
Time?

{APE} = {Mass Length} - {APE} = {mL?/t?}

 In addition to dimensional homogeneity, calculations are valid
only when the units are also homogeneous in each additive term.

e For example, units of energy in the above terms may be J, N-m,
or kg-m?/s2, all of which are equivalent.

e Suppose, however, that kJ were used in place of J for one of the
terms. This term would be off by a factor of 1000 compared to
the other terms.

It is wise to write out all units when performing mathematical
° calculations in order to avoid such errors.




Example 1. Dimensional Homogeneity of the Bernoulli
Equation

* Probably the most well-known equation in fluid mechanics is
the Bernoulli equation . One standard form of the Bernoulli
equation for incompressible irrotational fluid flow is

1
P-I-Esz-l-ng:C

* (a) Verify that each additive term in the Bernoulli equation
has the same dimensions. (b) What are the dimensions of the
constant C?

™~




4 ™
SOLUTION We are to verify that the primary dimensions of each additive
term in Eq. 1 are the same, and we are to determine the dimensions of

constant C.
Analysis (a) Each term is written in terms of primary dimensions,

(P} = (P ) = {Force} 3 {M Length 1 } B {2}
e Area ¥ Time? Length? t’L
{1 Vz} 3 { Mass (Length)z} 3 {Mass X Lengthz} 3 { }
T | Volume \ Time | Length® X Time?J | ¢

M Length Mass X Leneoth?
it = Length} = { S } = { }

Volume Time? Length® X Time?
(b) From the law of dimensional homogeneity, the constant must have the
same dimensions as the other additive terms in the equation. Thus,

I

-

I

o

t2

{pgz} = {

Indeed, all three additive terms have the same dimensions.

Primary dimensions of the Bernoulli constant: {C) = {%}

( y




Example 2 . Dimensional Homogeneity

» In Chap. 4 we discussed the differential equation for conservation
of mass, the continuity equation. In cylindrical coordinates, and for
steady flow,

+—=0

19(ruy) N 1du, oy,
ror rof oz

» Write the primary dimensions of each additive term in the equation,
and verify that the equation is dimensionally homogeneous.

e Solution. We are to determine the primary dimensions of each
additive term, and we are to verify that the equation is dimensionally
homogeneous.

» Analysis .The primary dimensions of the velocity components are
length/time. The primary dimensions of coordinates r and z are
length, and the primary dimensions of coordinate 0 are unity (it is a
dimensionless angle). Thus each term in the equation can be written
In terms of primary dimensions,




Example 2 . Dimensional Homogeneity

- length
{lﬁ'l:ru__] _ 1 time

1
" ﬂr} length length "{ﬁm}

i .
{2~ e i) e
r 86 length 1 time raef |t
length”

(o) | L)

e Indeed, all three additive terms have the same dimensions,
namely {t-1}.
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Nondimensionalization of Equations

e The law of dimensional
homogeneity guarantees that
every additive term in an
equation has the same
dimensions.

o |t follows that iIf we divide

each term in the equation by a
collection of variables and
constants whose product has
those same dimensions, the
equation is rendered
nondimensional.

The nondimensionalized Bernoulli
equation

P pV? pgz_C
P 2P0 P P.

. I —

(1y (1} {1} {1}

A nondimensionalized form of the
Bernoulli equation is formed by
dividing each additive term by a
pressure (here we use P, ). Each
resulting term is dimensionless
(dimensions of {1}).

e If, in addition, the nondimensional terms in the equation are of
order unity, the equation is called normalized.

@- Each term in a nondimensional equation is dimensionless.
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Nondimensionalization of Equations

* In the process of nondimensionalizing an equation of motion,
nondimensional parameters often appear—most of which are
named after a notable scientist or engineer (e.g., the Reynolds
number and the Froude number).

e This process is sometimes called inspectional analysis.
» As a simple example, consider the equation of motion

describing the elevation z of an object falling by gravity
through a vacuum (no air drag).

e The initial location of the object is z,and its initial velocityis
W, in the z-direction. From high school physics,

d’z _ _
dt? S SUUTITTRR (1)

» Dimensional variables are defined as dimensional quantities
that change or vary in the problem.

(-




4 Nondimensionalization of Equations

» For the simple differential equation given In Eq. 1, there are
two dimensional variables: z (dimension of length) and t
(dimension of time).

* Nondimensional (or dimensionless) variables are defined as
quantities that change or vary in the problem, but have no
dimensions; an example is angle of rotation, measured in
degrees or radians which are dimensionless units. Gravitational
constant g, while dimensional, remains constant and is called a
dimensional constant.

» Other dimensional constants are relevant to this particular
problem are initial location zyand initial vertical speedw,.

» While dimensional constants may change from problem to
problem, they are fixed for a particular problem and are thus
distinguished from dimensional variables.

(:




Nondimensionalization of Equations

* \We use the term parameters for the combined set of
dimensional variables, nondimensional variables, and
dimensional constants in the problem.

e Equation 1 is easily solved by integrating twice and
applying the initial conditions. The result is an expression
for elevation z at any time t:

!
T=g kwl = et o)

* The constant ¥2 and the exponent 2 in Eqg. 2 are
dimensionless results of the integration. Such constants are
called pure constants. Other common examples of pure
constants are II and e.

(-
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Nondimensionalization of Equations

» Tonondimensionalize Eq.

1, we need to select
scaling parameters,
based on the primary
dimensions contained in
the original equation.

e In fluid flow problems
there are typically at least
three scaling parameters,
ed., L, Vand P, — P, ,
since there are at least
three primary dimensions
In the general problem
(e.g., mass, length, and

@ time).

>

-t L

In a typical fluid flow problem, the
scaling parameters usually include a
characteristic length L, a characteristic
velocity V,and a reference pressure
difference P, — P, . Other parameters
and fluid properties such as density,
viscosity, and gravitational acceleration
enter the problem as well.
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Nondimensionalization of Equations

* In the case of the falling object being discussed here, there are
only two primary dimensions, length and time, and thus we are
limited to selecting only two scaling parameters.

» \We have some options in the selection of the scaling parameters
since we have three available dimensional constants g, z,, and
wy. We choose z,and w,. we can also do the analysis using g and
Zoand/or with g and w,

» With these two chosen scaling parameters we nondimensionalize
the dimensional variables z and t.

e The first step Is to list the primary dimensions of all dimensional
variables and dimensional constants in the problem,

Primary dimensions of all parameters:

= {L} {1} ={t} {z} ={L} {w} = {Li} {g} = {L/i*}

/




Nondimensionalization of Equations

» The second step Is to use our two scaling parameters to

nondimensionalize z and t (by inspection) into nondimensional
variables z* and t*,

Nondimensionalized variables:

Zo Zo rveerieennnnnnnn(3)
» Substitution of Eq. 3 into Eq. 1 gives
dz _ d¥zz*) _ wgdk* wp d*%z* 1
—_— —_— —_— — _> — —
A dggrtiwg? 2 dr2 ° g2, dr? ...(4)

» which is the desired nondimensional equation. The grouping of
dimensional constants in Eq. 4 is the square of a well-known

nondimensional parameter or dimensionless group called the
Froude number,

&
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Nondimensionalization of Equations

e Froude number: Fr=——+ ............ (5)

» Substitution of Eq. 5 into Eq. 4 yields 427+ 1

e Nondimensionalized equation of motion: o .....(6)

 In dimensionless form, only one parameter remains, namely the
Froude number.

e Equation 6 Is easily solved by integrating twice and applying the
Initial conditions. The result is an expression for dimensionless
elevation z* as a function of dimensionless time t*:

e Nondimensional result:

¢ =14 —




Nondimensionalization of Equations

» There are two key advantages of nondimensionalization

 First, it increases our insight about the relationships between
key parameters. Equation 5 reveals, for example, that doubling
W, has the same effect as decreasing z, by a factor of 4.

e Second, it reduces the number of parameters in the problem.
For example, the original problem contains one dependent
variable, z; one independent variable, t; and three additional
dimensional constants, g, wy, and z,. The nondimensionalized
problem contains one dependent parameter, z*; one
Independent parameter, t*; and only one additional parameter,
namely the dimensionless Froude number, Fr. The number of
additional parameters has been reduced from three to one!

(-
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Dimensional Analysis and Similarity

» Nondimensionalization of an equation by inspection is useful
only when we know the equation to begin with.

» However, in many cases in real-life engineering, the equations
are either not known or too difficult to solve; often times
experimentation is the only method of obtaining reliable
Information.

* |In most experiments, to save time and money, tests are
performed on a geometrically scaled model, rather than on the
full-scale prototype. In such cases, care must be taken to
properly scale the results. We introduce here a powerful
technique called dimensional analysis.
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Dimensional Analysis and Similarity

* The three primary purposes of dimensional analysis are

v"To generate nondimensional parameters that help in the

design of experiments (physical and/or numerical) and in
the reporting of experimental results

v"To obtain scaling laws so that prototype performance can
be predicted from model performance

v"To (sometimes) predict trends in the relationship between
parameters

» There are three necessary conditions for complete similarity
between a model and a prototype.

* The first condition is geometric similarity—the model must

be the same shape as the prototype, but may be scaled by
some constant scale factor.

@
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Dimensional Analysis and Similarity

e The second condition IS

kinematic similarity, which FrotvPe

| [N
means that the velocity at SS
any point in the model flow ==l
must be proportional (by a L e
constant scale factor) to the === D|[JS
velocity at the | [E UES =]
corresponding point in the = = i e
prototype flow. 5 E A

o Specifically, for kinematic =~ ;_;.;.

similarity the velocity at v,
corresponding points must -
scale in magnitude and must Fp. m

point In the same relative
@ direction. Fig. Kinematic similarity




Dimensional Analysis and Similarity

Kinematic similarity is achieved when, at all locations, the speed in
the model flow is proportional to that at corresponding locations in
the prototype flow, and points in the same direction.

Geometric similarity is a prerequisite for kinematic similarity

Just as the geometric scale factor can be less than, equal to, or
greater than one, so can the velocity scale factor.

In Fig. above, for example, the geometric scale factor is less than
one (model smaller than prototype), but the velocity scale is greater
than one (velocities around the model are greater than those around
the prototype).

The third and most restrictive similarity condition is that of
dynamic similarity. Dynamic similarity is achieved when all
forces in the model flow scale by a constant factor to corresponding
forces in the prototype flow (force-scale equivalence).




Dimensional Analysis and Similarity

* As with geometric and kinematic similarity, the scale factor for
forces can be less than, equal to, or greater than one.

* In Fig. shown in slide 20 above for example, the force-scale
factor is less than one since the force on the model building is
less than that on the prototype.

e Kinematic similarity is a necessary but insufficient condition
for dynamic similarity.

e It is thus possible for a model flow and a prototype flow to
achieve both geometric and kinematic similarity, yet not
dynamic similarity. All three similarity conditions must exist for
complete similarity to be ensured.

e |In a general flow field, complete similarity between a model
and prototype is achieved only when there Is geometric,
Kinematic, and dynamic similarity.

@
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Dimensional Analysis and Similarity

» W let uppercase Greek letter Pi (IT) denote a nondimensional
parameter. We have already discussed one I1, namely the
Froude number, Fr.

* In a general dimensional analysis problem, there is one II that
we call the dependent II, giving it the notation II;. The
parameter I, is in general a function of several other IT’s,
which we call independent IT’s. The functional relationship is

e Functional relationship between I 5:
1, = f(IL,, 1L,,..., II,)
o where Kk Is the total number of IT’s.

e Consider an experiment in which a scale model is tested to
simulate a prototype flow.

(-
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Dimensional Analysis and Similarity

e Toensure complete similarity between the model and the
prototype, each independent P of the model (subscript m) must
be identical to the corresponding independent I1 of the prototype
(subscript p),

i.e., HZ, m_ HZ, D> H3’ m_ H3, P+ v s Hk, m_ Hk, p*

e To ensure complete similarity, the model and prototype must be
geometrically similar, and all independent IT groups must match
between model and prototype.

e Under these conditions the dependent IT of the model (I1; ) IS
guaranteed to also equal the dependent I1 of the prototype (I1, ).

e Mathematically, we write a conditional statement for achieving
similarity,

If =1, and I, =1II ... and Iy m = I p.

@ then Hl,m = Hl,p




Dimensional Analysis and Similarity

e Consider, for example, the
design of a new sports car, the Y
aerodynamics of which is to
be tested in a wind tunnel. To
save money, it is desirable to
test a small, geometrically
scaled model of the car rather

Prototype car

than a full-scale prototype of
the car.

* In the case of aerodynamic

m

Model car

drag on an automobile, it —_—

turns out that if the flow is Hom: Pm
approximated as w—

Incompressible, there are only
two IT’s in the problem,
@

/




Dimensional Analysis and Similarity

LI, = f(L,)
» Where
F VL
I, =—2- and IL="—
pV-L v

e The procedure used to generate these IT’s will be discussed
later in this chapter.

* In the above equation F is the magnitude of the aerodynamic
drag on the car, p Is the air density, V is the car’s speed (or the
speed of the air in the wind tunnel), L is the length of the car,
and p IS the viscosity of the air. I1; is a nonstandard form of the
drag coefficient, and I1, Is the Reynolds number, Re.

e The Reynolds number is the most well known and useful
dimensionless parameter in all of fluid mechanics

(-
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Dimensional Analysis and Similarity

 In the problem at hand there is only one independent I1, and
the above Eq. ensures that if the independent IT’s match (the
Reynolds numbers match: IT, , =II; ), then the dependent
II’s also match (IL; ,,=1II; ).

» This enables engineers to measure the aerodynamic drag on
the model car and then use this value to predict the
aerodynamic drag on the prototype car.
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Example 3: Similarity between Model and Prototype Cars

» The aerodynamic drag of a new sports car Is to be predicted at a
speed of 50.0 mi/h at an air temperature of 25°C. Automotive
engineers build a one fifth scale model of the car to test in a wind
tunnel. It is winter and the wind tunnel is located in an unheated
building; the temperature of the wind tunnel air is only about
5°C. Determine how fast the engineers should run the wind
tunnel in order to achieve similarity between the model and the
prototype.

Solution:

» We are to utilize the concept of similarity to determine the speed
of the wind tunnel.

Assumptions:
» The model is geometrically similar to the prototype

e The wind tunnel walls are far enough away so as to not interfere
@ with the aerodynamic drag on the model car.
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Example 3: Similarity between Model and Prototype Cars

e The wind tunnel has a moving belt to simulate the ground under
the car. (The moving belt is necessary in order to achieve

Kinematic similarity everywhere in the flow, in particular
underneath the car.)

Wind tunnel test section

A drag balance is a device
used in a wind tunnel to
measure the aerodynamic
drag of a body. When
testing automobile models,
a moving belt is often
added to the floor of the
wind tunnel to simulate the
moving ground
(from the car’s frame of
Moving belt Drag balance reference).
(-
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Example 3: Similarity between Model and Prototype Cars

e Properties: For air at atmospheric pressure and at T = 25°C, p =
1.184 kg/m3and p = 1.849 x 10->kg/m-s. Similarly, at T =5°C,
p=1.269 kg/m3and u=1.754 x 10->kg/m-s.
e Analysis: Since there is only one independent II in this problem,
the similarity equation holds if IT, , =1II, ,, where I, Is the
Reynolds number. Thus, we write

mVn m P 4
H2,m = Rem = : ’L - H2.p - Rep : pr
Mo ' :u'p

=)o)

" A, /\pn/\L,

1.754 X 10 °kg/m-s\/ 1.184 kg/m’
1.849 X lO_Skg/m-s)(1.269 kg/m’

= (50.0 mi/h)( )(5) = 221 mi/h
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Example 3: Similarity between Model and Prototype Cars

» The power of using dimensional analysis and similarity to
supplement experimental analysis is further illustrated by the fact
that the actual values of the dimensional parameters (density,
velocity, etc.) are irrelevant. As long as the corresponding
Independent IT’s are set equal to each other, similarity is achieved
even If different fluids are used.

 This explains why automobile or aircraft performance can be
simulated in a water tunnel, and the performance of a submarine can
be simulated in a wind tunnel.

e Suppose, for example, that the engineers in Example above use a
water tunnel instead of a wind tunnel to test their one-fifth scale
model. Using the properties of water at room temperature (20°C is
assumed), the water tunnel speed required to achieve similarity is
easily calculated as
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Example 3: Similarity between Model and Prototype Cars

n\( Pr\( L
= G)e)z)
I‘Lp pm Lm
1.002 X 10_3kg/m-s))(1.184 kg/m?
1.849 X 10 °kg/m-s /\998.0 kg/m’

(50.0 mi/h)( )(5) = 16.1 mi/h

» As can be seen, one advantage of a water tunnel is that the

required water tunnel speed is much lower than that required
for a wind tunnel using the same size model




The Method of Repeating Variables and the
Buckingham Pi Theorem

* In this section we will learn how to generate the nondimensional

parameters, i.e., the IT’s.

» There are several methods that have been developed for this

purpose, but the most popular (and simplest) method is the method
of repeating variables, popularized by Edgar Buckingham (1867—
1940).

* We can think of this method as a step-by-step procedure or

(-

“recipe” for obtaining nondimensional parameters. There are siX
steps In this method as described below in detalil




Step 1

Step 2
Step 3

The Method of Repeating Variables and the
Buckingham Pi Theorem

List the parameters (dimensional variables, nondimensional variables
and dimensional constants) and count them. Let n be the total
number of parameters in the problem, including the dependent
variable. Make sure that any listed independent parameter is indeed
independent of the others, i.e., it cannot be expressed in terms of
them. (E.g., don’t include radius r and area A = #r?, since rand A
are not independent.)

List the primary dimensions for each of the n parameters.
Guess the reduction . As a first guess, set j equal to the number of

primary dimensions represented in the problem. The expected num-
ber of II's (k) is equal to n minus j, according to the Buckingham Pi

theorem,

The Buckingham Pi theorem: k=n—j

If at this step or during any subsequent step, the analysis does not
work out, verify that you have included enough parameters in step 1.
Otherwise, go back and reduce j by one and try again.

™~
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Step 4

Step 5

Step 6

The Method of Repeating Variables and the A

Buckingham Pi Theorem

Choose j repeating parameters that will be used to construct each II.
Since the repeating parameters have the potential to appear in each
I1, be sure to choose them wisely

Generate the II's one at a time by grouping the j repeating parameters
with one of the remaining parameters, forcing the product to be
dimensionless. In this way, construct all k II's. By convention the

first I1, designated as I1;, is the dependent 11 (the one on the left
side of the list). Manipulate the II's as necessary to achieve estab-
lished dimensionless groups

Check that all the II's are indeed dimensionless.
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The Method of Repeating Variables and the
Buckingham Pi Theorem

Step |: List the parameters in the problem
and count their total number n.
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Step 3: Set the reduction j as the number summarv of the six
of primary dimensions. Calculate k, Stens th;f[ comprise
the expected number of II's, P P
the method of

k=n-j

repeating variables




The Method of Repeating Variables and the
Buckingham Pi Theorem

As a simple first example, consider a ball falling in a vacuum. Let
us pretend that we do not know that Eqg. 1 is appropriate for this
problem, nor do we know much physics concerning falling objects.

In fact, suppose that all we know is that the instantaneous
elevation z of the ball must be a function of time t, initial vertical
speed w,, Initial elevation z,, and gravitational constant g.

The beauty of dimensional analysis is that the only other thing we
need to know is the primary dimensions of each of these
quantities.

As we go through each step of the method of repeating variables,
we explain some of the subtleties of the technique in more detalil
using the falling ball as an example.




The Method of Repeating Variables
A
Step 1

e There are five parameters
(dimensional variables,

wo = 1nitial vertical speed

nondimensional g = gravitational
. acceleration in the
variables, ana Zp = Initial negative z-direction

dimensional constants) in elevation

this problem; n = 5. They } o_
are listed in functional
form, with the dependent
variable listed as a
function of the
Independent variables

and constants:

\j

z = elevation of ball
=f(t& Wﬂ-, Z{]a g)

z = 0 (datum plane)

Fig. Setup for dimensional analysis of a ball falling
in a vacuum. Elevation z is a function of time t,
e List of relevant initial vertical speed wy, initial elevation z,, and

paramete rs: gravitational constant g.

@ z=f(t,wyg, 29,8 N =25
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The Method of Repeating Variables

Step 2
The primary dimensions of each parameter are listed here. We recommend
writing each dimension with exponents since this helps with later algebra.

F4 t Wo 2 8
{L'} {t'} {L't™1} {L'} {E't%)

Step 3
As a first guess, j is set equal to 2, the number of primary dimensions repre-
sented in the problem (L and t).

Reduction: j=2

If this value of j is correct, the number of II’s predicted by the Buckingham
Pi theorem 1is

Number of expected 11’ s: k=n—j=5—-2=3




The Method of Repeating Variables

Step 4

* We need to choose two repeating parameters since j = 2. Since
this i1s often the hardest (or at least the most mysterious) part of
the method of repeating variables, several guidelines about
choosing repeating parameters are listed in Table 1.

- Following the guidelines of Table 1 on the next page, the wisest
choice of two repeating parameters is wyand z,.

Repeating parameters: W, and z,
Step 5

* Now we combine these repeating parameters into products with
each of the remaining parameters, one at a time, to create the IT’s.
The first II is always the dependent II and is formed with the
dependent variable z.

DependentIT: II, = zwdizdr ..., (1)
@- where a; and b, are constant exponents that need to be determined. y




g The Method of Repeating Variables

* We apply the primary dimensions of step 2 into Eqg. 1 and force
the 11 to be dimensionless by setting the exponent of each
primary dimension to zero:

e Dimensions of /1;:
(I} = (L%} = {zwfzg} = {LY(L't ML)
 Since primary dimensions are by definition independent of each

other, we equate the exponents of each primary dimension
Independently to solve for exponents a; and b,

Time: (%) = [t~ %) 0=-a, a=>0

Length: {L°} = {L'L%L%} O0=1+a,+b, b =-1—a b =-1

e Thus

(-
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The Method of Repeating Variables

* In similar fashion we create the first independent I1 (I1,) by
combining the repeating parameters with independent variable t.

First independent 11 I, = whzd

Dimensions of IL;: {IL,} = {L%} = {mw&zl} = {t(Lt™1)=Lb}
Equating exponents,

Time: {9} = {tlt™2} O0=1-a, a, =1

Length: {L%} = {L®L%»} O=a,+b, by,=—-a, b,=—1

-

I1, is thus
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The Method of Repeating Variables

 Finally we create the second independent IT (I1;) by combining
the repeating parameters with g and forcing the P to be
dimensionless

Second independent 11: I, = gwizd

Dimensions of I1,: (T} = {1L%°]) = [gwizB) = (LU AL DH2L%]

Equating exponents,
Time: (P} ={t7t™ %} 0=-2-a a;=—2

Length: {L°} = {LLaL»s} O0=1+a+b, by=—-1—a, b=

I1; is thus

o




The Method of Repeating Variables

» We can see that IT; and I, are the same as the nondimensionalized
variables z* and t* defined by Eq. 3 (See slide number 15)—no
manipulation is necessary for these.

» However, we recognize that the third P must be raised to the power
of -1/2 to be of the same form as an established dimensionless
parameter, namely the Froude number of

- (8% —112_ W, .
3, modified = — I'T

o vV 8%

e Such manipulation is often necessary to put the IT’s into proper
established form (“socially acceptable form™ since it is a named,
established nondimensional parameter that is commonly used in
the literature.

(-




The Method of Repeating Variables

Step 6
o We should double-check that the IT’s are indeed dimensionless

* Weare finally ready to write the functional relationship between
the nondimensional parameters

Relationship between IT5:

. (L, T1) Z f(wﬂf Wo )
= " —> = b}
1 2 3 Z{] Zg \5%
e The method of repeating variables properly predicts the functional
relationship between dimensionless groups.

e However, the method of repeating variables cannot predict the
exact mathematical form of the equation. This is a fundamental

limitation of dimensional analysis and the method of repeating
variables.

@




4 The Method of Repeating Variables
Table 1

Guidelines for choosing repeating parameters in step 4 of the method of repeating variables’

Guideline Comments and Application to Present Problem

1. Never pick the dependent variable. In the present problem we cannot choose z, but we must choose from among
Otherwise, it may appear in all the the remaining four parameters. Therefore, we must choose two of the following

IT’s, which is undesirable. parameters: f, wy, Z,;, and g.

2. The chosen repeating parameters In the present problem, any two of the independent parameters would be valid
must not by themselves be able according to this guideline. For illustrative purposes, however, suppose we have
to form a dimensionless group. to pick three instead of two repeating parameters. We could not, for example,

Otherwise, it would be impossible  choose {, w,, and z,, because these can form a II all by themselves (fwy/z,).
to generate the rest of the IT’s.

3. The chosen repeating parameters Suppose for example that there were three primary dimensions (m, L, and t) and
must represent all the primary two repeating parameters were to be chosen. You could not choose, say, a length
dimensions in the problem. and a time, since primary dimension mass would not be represented in the

dimensions of the repeating parameters. An appropriate choice would be a density
and a time, which together represent all three primary dimensions in the problem.

4. Never pick parameters that are Suppose an angle 8 were one of the independent parameters. We could not choose
already dimensionless. These are @ as a repeating parameter since angles have no dimensions (radian and degree
IT's already, all by themselves. are dimensionless units). In such a case, one of the IT’s is already known, namely 8.

5. Never pick two parameters with In the present problem, two of the parameters, z and z,, have the same
the same dimensions or with dimensions (length). We cannot choose both of these parameters.
dimensions that differ by only (Note that dependent variable z has already been eliminated by guideline 1.)
an exponent. Suppose one parameter has dimensions of length and another parameter has

dimensions of volume. In dimensional analysis, volume contains only one primary
dimension (length) and is not dimensionally distinct from length—we cannot

‘ choose both of these parameters.
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The Method of Repeating Variables

6. Whenever possible, choose If we choose time t as a repeating parameter in the present problem, it would
dimensional constants over appear in all three IT's. While this would not be wrong, it would not be wise
dimensional variables so that since we know that ultimately we want some nondimensional height as a
only one Il contains the function of some nondimensional time and other nondimensional parameter(s).
dimensional variable. From the original four independent parameters, this restricts us to wy, 2, and g.

7. Pick common parameters since In fluid flow problems we generally pick a length, a velocity, and a mass or

they may appear in each of the IT's.  density (Fig. 7-25). It is unwise to pick less common parameters like viscosity
. or surface tension o, since we would in general not want u or o to appear in
each of the IT's. In the present problem, w, and z, are wiser choices than g.

8. Pick simple parameters over It is better to pick parameters with only one or two basic dimensions (e.g.,
complex parameters whenever a length, a time, a mass, or a velocity) instead of parameters that are composed
possible. of several basic dimensions (e.g., an energy or a pressure).




Table 2

The Method of Repeating Variables

Guidelines for manipulation of the IT's resulting from the method of repeating variables®

Guideline

Comments and Application to Present Problem

1. We may impose a constant
(dimensionless) exponent on
a II or perform a functional
operation on a II.

2. We may multiply aIl by a
pure (dimensionless) constant.

3. We may form a product (or quotient)
of any IT with any other II in the
problem to replace one of the IT's.

4. We may use any of guidelines
1 to 3 in combination.

5. We may substitute a dimensional
parameter in the IT with other

parameter(s) of the same dimensions.

We can raise a II to any exponent n (changing it to IT") without changing the
dimensionless stature of the I1. For example, in the present problem, we
imposed an exponent of —1/2 on II;. Similarly we can perform the functional
operation sin(IT), exp(IT), etc., without influencing the dimensions of the II.

Sometimes dimensionless factors of 7, 1/2, 2, 4, etc., are included in a II for
convenience. This is perfectly okay since such factors do not influence the
dimensions of the II.

We could replace I1; by I,IT;, II/IT,, etc. Sometimes such manipulation
is necessary to convert our IT into an established II. In many cases, the
established IT would have been produced if we would have chosen different
repeating parameters.

In general, we can replace any IT with some new II such as AIl;? sin(IT,°),
where A, B, and C are pure constants.

For example, the IT may contain the square of a length or the cube of a
length, for which we may substitute a known area or volume, respectively,
in order to make the II agree with established conventions.

(-
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Table 3. Some common established nondimensional parameters

Some common established nondimensional parameters or IT's encountered
in fluid mechanics and heat transfer”

Name Definition Ratio of Significance
: ps8L’ Gravitational force
Archimedes number Ar = —
w2 ©; = p) Viscous force
L L Length Length
Aspect rati AR = — = moe——
Essm w D Width " Diameter
Bictnurber Bi — hL Surface thermal resistance
k Internal thermal resistance
— )Lz e
Bond it Bo — 8pr — py Grav1tatlon'al force
o, Surface tension force
P — P, Pressure — Vapor pressure
Cavitation number Ca (sometimes 0',) = ——— el
pV Inertial pressure
( . 2P — Pv))
sometimes —————
pV?
s 87, Wall friction f
@ Darcy friction factor = W Inc:;l::mzwc

™~




Drag coefficient

Eckert number

Euler number

Fanning friction factor

Fourier number

Froude number

Grashof number

Jakob number

Knudsen number

Gr

_ gBlalp?

T — T,)

2

Ja =

Kn =

| >

By

Drag force

Dynamic force

Kinetic energy

Enthalpy

Pressure difference

Dynamic pressure

Wall friction force

Inertial force
Physical time

Thermal diffusion time

Inertial force
Gravitational force

Buoyancy force

Viscous force

Sensible energy

Latent energy
Mean free path length

Characteristic length

/
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Lewis number

Lift coefficient

Mach number

Nusselt number

Peclet number

Power number

Prandtl number

Pressure coefficient

Rayleigh number

k o
L.ﬂ — —
pcyDap  Dag
F
G =7 Lz
2pV°A
! |4
Ma (sometimes M) = =
Lh
Nu = —
Tk
PLVe, Ly
Pc —_— et
k o
W
N. =
P pD%w?
Vv l"cp
Pr=—=—
o k
- ol el
eV
gBIAT\L’p’c,
a —g
kp

Thermal diffusion

Species diffusion
Lift force

Dynamic force

Flow speed

Speed of sound

Convection heat transfer

Conduction heat transfer

Bulk heat transfer

Conduction heat transfer

Power

Rotational inertia

Viscous diffusion

Thermal diffusion

Static pressure difference

Dynamic pressure

Buoyancy force

Viscous force

™~




Reynolds number

Richardson number
Schmidt number
Sherwood number
Specific heat ratio

Stanton number

Stokes number

Strouhal number

@ Weber number

Inertial force

Viscous force

Buoyancy force

Inertial force

Viscous diffusion

Species diffusion
Overall mass diffusion

Species diffusion
Enthalpy

Internal energy

Heat transfer

Thermal capacity

Particle relaxation time

VL
1) v
_ LgAp
pV?
e v
Sc —_ pred
pPDp  Dyg
VL
Sh = —
Dy
p
k (sometimes y) = —
Cv
h
St =
P,V
PoDsV
Stk ti St) =
(sometimes St) 18uL
St (sometimes S or Sr) = %
ViL
We = £
o

5

Characteristic flow time
Characteristic flow time

Period of oscillation
Inertial force

Surface tension force




. EXAMPLE 4. Pressure in a Soap Bubble

e Some children are playing with soap
bubbles, and you become curious as to the
relationship between soap bubble radius and
the pressure inside the soap bubble. You
reason that the pressure inside the soap
bubble must be greater than atmospheric
pressure, and that the shell of the soap
bubble is under tension, much like the skin
of a balloon. You also know that the
property surface tension must be important
In this problem. Not knowing any other
physics, you decide to approach the

B outside

problem using dimensional analysis. The pressure inside a soap
Establish a relationship between pressure bubble is greater than that
difference surrounding the soap

bubble due to surface tension

AP = Pinside - Puutside: ) )
In the soap film.

» soap bubble radius R, and the surface

@ tension o of the soap film.




. EXAMPLE 4. Pressure in a Soap Bubble A

o SOLUTION. The pressure difference between the inside of a soap
bubble and the outside air is to be analyzed by the method of
repeating variables.

» Assumptions 1. The soap bubble is neutrally buoyant in the air, and
gravity is not relevant. 2 No other variables or constants are
Important in this problem.

» Analysis The step-by-step method of repeating variables is
employed.

Step 1 There are three variables and constants in this problem; n = 3.

They are listed in functional form, with the dependent variable listed as a
function of the independent variables and constants:

List of relevant parameters: AP =fR,o0) n=3
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EXAMPLE 4. Pressure in a Soap Bubble

o Step 2 The primary dimensions of each parameter are listed.
AP R o

{mlL—lt—Z} {Ll} {mlts—Z}
o Step 3 As a first guess, j is set equal to 3, the number of primary
dimensions represented in the problem (m, L, and t).
Reduction (first guess): ]=3
o If this value of j is correct, the expected number of I1’s s
k=n-J=3-3=0.
But how can we have zero P’s? Something is obviously not right

o At times like this, we need to first go back and make sure that we are
not neglecting some important variable or constant in the problem.

» Since we are confident that the pressure difference should depend only
on soap bubble radius and surface tension, we reduce the value of j by
one,

@
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EXAMPLE 4. Pressure in a Soap Bubble

Reduction (second guess): ] =2

If this value of j is correct, k =n -] =3-2=1. Thus we expect one
I, which is more physically realistic than zero IT’s.

Step 4 We need to choose two repeating parameters since | = 2.
Following the guidelines of Table 1, our only choices are R and o,
since AP is the dependent variable.

Step 5 We combine these repeating parameters into a product with
the dependent variable AP to create the dependent I1,

DependentIT: II, = APR%o> ... (1)

We apply the primary dimensions of step 2 into Eq. 1 and force the
IT to be dimensionless.

Dimensions of 11;:
(I} = (mL%) = [APR%o%) = {(m'L~t"3La(m't2¥)
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EXAMPLE 4. Pressure in a Soap Bubble

Time: (©) = {t2 %) 0=-2-2b b =1
Mass: {m°} = {m!m*») 0=1+ b, b, = —1
Length: {L°) = {L~1L%a) 0=—-1+aq a, = 1

Fortunately, the first two results agree with each other, and Eq. 1 thus
becomes
_ APR

1

G-S

e From Table 3, the established nondimensional parameter most
similar to Eqg. 2 is the Weber number, defined as a pressure
(pV2) times a length divided by surface tension. There is no need
to further manipulate this I1.

(-

™~

We equate the exponents of each primary dimension to solve for a; and b;:

(2)
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EXAMPLE 4. Pressure in a Soap Bubble

o Step 6 We write the final functional relationship. In the case at
hand, there is only one I1, which is a function of nothing. This is
possible only if the IT is constant.

» Relationship between I75:

APR _ O,
= & f(nothing) = constant — AP = constant?

11,

e This is an example of how we can sometimes predict trends with
dimensional analysis, even without knowing much of the physics
of the problem. For example, we know from our result that if the
radius of the soap bubble doubles, the pressure difference
decreases by a factor of 2. Similarly, if the value of surface
tension doubles, AP increases by a factor of 2.

» Dimensional analysis cannot predict the value of the constant in
Eq. 3; further analysis (or one experiment) reveals that the
constant is equal to 4 (Chap. 1).

(3)




4 Example 5

* When small aerosol particles or microorganisms move through
air or water, the Reynolds number is very small (Re << 1). Such
flows are called creeping flows. The aerodynamic drag on an
object in creeping flow is a function only of its speed V,some
characteristic length scale L of the object, and fluid viscosity .
Use dimensional analysis to generate a relationship for Fyas a
function of the independent variables.




/ Solution We are to use dimensional analysis to find a functional relationship between Fp and variables V, L, and u. \

Assumptions 1 We assume Re << 1 so that the creeping flow approximation applies. 2 Gravitational effects are urelevant.
3 No parameters other than those listed in the problem statement are relevant to the problem.

Analysis We follow the step-by-step method of repeating variables.

Stepl There are four vanables and constants in this problem; n = 4. They are listed in functional form, with the
dependent variable listed as a function of the independent vanables and constants:

List of relevant parameters: F,=f(V.L u) n=4

Step 2 The primary dimensions of each parameter are listed.
Fp 4 L M
') 1) ) ')
Step 3 As a first guess, we set j equal to 3, the number of primary dimensions represented in the problem (m, L, and t).
Reduction: j=3

If this value of] 1s cormrect, the mumber of Ils expected is
Number of expected I1s: k=n—j=4-3=1

Step 4 Now we need to choose three repeating parameters since j = 3. Since we cannot choose the dependent variable, our
only choices are IV, L, and u.

Step S Now we combine these repeating parameters into a product with the dependent variable Fp to create the

K Dependent I1: I, = F, V> u® (1




We apply the pnimary dimensions of Step 2 into Eq. 1 and force the I1 to be dimensionless,

Dimensions of 11):
{1} = {m**C} = {Fpo P ) = |(m1L1t-ﬂ )(Le) () (mire)? }

Now we equate the exponents of each primary dimension to solve for exponents a; through o).

PRS- {mﬂ } = {mlm"' } 0=1+¢ 6 =—1
time: {t'}={t=t) 0=—2-a,—q a=-1
length: 1°}={r1o1hr} 0=1+a,+b —¢ b =-1

Equpation 1 thus becomes

I1;: II, = (2)

(- y
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Step 6 We now write the functional relationship between the nondimensional parameters. In the case at hand, there is
only one Il, which is a function of nothing. This is possible only if the IT is constant. Putting Eq. 2 into standard functional

form,
. . F, ;
Relationship between I1s: o, = = f (nothing ) = constant 3)
Y7
or
Result of dimensional analysis: F, = constant - uVL 4)

Thus we have shown that for creeping flow around an object, the aerodynamic drag force is simply a constant multiplied by
MVL, regardless of the shape of the object.

Discussion  This result 1s very significant because all that is left to do 1s find the constant, which will be a function of
the shape of the object (and its onentation with respect to the flow).
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Example 6

o Consider fully developed Couette flow—flow between two infinite
parallel plates separated by distance h, with the top plate moving
and the bottom plate stationary as illustrated in the Fig. shown. The
flow is steady, incompressible, and two-dimensional in the xy-plane.
Use the method of repeating variables to generate a dimensionless
relationship for the x component of fluid velocity u as a function of
fluid viscosity p, top plate speed V, distance h, fluid density p, and
distance y.

p. 1 u

h y
! X
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Solution We are to use dimensional analysis to find the functional relationship between the given parameters.
Assumptions 1 The given parameters are the only relevant ones in the problem.

Analysis The step-by-step method of repeating variables is employed to obtain the nondimensional parameters (the
I1s).

Step 1 There are six parameters in this problem; n = 6,
List of relevant parameters: u=f ( V. h,p, y) n=6 (1)

Step 2 The primary dimensions of each parameter are listed,

u M V h P y
e} W o) £} W} i
Step 3 As a first guess, j is set equal to 3, the number of pnimary dimensions represented in the problem (m, L, and t).
Reduction: j=3
If this value of is correct, the expected number of Is is
Number of expected I1s: k=n—-j=6-3=3

Step4 We need to choose three repeating parameters since j = 3. Following the guidelines outlined in this chapter, we
elect not to pick the viscosity. It is better to pick a fixed length (h) rather than a variable length (y); otherwise y would
appear in each Pi, which would not be desirable. We choose

Repeating parameters: V.p.and h




Step 5 The dependent I1 15 generated:

I1, = ul® g fr}={(re) (@) (@) ()]
I R o= et
fme: {} =t} 0=—1-g a=-1
length: L} ={r'rarhes) O=1l+a—3b+q 6=0
The dependent IT is thus
Iy II, =%

The second Pi (the first independent I1 in this problem) 15 generated:

M1, = = i (1) = (i) () (i) ()

PSS {mﬂ } _ {mlma._, } 0=1+b, b, =—1

@




time: )=t} 0=-1-a, ay =-1

length: 0=-1+a,—3b+ 6, =-1
0=-1-1+3+4¢
which yields
Iy I, =4
2Vh
We recognize this I1 as the mverse of the Reynolds nnmber. So, after inverting,
] i oFh
Modified 113: II, = = Reynolds number = Be
1
The third Pi (the second independent IT in this problem) 1s generated:
- -3\
I, - 7o g (= {(L)ee) (@) (o))

T T {mﬂ} _ {m*’} 0=h, b, =0




e} () 0=

length: O=1+a, -3 +c
g {I'} = {L1or e ) 0_1 3t
which yields
Il: I, =%

Step 6 We write the final functional relationship as

Relationship between I1s: —= f[RE,i]

(2)




