BABA BANDA SINGH BAHADUR ENGINEERING COLLEGE

Department of Applied Sciences

QUESTION BANK

Semester: First

Subject: Mathematics Paper-I

Code: BTAM101-18

Branch:E.C.E

Unit II: Matrix Algebra

Matrices, vectors: addition and scalar multiplication, matrix multiplication; Linear systems of equations, linear Independence, rank of a matrix, determinants, Cramer's Rule, inverse of a matrix, Gauss elimination and Gauss-Jordan elimination.

Name of the Faculty: Rajwinder Kaur

- 1. If $A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, then for what value of θ is A an identity matrix?
- 2. Construct a mxn matrix $A = [a_{ij}]$, where $a_{ij} = \frac{|2i-3j|}{2}$; m = 2, n = 2.
- 3. If $\begin{pmatrix} 2x+1 & 2y \\ 0 & y^2+1 \end{pmatrix} = \begin{pmatrix} x+3 & 10 \\ 0 & 26 \end{pmatrix}$, write the value of y+x.
- 4. Find non-zero values of x such that: $x \begin{pmatrix} 2x & 2 \\ 3 & x \end{pmatrix} + 2 \begin{pmatrix} 8 & 5x \\ 4 & 4x \end{pmatrix} = 2 \begin{pmatrix} x^2 + 8 & 24 \\ 10 & 6x \end{pmatrix}$.
- 5. Assume that *Y*, *W* and *P* are matrices of order 3 x *k*, *n* x 3 and *p* x *k* respectively. Find the restrictions on *n*, *p*, *k* so that *PY* + *WY* is defined.
- 6. If $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 7 & 11 \\ k & 23 \end{pmatrix}$, then write the value of k.
- 7. A matrix A has a + b rows and a + 2 columns while the matrix B has b + 1 rows and a + 3 columns. Both matrices AB and BA exist. Find a and b. Can you say AB and BA are of same type? Are they equal?
- 8. If *A* and *B* are square matrices of same order and *k* is any scalar, prove that *A*-*k I* and *B*-*k I* commute if and only if *A* and *B* commute.

- 9. Give an example of two matrices A and B such that AB = O, where neither A = O nor B = O.
- 10. If *A* is a matrix of order 2 x 3 and *B* is a matrix of order 3 x 5, what is the order of the matrix $(AB)^{T}$.

11. For what value of k, the matrix $\begin{pmatrix} 2-k & 3\\ -5 & 1 \end{pmatrix}$ is not invertible?

12. Solve the following system of linear equations by matrix inversion method:

(*i*)
$$x + y + z = 8$$
, $x - y + 2z = 6$, $3x + 5y - 7z = 14$
(*ii*) $x + 2y + 3z = 1$, $2x + 3y + 2z = 2$, $3x + 3y + 4z = 1$

13. Solve the following system of linear equations by Cramer's rule:

(i)
$$2x+3y=5$$
, $11x-5y=6$
(ii) $x+y+z=6$, $x-y+2z=5$, $3x+y+z=8$
(iii) $x+2y+3z=1$, $2x+3y+2z=2$, $3x+3y+4z=1$

(*iv*) 2x - y + 3z = 9, y - z = -1, x + y - z = 0

14. Explain elementary transformations on a matrix.

15. If
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
 then show that $A^n = A^{n-2} + A^2 - I$ for $n \ge 3$. Hence find A^{50} .

16. Compute the inverse of the following matrices by Gauss Jordan method (Elementary Row transformations):

(<i>i</i>)	$ \begin{pmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{pmatrix} $	(ii)	$ \begin{pmatrix} 8 & 4 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{pmatrix} $
(iii)	$\begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{pmatrix}$	(iv)	$ \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix} $

- 17. Define rank of a matrix and give one example. What is the rank of a
 - (a) Singular matrix of order n?
 - (b) Non-singular matrix of order n?
- 18. Find the rank of the following matrices:

$$(i) \qquad \begin{pmatrix} 1 & 2 & 1 \\ -1 & 0 & 2 \\ 2 & 1 & 3 \end{pmatrix} \qquad (ii) \qquad \begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 0 \\ 2 & -1 & 1 \end{pmatrix}$$

19. Reduce the following matrices to normal form and hence find rank:

(i)
$$\begin{pmatrix} 6 & 1 & 3 & 8 \\ 4 & 2 & 6 & -1 \\ 10 & 3 & 9 & 7 \\ 16 & 4 & 12 & 15 \end{pmatrix}$$
(ii)
$$\begin{pmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{pmatrix}$$
(iii)
$$\begin{pmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{pmatrix}$$
(iv)
$$\begin{pmatrix} 8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4 \end{pmatrix}$$
(v)
$$\begin{pmatrix} 2 & 2 & 2 \\ 1 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}$$
20. If $A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1 \end{pmatrix}$; find two non-singular matrices P and Q such that PAQ is in the

normal form. Also find A^{-1} (if it exists).

21. Solve the following system of linear equations by Gauss Elimination method:

(*i*)
$$x + y + z = 6$$
, $x - y + 2z = 5$, $3x + y + z = 8$

- (*ii*) x + 2y + 3z = 1, 2x + 3y + 2z = 2, 3x + 3y + 4z = 1
- 22. Solve the following system of linear equations by Gauss Jordan method:

(*i*)
$$x + y + z = 8$$
, $x - y + 2z = 6$, $3x + 5y - 7z = 14$

(*ii*)
$$x+2y+3z=1$$
, $2x+3y+2z=2$, $3x+3y+4z=1$

- 23. State the conditions in terms of rank of the coefficient matrix and rank of the augmented matrix for (*a*) Unique solution (*b*) No solution (*c*) Infinite many solution.
- 24. Investigate for consistency of the following equations and if possible find the solutions:

$$4x-2y+6z=8$$
, $x+y-3z=-1$, $15x-3y+9z=21$

- 25. Show that the equations 2x+6y+11=0, 6x+20y-6z+3=0, 6y-18z+1=0 are not consistent.
- 26. For what values of λ and μ do the system of equations $x + y + z = 6, x + 2y + 3z = 10, x + 2y + \lambda z = \mu$ have (*i*) No solution (*iii*) A unique solution (*iii*) An infinite number of solutions.

- 27. Find the real value of p for which the system of equations x+2y+3z = px, 3x+y+2z = py, 2x+3y+z = pz have non-trivial solution.
- 28. For what value (s) of k, the equations x + y + z = 1, 2x + y + 4z = k, $4x + y + 10z = k^2$ have a solution? Solve them completely in each case.
- 29. Investigate the value of λ and μ so that the equations $2x+3y+5z=9, 7x+3y-2z=8, 2x+3y+\lambda z = \mu$ have (*i*) No solution (*ii*) A unique solution (*iii*) An infinite number of solutions.
- 30. Test the following system of equations for consistency and solve x+2y+z=3, 2x+3y+2z=5, 3x-5y+5z=2, 3x+9y-z=4
- 31. Show that the equations 3x+4y+5z = a, 4x+5y+6z = b, 5x+6y+7z = c do not have a solution unless a+c=2b.
- 32. For what value of k the system of equations x+y+z=2, x+2y+z=-2, x+y+(k-5)z=k has no solution?
- 33. For what value (s) of k, do the vectors (k,1,1), (0,1,1), (k,0,k) are linearly independent.
- 34. Test whether the subset S of R₃ is L.I. or L.D., given $S = \{(1,0,1), (1,1,0), (-1,0,-1)\}$
- 35. Define linear dependence of vectors and determine whether the vectors (3,2,4),(1,0,2),(1,-1,-1) are linearly dependent or not?

BABA BANDA SINGH BAHADUR ENGINEERING COLLEGE

Department of Applied Sciences

Semester: First

Subject: Mathematics Paper-I

Code: BTAM101-18

Branch:E.C.E

QUESTION BANK

Unit IV: Linear Algebra

Eigen Values, Eigen Vectors, Symmetric, Skew-Symmetric and Orthogonal Matrices, Eigen bases; similar matrices, Diagonalisation.

- 1. Define Symmetric matrix. Also give an example.
- 2. Define Skew-symmetric matrix. Also give an example.
- 3. For what value of k, the matrix $\begin{pmatrix} 2k+3 & 4 & 5\\ -4 & 0 & -6\\ -5 & 6 & -2k-3 \end{pmatrix}$ is skew-symmetric?
- 4. Show that the matrix *B*/*AB* is symmetric or skew symmetric according as *A* is symmetric or skew symmetric.
- 5. Show that the elements on the main diagonal of a skew symmetric matrix are all zero.
- 6. If a matrix A is symmetric as well as skew symmetric, then show that A = O.
- 7. If A and B are symmetric matrices of the same order, then show that *AB* is symmetric if and only if *A* and *B* commute.

8. Express the matrix $\begin{pmatrix} 14 & 17 & 18 \\ 19 & 6 & -7 \\ 1 & 2 & 5 \end{pmatrix}$ as the sum of a symmetric matrix and a skew-

symmetric matrix.

- 9. Define orthogonal matrix. Also give an example.
- 10. Show that the product of two orthogonal matrices of same order is also an orthogonal matrix.
- 11. Show that transpose of an orthogonal matrix is also orthogonal.
- 12. If *A* be an orthogonal matrix, show that $|A| = \pm 1$.

13. Verify that the matrix
$$\begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$$
 is orthogonal.

- 14. If $\langle l_i, m_i, n_i \rangle$, i = 1, 2, 3 are the direction cosines of three mutually perpendicular lines referred to an orthogonal Cartesian coordinate system, prove that the matrix $\begin{pmatrix} l_1 & m_1 & n_1 \end{pmatrix}$
 - $\begin{pmatrix} l_1 & m_1 & n_1 \\ l_2 & m_2 & n_2 \\ l_3 & m_3 & n_3 \end{pmatrix}$ is orthogonal.
- 15. If A is symmetric and P is orthogonal, show that $P_{-1}AP$ is symmetric.
- 16. Show that at least one latent root of every singular matrix is zero.
- 17. Show that, if zero is an eigen value of a matrix then it is singular.
- 18. Show that a square matrix and its transpose have the same set of eigen values.
- 19. If λ is an eigen value of square matrix A, then show that λ^m is an eigen value of $A^m \quad \forall m \in N$.
- 20. If *A* is a non-singular matrix, prove that the eigen value of *A*-*i* are the reciprocal of the eigen values of *A*.
- 21. Define similar matrices and prove that similar matrices have same characteristic roots.

22. If
$$A = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$$
, find the eigen values of A^4 .

- 23. The characteristic roots of $A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & k & -4 \\ 2 & -4 & 3 \end{pmatrix}$ are 0, 3, 15. Find the value of k.
- 24. Determine the eigen values and corresponding eigen values of the following matrices:

$$(i) \qquad \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix} \qquad (ii) \qquad \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix} \qquad (iii) \qquad \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$$

$$(iv) \quad \begin{pmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{pmatrix} \qquad (v) \quad \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix} \qquad (vi) \quad \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -7 & 5 & 1 \end{pmatrix}$$

25. Diagonalize the matrix $\begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$.

26. Diagonalize, if possible, the matrix
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 1 & -1 & 4 \end{pmatrix}$$
.

27. Diagonalize the following matrices:

$$(i) \quad \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix} \qquad (ii) \begin{pmatrix} 1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4 \end{pmatrix}$$

28. Diagonalize $A = \begin{pmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ and hence find A^8 .

29. If
$$A = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$$
, find the eigen values of A^{-1} .

30. Show that inverse of an orthogonal matrix is also orthogonal.

ANSWERS

_

3.
$$K = -\frac{3}{2}$$
 22. 16,625 **23.** 7 **24.** (i) 1, 2, 3; $\begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -2\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-2 \end{bmatrix}$
(ii) 0, 3, 15; $\begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\-2 \end{bmatrix}, \begin{bmatrix} 2\\-2\\1 \end{bmatrix}$ (iii) 2, 2, 8; $\begin{bmatrix} -1\\0\\2\\2 \end{bmatrix}, \begin{bmatrix} 1\\2\\0\\2 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1\\1 \end{bmatrix}$
(iv) 2, 3, 5; $\begin{bmatrix} -1\\1\\0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 3\\2\\1\\1 \end{bmatrix}$ (v) -2, 3, 6; $\begin{bmatrix} -1\\0\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}$
(vi) 1, 1, 1; $\begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}$ **25.** $\begin{pmatrix} 1&0\\0\\0&4 \end{pmatrix}$
26. Not diagonalizable
27. (i) $\begin{pmatrix} -2&0&0\\0&3&0\\0&0&6 \end{pmatrix}$ (ii) $\begin{pmatrix} 4&0&0\\0&-2&0\\0&0&-2 \end{pmatrix}$ **28.** $\begin{pmatrix} 26215&78642&24574\\13107&39322&11467\\0&0&6561 \end{pmatrix}$

29.
$$\frac{-1}{2}, \frac{1}{5}$$

BABA BANDA SINGH BAHADUR ENGINEERING COLLEGE

Department of Applied Sciences

Semester: First

Subject: Mathematics Paper-I

Code: BTAM101-18

Branch:E.C.E

QUESTION BANK

Rolle's theorem, Mean value theorems, Taylor's and Maclaurin theorems with remainders; Indeterminate forms and L'Hospital's rule; Maxima and minima. Evaluation of definite and improper integrals; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions.

- 1. State and prove Rolle's theorem.
- 2. State Lagrange's Mean Value theorem.
- 3. State and prove Cauchy's Mean Value theorem.
- 4. Verify Rolle's theorem for the following functions:

(i)
$$f(x) = x(x-2)e^{\frac{3x}{4}}$$
 in (0,2)

(ii)
$$f(x) = x^{2m-1}(a-x)^{2n}$$
 in $(0,a)$

(iii)
$$f(x) = \frac{\sin x}{e^x}$$
 in $[0, \pi]$

(*iv*)
$$f(x) = 2 + (x-1)^{\frac{2}{3}}$$
 in [0,2]

[Hint: Not differentiable at x = 1]

5. Find a root (solution) of the equation $x \ln x - 2 + x = 0$ lying in (1, 2).

6. Show that the polynomial equation $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_n = 0$ has at least one real root in (0, 1) if $\frac{a_0}{n+1} + \frac{a_1}{n} + \dots + \frac{a_{n-2}}{2} + a_n = 0$ and a_0, a_1, \dots, a_n are real numbers.

[Hint: Take $f(x) = \frac{a_0}{n+1} x^{n+1} + \frac{a_1}{n} x^n + \dots + \frac{a_{n-2}}{2} x^2 + a_n x$ in [0, 1]. Apply Rolle's theorem]

- 7. Deduce Lagrange's Mean Value theorem form Rolle's theorem.
 [Hint: Choose g(x) = f(x) f(a) A(x-a), g(a) = 0, determine A such that g(b) = 0, g(x) satisfies all the conditions of Rolle's theorem]
- 8. Show that $\frac{h}{\tan^{-1}h} < \tan^{-1}h < h$ when $h \neq 0$ and h > 0.

[Hint: Take $f(x) = \tan^{-1} x$ in $0 \le x \le h$]

9. Calculate approximately $\sqrt[5]{245}$ by using LMV theorem.

[Another form of LMV theorem:

We know that $\frac{f(b)-f(a)}{b-a} = f'(a)$, Take b = a + h, then we get $\frac{f(a+h)-f(a)}{a+h-a} = f'(a+\theta h)$ where $c = a+\theta h$ lies between a and b = a + h when $0 < \theta < 1$. Thus, $f(a+h) = f(a) + hf'(a+\theta h)$; $0 < \theta < 1$

Hint: Use another form of LMV theorem *i.e.* f(a+h) = f(a) + hf'(c), here choose

$$f(x) = x^{\frac{1}{5}}, a = 243, b = 245 \text{ and } c = 243 \text{ approximately }$$

- 10. Calculate approximately $\sqrt[6]{65}$ by using LMV theorem.
- 11. Let f(x) be continuous on [a-1,a+1] and differentiable in (a-1,a+1). Show that there exists a $\theta, 0 < \theta < 1$ such that

$$f(a-1)-2f(a)+f(a+1)=f'(a+\theta)-f'(a-\theta).$$

[Hint: Define $\phi(t) = f(a+t) + f(a-t)$, Apply LMV theorem on [0,1]]

12. Use LMV theorem to prove that if 0 < u < v, $\frac{v-u}{1+v^2} < \tan^{-1}v - \tan^{-1}u < \frac{v+u}{1+v^2}$. Also,

deduce that $\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$. [Take $f(x) = \tan^{-1}x, u < x < v$]

13. Verify Cauchy's Mean Value theorem for the functions:

(i)
$$f(x) = x^4, g(x) = x^2$$
 in the interval [a, b]

(*ii*) $f(x) = \ln x, g(x) = \frac{1}{x}$ in the interval [1, e]

(*iii*)
$$f(x) = e^x, g(x) = e^{-x}$$
 in the interval (*a*, *b*)

(*iv*)
$$f(x) = \sqrt{x}, g(x) = \frac{1}{\sqrt{x}}$$
 in the interval (*a*, *b*)

(v)
$$f(x) = \frac{1}{x^2}, g(x) = \frac{1}{x}$$
 in the interval (a, b)

(vi)
$$f(x) = x^3 - 3x^2 + 2x, g(x) = x^3 - 5x^2 + 6x$$
 in the interval (0, 0.5)