
Software Testing

Observations about Testing

 “Testing is the process of executing a
program with the intention of finding

errors.” – Myers

 “Testing can show the presence of bugs
but never their absence.” - Dijkstra

Good Testing Practices

 A good test case is one that has a high

probability of detecting an undiscovered

defect, not one that shows that the

program works correctly

 It is impossible to test your own program

 A necessary part of every test case is a

description of the expected result

Good Testing Practices

(cont’d)
 Avoid nonreproducible or on-the-fly

testing

Write test cases for valid as well as
invalid input conditions.

 Thoroughly inspect the results of each
test

 As the number of detected defects in a
piece of software increases, the
probability of the existence of more
undetected defects also increases

Good Testing Practices

(cont’d)
 Assign your best people to testing

 Ensure that testability is a key objective

in your software design

Never alter the program to make testing

easier

 Testing, like almost every other activity,

must start with objectives

Levels of Testing

Unit Testing

 Integration Testing

 Validation Testing

 Regression Testing

 Alpha Testing

 Beta Testing

 Acceptance Testing

Unit Testing

 Algorithms and logic

Data structures (global and local)

 Interfaces

 Independent paths

 Boundary conditions

 Error handling

Why Integration Testing Is

Necessary

One module can have an adverse effect

on another

 Subfunctions, when combined, may not

produce the desired major function

 Individually acceptable imprecision in

calculations may be magnified to

unacceptable levels

Why Integration Testing Is

Necessary (cont’d)
 Interfacing errors not detected in unit

testing may appear

 Timing problems (in real-time systems)

are not detectable by unit testing

Resource contention problems are not

detectable by unit testing

Top-Down Integration

1. The main control module is used as a

driver, and stubs are substituted for all

modules directly subordinate to the

main module.

2. Depending on the integration approach

selected (depth or breadth first),

subordinate stubs are replaced by

modules one at a time.

Top-Down Integration (cont’d)

3. Tests are run as each individual
module is integrated.

4. On the successful completion of a set
of tests, another stub is replaced with a
real module

5. Regression testing is performed to
ensure that errors have not developed
as result of integrating new modules

Problems with Top-Down

Integration

 Many times, calculations are performed in the
modules at the bottom of the hierarchy

 Stubs typically do not pass data up to the
higher modules

 Delaying testing until lower-level modules are
ready usually results in integrating many
modules at the same time rather than one at a
time

 Developing stubs that can pass data up is
almost as much work as developing the actual
module

Bottom-Up Integration

 Integration begins with the lowest-level

modules, which are combined into clusters, or

builds, that perform a specific software

subfunction

 Drivers (control programs developed as stubs)

are written to coordinate test case input and

output

 The cluster is tested

 Drivers are removed and clusters are combined

moving upward in the program structure

Problems with Bottom-Up

Integration

 The whole program does not exist until

the last module is integrated

 Timing and resource contention

problems are not found until late in the

process

Validation Testing

 Determine if the software meets all of the

requirements defined in the SRS

 Having written requirements is essential

 Regression testing is performed to determine if

the software still meets all of its requirements in

light of changes and modifications to the

software

 Regression testing involves selectively

repeating existing validation tests, not

developing new tests

Alpha and Beta Testing

 It’s best to provide customers with an
outline of the things that you would like

them to focus on and specific test

scenarios for them to execute.

 Provide with customers who are actively

involved with a commitment to fix defects

that they discover.

Acceptance Testing

 Similar to validation testing except that

customers are present or directly

involved.

Usually the tests are developed by the

customer

Test Methods

White box or glass box testing

 Black box testing

 Top-down and bottom-up for performing

incremental integration

 ALAC (Act-like-a-customer)

Test Types

 Functional tests

 Algorithmic tests

 Positive tests

 Negative tests

 Usability tests

 Boundary tests

 Startup/shutdown tests

 Platform tests

 Load/stress tests

Concurrent Development/

Validation Testing Model

 Conduct informal validation while development is still
going on

 Provides an opportunity for validation tests to be
developed and debugged early in the software
development process

 Provides early feedback to software engineers

 Results in formal validation being less eventful, since
most of the problems have already been found and
fixed

Validation Readiness Review

During informal validation developers

can make any changes needed in order

to comply with the SRS.

During informal validation QA runs tests

and makes changes as necessary in

order for tests to comply with the SRS.

Validation Readiness Review

(cont’d)
During formal validation the only

changes that can be made are bug fixes

in response to bugs reported during

formal validation testing. No new

features can be added at this time.

During formal validation the same set of

tests run during informal validation is run

again. No new tests are added.

Entrance Criteria for Formal

Validation Testing

 Software development is completed (a
precise definition of “completed” is required.

 The test plan has been reviewed, approved
and is under document control.

 A requirements inspection has been
performed on the SRS.

Design inspections have been performed on
the SDDs (Software Design Descriptions).

Entrance Criteria for Formal

Validation Testing (cont’d)
Code inspections have been performed on all

“critical modules”.
 All test scripts are completed and the

software validation test procedure document

has been reviewed, approved, and placed

under document control.

 Selected test scripts have been reviewed,

approved and placed under document

control.

Entrance Criteria for Formal

Validation Testing (cont’d)
 All test scripts have been executed at least

once.

CM tools are in place and all source code is

under configuration control.

 Software problem reporting procedures are in

place.

 Validation testing completion criteria have

been developed, reviewed, and approved.

Formal Validation

 The same tests that were run during informal

validation are executed again and the results

recorded.

 Software Problem Reports (SPRs) are

submitted for each test that fails.

 SPR tracking is performed and includes the

status of all SPRs (i.e., open, fixed, verified,

deferred, not a bug)

Formal Validation (cont’d)

 For each bug fixed, the SPR identifies the

modules that were changed to fix the bug.

 Baseline change assessment is used to ensure

only modules that should have changed have

changed and no new features have slipped in.

 Informal code reviews are selectively conducted

on changed modules to ensure that new bugs

are not being introduced.

Formal Validation (cont’d)

 Time required to find and fix bugs (find-fix
cycle time) is tracked.

Regression testing is performed using the
following guidelines:

 Use complexity measures to help determine
which modules may need additional testing

 Use judgment to decide which tests to be rerun

 Base decision on knowledge of software design
and past history

Formal Validation (cont’d)

 Track test status (i.e., passed, failed, or not

run).

Record cumulative test time (cumulative

hours of actual testing) for software reliability

growth tracking.

Exit Criteria for Validation

Testing

 All test scripts have been executed.

 All SPRs have been satisfactorily resolved.
(Resolution could include bugs being fixed,
deferred to a later release, determined not to
be bugs, etc.) All parties must agree to the
resolution. This criterion could be further
defined to state that all high-priority bugs
must be fixed while lower-priority bugs can be
handled on a case-by-case basis.

Exit Criteria for Validation

Testing (cont’d)
 All changes made as a result of SPRs have

been tested.

 All documentation associated with the

software (such as SRS, SDD, test

documents) have been updated to reflect

changes made during validation testing.

 The test report has been reviewed and

approved.

Test Planning

 The Test Plan – defines the scope of the

work to be performed

 The Test Procedure – a container

document that holds all of the individual

tests (test scripts) that are to be

executed

 The Test Report – documents what

occurred when the test scripts were run

Test Plan

Questions to be answered:

 How many tests are needed?

 How long will it take to develop those tests?

 How long will it take to execute those tests?

 Topics to be addressed:

 Test estimation

 Test development and informal validation

 Validation readiness review and formal validation

 Test completion criteria

Test Estimation

Number of test cases required is based on:

 Testing all functions and features in the SRS

 Including an appropriate number of ALAC (Act
Like A Customer) tests including:

Do it wrong

Use wrong or illegal combination of inputs

Don’t do enough

Do nothing

Do too much

 Achieving some test coverage goal

 Achieving a software reliability goal

Considerations in

 Test Estimation

 Test Complexity – It is better to have many
small tests that a few large ones.

Different Platforms – Does testing need to be
modified for different platforms, operating
systems, etc.

 Automated or Manual Tests – Will automated
tests be developed? Automated tests take more
time to create but do not require human
intervention to run.

Estimating Tests Required

 SRS

Reference

Estimated

Number of

Tests

Required

Notes

4.1.1 3 2 positive and 1 negative test

4.1.2 2 2 automated tests

4.1.3 4 4 manual tests

4.1.4 5 1 boundary condition, 2 error

conditions, 2 usability tests

…

Total 165

Estimated Test Development

Time

Estimated Number of Tests: 165

Average Test Development Time: 3.5

 (person-hours/test)

Estimated Test Development Time:

577.5

 (person-hours)

Estimated Test Execution

Time

Estimated Number of Tests: 165

Average Test Execution Time: 1.5
 (person-hours/test)

Estimated Test Execution Time: 247.5
 (person-hours)

Estimated Regression Testing (50%): 123.75

 (person-hours)

Total Estimated Test Execution Time: 371.25
 (person-hours)

Test Procedure

Collection of test scripts

 An integral part of each test script is the

expected results

 The Test Procedure document should

contain an unexecuted, clean copy of

every test so that the tests may be more

easily reused

Test Report

Completed copy of each test script with evidence
that it was executed (i.e., dated with the
signature of the person who ran the test)

Copy of each SPR showing resolution

 List of open or unresolved SPRs

 Identification of SPRs found in each baseline
along with total number of SPRs in each baseline

Regression tests executed for each software
baseline

Validation Test Plan
IEEE – Standard 1012-1998

1. Overview

a. Organization

b. Tasks and Schedules

c. Responsibilities

d. Tools, Techniques, Methods

2. Processes

a. Management

b. Acquisition

c. Supply

d. Development

e. Operation

f. Maintenance

Validation Test Plan
IEEE – Standard 1012-1998 (cont’d)

3. Reporting Requirements

4. Administrative Requirements

5. Documentation Requirements

6. Resource Requirements

7. Completion Criteria

