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OPEN COIL SPRINGS

Springs are energy-absorbing units whose function it is to store
energy and to release it slowly or rapidly depending on the
particular application.

In motor vehicle applications the springs act as buffers between the
vehicle itself and the external forces applied through the wheels by
uneven road conditions.

In such cases the shock loads are converted into strain energy of
the spring and the resulting effect on the vehicle body 1s much
reduced.

In some cases springs are merely used as positioning devices whose
function it is to return mechanisms to their original positions after
some external force has been removed.

From a design point of view “good springs store and release energy,
but do not significantly absorb it. Should they do so then they will
be prone to failure.



OPEN-COILED HELICAL SPRING
SUBJECTED TO AXIAL LOAD W

(a) Defection

Fig 123 Open-coiled helsal spring.




In an open coiled spring the coils are no longer so
close together that the effect of the helix angle a
can be neglected and the spring is subjected to
comparable bending and twisting effects.

The axial load W can now be considered as a
direct load W acting on the spring at the mean
radius R, together with a couple WR about AB

This couple has a component about AX of WR cos
a tending to twist the section, and a component
about AY of WR sin a tending to reduce the
curvature of the coils, i.e. a bending effect.



The shearing effect of W across the spring section
1s neglected as being very small in comparison
with the other effects.

Thus T'=WRcosz2 and M = WR sinx

Now, the total strain energy, neglecting shear,
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and this must equal the total work done § Wé.
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From the helix form of Fig. 12.4
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(b) Maximum stress
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The principal stresses at any point can then be obtained analytically or graphically




(¢} Angular rotation

Consider an imaginary axial torque T applied to the spring,
together with W producing an angular rotation 6 of one end of the

spring relative to the other.

The combined 1wisting moment on the spring cross-section is then

T = WRcosx+ Tsina

and the combined bending moment
M =Tcosae— WRsinx

The total strain energy of the system 15 then
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Castigliano’s theorem the angle of twist in
the direction of the axial torque 7'1s

given by f = %{- and since T = 0 all terms including T may be ignored.
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Open-coiled helical spring subjected to axial torque T

(a) Wind-up angle

Open-coiled helical spring subjected to axial torque T

Torsional component T sin a about AX

Flexural (bending) component T cos a about AY tending to
increase the curvature of the coils.
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and this is equal to the work done by T, namely, { T, where @ is the angle turned through by
one end relative to the other, i.e. the wind-up angle of the spring.
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(b) Maximum siress
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a=M ith M=Tcosa

The principal stresses at any point can then be obtained analytically or graphically




(c) Axial deflection
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Assuming an imaginary axial load W applied to the spring the total strain
energy is given by eqn.
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Castigliano’s theorem the deflection in the direction of W is given by
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Leaf or carriage spring: semi-elliptic

The principle of using a beam in bending as a spring has been known for
many years and widely used in motor-vehicle applications.

If the beam is arranged as a simple cantilever, as in Fig. 12.7a, it is called
a quarter-elliptic spring, and

if as a simply supported beam with central
load, as in Fig. 12.7b, it is termed a half or semi-elliptic spring.

;f';'--"':f—_—":'_.—:lf- {/ffr;_____d—-—-.__:____:‘___—:‘q&\
Lal L&)

Fig. 12.7. (a) Quarter-elliptic, (b) semi-clliptic, carriage springs.



*Consider the semi-elliptic leaf spring shown in Fig. 12.8.

» With a constant thickness ‘t’ this design of spring gives a uniform stress
throughout and is therefore economical in both material and weight.
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Fig. 128 Semi-elliptic leal spring.
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l.e. the bending stress in a semi-elliptic leaf spring is
independent of x



If the spring is constructed from strips and placed one on top of the other
as shown in Fig. 12.9, uniform stress conditions are retained, since if

the strips are cut along XX and replaced side by side, the equivalent leaf
spring is obtained as shown.

i. Semi-elliptic carmage spring showing mitial pre-forming.



Such a spring is then termed a carriage spring
with n strips of width b, i.e. B = nb.

Therefore the bending stress in a semi-elliptic
carriage spring is
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(b) Deflection

From the simple bending theory
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i.e. for a given spring and given load, R is constant and the
spring bends into the arc of a circle.
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From the properties of intersecting chords
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1.e. deflection of a semi-elliptic leaf spring
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But B = nb, so that the deflection of a semi-elliptic carriage spring is given by
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(c) Proof load

The proof load of a leaf or carriage spring is the load which is required
to straighten the plates from their initial preformed position.

The maximum bending stress any given load W is
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Thus il @, denotes the stress corresponding 1o the apphication of the proof load W,
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Now from eqn. . E B
IWL

and inserting B = nb,

the load W which would produce bending of a flat
carriage spring to some radius R is given by
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Conversely, therefore, the load which is required to
straighten a spring from radius R will be of the same value,
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Substituting for R =

&,

proof load W, = ﬂiitf

where §, is the initial central “deflection™ of the spring.
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proof stress o, = 77 % d,

The above equation therefore yields the correct relationship
between the thickness and initial curvature of the spring
plates.



Leaf or carriage spring: quarter-elliptic
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z=% and BM. at C = Wx
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Therefore the maximum bending siress for a quarter-elliptic leaf spring
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and the maximum bending stress for a quarter-elliptic carriage spring
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(b) Deflection

With BM. at C = Wx and replacing L;2 by L in the prool of §12.7(b),
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Therefore deflection of a quarter-elliptic leaf spring

3
- ﬁ:;f; ‘




and deflection of a quarter-elliptic carriage spring
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Spiral spring

(a)Wind-up angle

*Spiral springs are normally constructed from thin
rectangular-section strips wound into a spiral in one plane.

*They are often used in clockwork mechanisms, the winding
torque or

‘moment being applied to the central spindle and the other
end firmly anchored to a pin at the outside of the spiral.

« Under the action of this central moment all sections of the
spring will be subjected to uniform bending which tends to
reduce the radius of curvature at all points.



Consider now the spiral spring shown in Fig.
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Fig. 12.12. Spiral spring




Let M = winding moment applied to the spring spindle,
R = radius of spring from spindleto  pin,

a = maximum dimension of the spring from the pin,

B = breadth of the material of the spring,

t = thickness of the material of the spring,
b = diameter of the spindle.

Assuming the polar equation of the spiral to be that of an Archimedean
spiral,
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When a torque or winding couple M is applied to the spindle a
resistive force F will be set up at the pin such that

winding couple M = F x R

Consider now two small elements of material of length dI at distance x to
each side of the centre line (Fig. 12.12).

For small deflections, from Mohr’s area-moment method the change in
slope between two points is

For the portion on the left,
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and similarly for the right-hand portion,
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The sum of these changes in slope 15 thus
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If this is integrated along the length of the spring the result obtained will
be twice the total change in slope along the spring, i.e. twice the angle
of twist.
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Therefore the wind-up angle of a spiral spring is
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(b) Maximum stress

The maximum bending stress set up in the spring will be at the point
of greatest bending moment, since the material of the spring is
subjected to pure bending.

Maximum bending moment = F x a

: . My Fait/2
maximum bending stress = IJ = _“jf_ﬂ

But, for rectangular-section spring material of breadth B and thickness
t,
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STRAIN ENERGY

REPRODUCED MAJORLY FROM MECHANICS
OF MATERIALS

BY
- EJ HEARN




Energy is normally defined as the capacity to do work and it
may exist in any of many forms, e.g. mechanical (potential or
kinetic), thermal, nuclear, chemical, etc.

The potential energy of a body i1s the form of energy which is
stored by virtue of the work which has previously been done
on that body, e.g. in lifting it to some height above a datum.

Strain energy is a particular form of potential energy which
1s stored within materials which have been subjected to
strain, 1.e. to some change in dimension.

The material 1s then capable of doing work, equivalent to the
amount of strain energy stored, when it returns to its
original unstrained dimension.



Strain energy is therefore defined as the energy which
1s stored within a material when work has been done
on the material.

Here it is assumed that the material remains elastic
whilst work 1s done on it so that all the energy is
recoverable and no permanent deformation occurs due
to yielding of the material,

1.e. strain energy U = work done
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Fig. 11.1. Work done by a gradually applied load.

Thus for a gradually applied load the work done in
straining the material will be given by

U=%Po @




The strain energy per unit volume is often referred to
as the resilience.

The value of the resilience at the yield point or at the
proof stress for non-ferrous materials 1s then termed
the proof resilience



STRAIN ENERGY - TENSION OR COMPRESSION

sirain energy U = 4 Pd

stress P ds
Young's modulus £ = -— = — x —
e strain_ A &

. Pdsx
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for the bar element ' = Pra
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L
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total strain energy for a bar of length L = I

Thus, assuming that the area of the bar remains constant along the length,
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or, 1n terms of the stress a (= P/A),

g’Al ¢
U= T =1E:-cmlﬂmeufhlr (11.2)

L&, strain energy, or resilience, per unif volume of a bar subjected to direct load, tensile or
compressive
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or, alternatively,
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INCLUDING THE WEIGHT OF THE BAR
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Fig. 11.2, Direct load - 1ension or compression.

Assuming a uniform cross-section of area A with density p,
load on section AB = P+ pgAs ’




Thus, for a tensile force P the extension of the element ds is given by the definition of Young's

modulus E to be

work done = 4 x load x extension

[P+ pgds}
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. total strain energy or work done
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The last two terms are therefore the modifying terms to eqn. (11.1) to account for the

body-weight effect of the bar.




Strain energy —shear

Fig. 11.3. Shear,

Strain energy U = work done = $06 = 1 Qyds




_ shearstress 1t
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in terms of the shear stress 1 = (Q/A),
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Strain energy — bending

Strain energy = work done

=+ x moment x angle turned through (in radians)
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Fig. 114, Bending.




Total strain energy resulting from bending,
L

U=J’H*ds
0

1EI

If the bending moment is constant this reduces to
M*L

U=3E




Strain energy - torsion

Strain energy = work done = 7T df
a8

But, from the simple torsion theory, Fig. 11.5, Torsion.

r Gdb Tds
i Ty and dﬂ_ﬁ




total strain energy resulting from torsion,
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since in most practical applications T 15 constant.

For a hollow circular shaft eqn. (11.8) still applies
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[t should be noted that in the four types of loading case considered above the strain energy
expressions are all identical in form,

e strain energy U =- (applied “load"y'x L.
) M 2 x product of two related constants

the constants being related to the type of loading considered. In bending, for example, the
relevant constants which appear in the bending theory are E and [, whilst for torsion G and J
are more applicable. Thus the above standard equations for strain energy should easily be
remembered.




Strain energy of three-dimensional stress system

Total strain energy
U,=X4oe

U, =408, +10:8, +40;8,
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U = Z_E‘:[Jl{ﬂl — V03 = V03) + 03(0, — voy — vo ) + 63|03 — va; —va, )]

1
U= I—E[ﬂ‘} + o3+ 03— 2vle,0; + 0309 + 030, )] per unit volume

Equation 14.21



Shear (or “distortion™) strain energy
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Fig 1427 Resolution of general three-dimensional principsl stress stale into “hydrostatic” and
“devimornic” compotents.

For convenience the p::im:ip.-a‘ll stresses ma:y be
written in terms of a mean stress & = 4{o, + 0, + ¢,) and additional shear stress terms,
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The mean stress term may be considered as a hydrosiatic lensile stress, equal in all
directions, the strains associated with this giving rise (o no distortion, i.e. the unit cube under
the action of the hydrostatic stress alone would be strained into a cube. The hydrostatic
stresses are sometimes referred to as the spherical or dilatational stresses.

The strain energy associated with the hydrostatic stress is termed the volumerric strain
energy and is found by substituting

o) =0; =0y =4{g, +0;+0)
into egn. (14.21),

i
ie. volumetric strain energy = %[(ﬂl b E; +.E_’) ] (1 —2v)

, = ————[ (&, + &3 + g4)*] per unit volume

Also known as dilatational strain energy .




The remaining terms in the modified principal stress equations are shear
stress terms (i.e. functions of principal stress differences in the various
planes) and these are the only stresses which give rise to distortion of the
stressed element.

They are therefore termed distortional or deviatoric stresses.

Total strain energy per unit volume = shear strain energy
per unit volume + volumetric strain energy per unit
volume
.e.

U=U+U,

Therefore shear strain energy per unit volume is given
by:
L'rl' - L'II T L'rl.'
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or, alternatively,
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Also known as shear or distortional strain energy



SUDDENLY APPLIED LOADS

If a load P is applied gradually to a bar to produce an extension 8 the
load-extension graph , the work done being given by
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Fig. 11.6. Work donc by a suddenly applied |oad



The bar will be strained by an equal amount 0
1n both cases and the energy stored must
therefore be equal

P'6=4Ps

It is then clear that vice versa a load P which is suddenly
applied will produce twice the effect of the same load statically
applied.

Great care must be exercised, therefore, in the design of, for
example, machine parts to exclude the possibility of sudden
applications of load since associated stress levels are likely to be
doubled.



IMPACT LOADS - AXIAL LOAD APPLICATION

When the load 1s dropped i1t will produce a
maximum instantaneous extension 0O of the
bar, and will therefore have done work
(neglecting the mass of the bar and collar) =
force x distance =W (h + 0)
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Fig. 11.7. Impact load —axial apphcation



This work will be stored as strain energy and is given by eqn. (11.2):
. g*AL
V="3E

where o is the instantaneous stress sei up.
giAL
2E

If the extension & is small compared with h it may be ignored and then, approximately,
a* = 2WEh/AL

) 1WEh
L.E. a = \/(T) {1]!.{]']

If, however, & is not small compared with h it must be expressed in terms of o, thus

= W (h+d]

stress ol ol
strain & L E
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Therefore substituting in egn. (11.9)

at 4l Wal.
L Tl ———
2E E



AL WL

g —Wh=0
‘W IWEh
1._._‘_._ LY . : =n

= AL

Solving by “the quadratic formula™ and ignoring the negative sign,

o=t {a (3 ()
=) ]

This is the accurate equation for the maximum stress set up, and should always be used if
there is any doubt regarding the relative magnitudes of ¢ and h.




Instantaneous extensions can then be found from

al
d=—
E

If the load is not dropped but suddenly applied from effectively zero height, h = 0, and
eqn. (11.11) reduces to




CASTIGLIANO’S THEOREM FOR DEFLECTION

If the total strain energy of a body or framework
is expressed in terms of the external loads and is
partially differentiated with respect to one of the
loads the result is the deflection of the point of
application of that load and in the direction of
that load,

i.e. if U is the total strain energy,
the deflection in the direction of load W

= lﬂU;’EH"’,
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Fig. 11.9, Any beam or struciure subjected (o a sysiem of appliad concentrated loads
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U=4Pa+iPyb+iPcc+ ...




If one of the loads, P, is now increased by an amount 8P, the changes in deflections will be
da, &b and de, etc, as shown in Fig, 11.9,

Lood of A Lood at B
) i

| Exro work
bl a(R » x3R 180

Extengian
S

g o+dd

Fig. 11.10. Load-¢xtension curves for pasitions 4 and B,

Extra work done at A (see Fig. 11.10)
= (P,+16P,)éua

Extra work done at B, C, etc. (see Fig. 11.10) ‘
= P 8b, P dc, ete.




Increase in strain energy
= total extra work done

8U = P,da+1L6P,6a+ Pydb+ P dc+ . ..
and neglecting the product of small quantities
U =P, ba+ Pgab+P-bc+ ...

But if the loads P,+dP,, Py, F¢, etc., were applied gradually from zero the total strain
energy would be

U+8U =3 1 xload x extension
U+dU =1 (P,+dP,)la+da)+ Psib+db)+ 1P ic+de)+ . ..
=4{P,a+4P,da+ 1 6P, a+ P, ba+{Pab+4Pydb+4Prc+ P de+ . ..
Neglecting the square of small quantities (44P,da} and subtracting egn. (11.14),
U =43P, a+4P,da+4Psdb+4P dc+ . ..
or 20U =P, a+ P, da+Pedb+ P+ . ..




Subtracting egn. (11.15),
all

ﬂL‘=-ﬁ'Fqﬂ 2h lﬁ_.F:_=ﬂ
. L ali
or, in the limat, EF; = g

e the partial differential of the strain energy U with respect to P, gives the deflection under
and in the direction of P,. Similarly,
dU al

e h S
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In most beam applications the strain energy, and hence the deflection, resulting from end
loads and shear lorces are wken 1o be negligible in comparison with the strain energy
resulting from bending (torsion not normally being present),
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which 15 the usual form of Casugliano’s first theorem. The integral is evaluated as it stands Lo
give the deflection under an existing load P, the value of the bending moment M at some
gencral section having been determined in terms of P, If no general expression for M in lerms

In cases where the .
deflection is required at a point or in a direction in which there is no load applied, an

imaginary load P is introduced in the required direction, the integral obtained in terms of P

and then evaluated with P equal (o zero.




Application of Castigliano’s theorem to angular movements

If the rotal strain energy, expressed in terms of the external moments, be partially
differemtiated with respect o one of the moments, the result is the angular deflection {in
radians) of the point of application of that moment and in its direction,
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where M, is the imaginary or applied moment at the point where & 15 required.




Maxwell's theorem of reciprocal displacements
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524, Maxwell’s theorem of reciprocal displacements




Consider a beam subjected to two loads W, and Wy at points A and B respectively as
shown in Fig. 524, Let W, be gradually applied first, producing a deflection a at A.

Work done =4 W,a

When W, is applied it will produce a deflection b at Band an additional deflection o,y at A
(the latter occurring in the presence of a now constant load W)

Extra work done =4 Wb+ W, 0,
total work done =W, a+3 Wb+ W0,



Similarly, if the loads were applied in reverse order and the load W, at A produced an
additional deflection o,, at B, then

total work done = Wb+ W a4 Wy,

[t should be clear that, regardless of the order in which the loads are applied, the total work
done must be the same. Inspection of the above equations thus shows that

W, &ub . wﬂ‘shu
If the two loads are now made equal, then
Oy = Oy, (3.22)

1.¢. the deflection at A produced by a load a1 B equals the deflection at B produced by the same
load at A, This 1s Maxwell's theorem of reciprocal displacements.




a typical example of the application of this theorem
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Fig. 5.25.




Maxwell's theorem of reciprocal displacements can also be applied if one or both
of the loads are replaced by moments or couples. In this case it can be shown
that the theorem is modified to the relevant one of the following forms (a), (b):

(a) The angle of rotation at A due to a concentrated force at B is numerically
equal to the deflection at B due to a couple at A provided that the force and
couple are also numerically equal (Fig. 5.26).
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Fig. 5.16,



(b) The angle of rotation at A due to a couple at B is equal to the rotation
at B due to the same couple applied at A (Fig. 5.27).

3

Fig. 5.27,
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THIN-WALLED PRESSURE
VESSELS

> —

Cylindrical and spherical pressure vessels
are commonly used for storing gas and
liguids under pressure.

A thin cylinder is normally defined as one in
which the thickness of the metal is less
than 1/20 of the diameter of the cylinder.
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_—  THIN-WALLED PRESSUR
VESSELS CONTD

In thin cylinders, it can be assumed that
the variation of stress within the metal is
negligible, and that the mean diameter,
D_ Is approximately equal to the internal
diameter, D.

At mid-length, the walls are subjected to
hoop or circumferential stress, and a
longitudinal stress.
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Hoop stress in thin cylindrical shell
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Hoop stress in thin cylindrical shell
Contd.

The internal pressure, p tends to increase
the diameter of the cylinder and this
produces a hoop or circumferential stress

(tensile).

If the stress becomes excessive, failure in
the form of a longitudinal burst would
OCCuUTr.



' Hoop stress in thin cylindrical s
e Concluded

Consider the half cylinder shown. Force due to internal pressure, p is balanced by the

force due to hoop stress, o, .

l.e. hoop stress x area = pressure X projected area
0, x 2Lt =PxdL

o, = (Pd)/2t

Where: d is the internal diameter of cylinder; t is the thickness of wall of cylinder.



~22.2. Longitudinalstress-inthin-cylindrical

shell

(a) (b}
Fig. 3.15 Longitudinal stress in a thin cylindrical shell



\ Longitudinal stress in thin cylindri
e shell Contd.

The internal pressure, P also produces a tensile stress in

longitudinal direction as shown above.

wd?

Force by P acting on an area is balanced by

longitudinal stress, 0,  acting over an approximate area,

mdt (mean diameter should strictly be used). That is:

7 d?

o, xndt=Px

_Pd

Ty



Note

1. Since hoop stress is twice longitudinal stress,
the cylinder would fail by tearing along a line
parallel to the axis, rather than on a section
perpendicular to the axis.

The equation for hoop stress is therefore used to
determine the cylinder thickness.

Allowance is made for this by dividing the
thickness obtained in hoop stress equation by

efficiency (i.e. tearing and shearing efficiency) of
the joint.
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Longitudinal stress in thin cylindrical
shell Concluded
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Example

A cylindrical boiler is subjected to an internal
pressure, p. If the boiler has a mean
radius, r and a wall thickness, t, derive
expressions for the hoop and longitudinal
stresses in its wall. If Poisson’s ratio for
the material is 0.30, find the ratio of the
hoop strain to the longitudinal strain and
compare it with the ratio of stresses.
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— Solution

Hoop stress will cause expansion on the lateral direction and is

equal to o, while the longitudinal stress is o,

d 2
Hoop stress, 0, = pe _BXr_ PP ieo
2t 2t t

d 2
=PL_PrT Pl

Longitudinal stress, o, N
4t 4¢ 2t

(a) Stress ratio = 2

1 1 ﬁ_03pr]20.2pr

by . =—|oc.—vo. |=— ) Longitudinal strain
) & =—lo, ~vo,1=—[2r-03 2= =2 - (Long )
1 1 _pr pr. 085 pr ,
s =—|loc.—-vo. |=—[—-03 = Hoop strain
’ o, o] Flr 22(] T (Hoop )

Hoop strain _ 085 _ 495

Ratio of strains = —— —=
Longitudinal strain 0.2
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Pressure in Spherical Vessels

2.2.3 Pressure in Spherical Vessels
Problems dealing with spherical vessels follow similar solutions to that for thin cylinders
except that there will be longitudinal stresses in all directions. No hoop or circumferential

stresses are produced.
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L =
Volume Changes

Example: A pressure cylinder, 0.8 m long is
made out of 5 mm thick steel plate which
has an elastic modulus of 210 x 103 N/mm?
and a Poisson’s ratio of 0.28. The cylinder
has a mean diameter of 0.3 m and is
closed at its ends by flat plates. |If it is
subjected to an internal pressure of 3
N/mm?, calculate its increase in volume.




SOLUTION
Hoop stress, o, = (Pd)/2t =
2
3N /mm~ x 300 mm 90N /
2x5Smm

Longitudinal stress,0, = (Pd)/4t = 45 N/mm2

Longitudinal strain,

1 1
. =—lo, —-vo, |=
L E[ L 1] 210 x 10° N / mm*

[45-0.28 x 90] = 0.00009429
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Hoop strain,

1 1
= vo,|= - >
E 210 x 10° N / mm

190-0.28 x 45] = 0.0003686

Volumetric strain = &, +2 &, =0.00083134 (See Section 1.4)

Original volume of cylinder is equal to :

7 x 300°

x 800 =56.5487 x 10 mm’

Increase in volume = 56.5487 x 10™° x 0.00083134 = 47009 mm’



— B

Example

The dimensions of an oil storage tank with
hemispherical ends are shown In the
Figure. The tank is filled with oil and the
volume of oil increases by 0.1% for each
degree rise in temperature of 1°C. If the
coefficient of linear expansion of the tank
material is 12 x 10° per °C, how much oil
will be lost if the temperature rises by
100C.



= SOLUTION

For 10°C rise in temperature:
Volumetric strain of oil = 0.001 x 10 = 0.01
Volumetric strain of tank= 3 & T
= 3 x 12 x 10° x 10 = 0.00036
Difference in volumetric strain = 0.01 - 0.00036 = 0.00964
Volume of tank =" x 102 x 100 + 4/3 ¥ x 103 =
10000” + 1333.33"
= 11333.33" m°

T
Volume of oil lost = strain difference x volume of tank = 0.00964 x 11333.33
= 343.2 m’.




