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OPEN COIL SPRINGS

 Springs are energy-absorbing units whose function it is to store 
energy and to release it slowly or rapidly depending on the 
particular application. 

 In motor vehicle applications the springs act as buffers between the 
vehicle itself and the external forces applied through the wheels by 
uneven road conditions.



 In such cases the shock loads are converted into strain energy of 
the spring and the resulting effect on the vehicle body is much 
reduced. 

 In some cases springs are merely used as positioning devices whose 
function it is to return mechanisms to their original positions after 
some external force has been removed.

 From a design point of view “good springs store and release energy 
but do not significantly absorb it. Should they do so then they will 
be prone to failure.



OPEN-COILED HELICAL SPRING

SUBJECTED TO AXIAL LOAD W

(a) Defection



 In an open coiled spring the coils are no longer so 

close together that the effect of the helix angle a 

can be neglected and the spring is subjected to 

comparable bending and twisting effects. 

 The axial load W can now be considered as a 

direct load W acting on the spring at the mean 

radius R, together with a couple WR about AB 

 This couple has a component about AX of WR cos 

a tending to twist the section, and a component 

about AY of WR sin a tending to reduce the 

curvature of the coils, i.e. a bending effect.



 The shearing effect of W across the spring section 

is neglected as being very small in comparison 

with the other effects.







Consider an imaginary axial torque T applied to the spring, 

together with W producing an angular rotation θ of one end of the 

spring relative to the other.





Open-coiled helical spring subjected to axial torque T

(a) Wind-up angle

Torsional component T sin α about AX 

Flexural (bending) component T cos α about AY tending to 

increase the curvature of the coils.







Assuming an imaginary axial load W applied to the spring the total strain 

energy is given by eqn.





Leaf or carriage spring: semi-elliptic

The principle of using a beam in bending as a spring has been known for 

many years and widely used in motor-vehicle applications. 

If the beam is arranged as a simple cantilever, as in Fig. 12.7a, it is called 

a quarter-elliptic spring, and 

if as a simply supported beam with central

load, as in Fig. 12.7b, it is termed a half or semi-elliptic spring.



•Consider the semi-elliptic leaf spring shown in Fig. 12.8.

• With a constant thickness ‘t’  this design of spring gives a uniform stress 

throughout and is therefore economical in both material and weight.



i.e. the bending stress in a semi-elliptic leaf spring is 

independent of x



If the spring is constructed from strips and placed one on top of the other 

as shown in Fig. 12.9, uniform stress conditions are retained, since if 

the strips are cut along XX and replaced side by side, the equivalent leaf 

spring is obtained as shown.



Such a spring is then termed a carriage spring 

with n strips of width b, i.e. B = nb.

Therefore the bending stress in a semi-elliptic 

carriage spring is



(b) Deflection

From the simple bending theory

i.e. for a given spring and given load, R is constant and the 

spring bends into the arc of a circle.







The proof load of a leaf or carriage spring is the load which is required 

to straighten the plates from their initial preformed position.

The maximum bending stress  any given load W is



Now from eqn. 

and inserting B = nb, 

the load W which would produce bending of a flat 

carriage spring to some radius R is given by

Conversely, therefore, the load which is required to 

straighten a spring from radius R will be of the same value,



The above equation therefore yields the correct relationship 

between the thickness and initial curvature of the spring 

plates.



Leaf or carriage spring: quarter-elliptic









Spiral spring

(a)Wind-up angle

•Spiral springs are normally constructed from thin 

rectangular-section strips wound into a spiral in one plane. 

•They are often used in clockwork mechanisms, the winding 

torque or

•moment being applied to the central spindle and the other 

end firmly anchored to a pin at the outside of the spiral.

• Under the action of this central moment all sections of the 

spring will be subjected to uniform bending which tends to 

reduce the radius of curvature at all points.



Consider now the spiral spring shown in Fig. 



Assuming the polar equation of the spiral to be that of an Archimedean 

spiral,

where A is some constant





When a torque or winding couple M is applied to the spindle a 

resistive force F will be set up at the pin such that

Consider now two small elements of material of length dl at distance x to 

each side of the centre line (Fig. 12.12).

For small deflections, from Mohr’s area-moment method the change in 

slope between two points is



If this is integrated along the length of the spring the result obtained will 

be twice the total change in slope along the spring, i.e. twice the angle 

of twist.





The maximum bending stress set up in the spring will be at the point 

of greatest bending moment, since the material of the spring is 

subjected to pure bending.

But, for rectangular-section spring material of breadth B and thickness 

t,



STRAIN ENERGY
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BY
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• Energy is normally defined as the capacity to do work and it 

may exist in any of many forms, e.g. mechanical (potential or 

kinetic), thermal, nuclear, chemical, etc. 

• The potential energy of a body is the form of energy which is 

stored by virtue of the work which has previously been done 

on that body, e.g. in lifting it to some height above a datum. 

• Strain energy is a particular form of potential energy which 

is stored within materials which have been subjected to 

strain, i.e. to some change in dimension. 

• The material is then capable of doing work, equivalent to the 

amount of strain energy stored, when it returns to its 

original unstrained dimension.



 Strain energy is therefore defined as the energy which 

is stored within a material when work has been done 

on the material. 

 Here it is assumed that the material remains elastic 

whilst work is done on it so that all the energy is 

recoverable and no permanent deformation occurs due 

to yielding of the material,

i.e. strain energy U = work done



Thus for a gradually applied load the work done in 

straining the material will be given by

U = ½ Pδ



 The strain energy per unit volume is often referred to 

as the resilience. 

 The value of the resilience at the yield point or at the 

proof stress for non-ferrous materials is then termed 

the proof resilience



STRAIN ENERGY - TENSION OR COMPRESSION





INCLUDING THE WEIGHT OF THE BAR

























Equation 14.21





Also known as dilatational strain energy



The remaining terms in the modified principal stress equations are shear 

stress terms (i.e. functions of principal stress differences in the various 

planes) and these are the only stresses which give rise to distortion of the 

stressed element. 

They are therefore termed distortional or deviatoric stresses.

Total strain energy per unit volume = shear strain energy 

per unit volume + volumetric strain energy per unit 

volume

i.e.

Therefore shear strain energy per unit volume is given 

by: 



Also known as shear or distortional strain energy



SUDDENLY APPLIED LOADS

If a load P is applied gradually to a bar to produce an extension δ the 

load-extension graph , the work done being given by

U=½ Pδ



The bar will be strained by an equal amount δ
in both cases and the energy stored must 

therefore be equal,

It is then clear that vice versa a load P which is suddenly 

applied will produce twice the effect of the same load statically 

applied. 

Great care must be exercised, therefore, in the design of, for 

example, machine parts to exclude the possibility of sudden 

applications of load since associated stress levels are likely to be 

doubled.



IMPACT LOADS - AXIAL LOAD APPLICATION

When the load is dropped it will produce a 
maximum instantaneous extension δ of the 
bar, and will therefore have done work 
(neglecting the mass of the bar and collar) = 
force x distance = W (h + δ)









CASTIGLIANO’S THEOREM FOR DEFLECTION

 If the total strain energy of a body or framework 

is expressed in terms of the external loads and is 

partially differentiated with respect to one of the 

loads the result is the deflection of the point of 

application of that load and in the direction of 

that load,

i.e. if U is the total strain energy, 

the deflection in the direction of load W 



PROOF





















Maxwell’s theorem of reciprocal displacements can also be applied if one or both 
of the loads are replaced by moments or couples. In this case it can be shown 

that the theorem is modified to the relevant one of the following forms (a), (b):

(a) The angle of rotation at A due to a concentrated force at B is numerically 

equal to the deflection at B due to a couple at A provided that the force and 

couple are also numerically equal (Fig. 5.26).



(b) The angle of rotation at A due to a couple at B is equal to the rotation 

at B due to the same couple applied at A (Fig. 5.27).



SOM –I



THIN-WALLED PRESSURE 

VESSELS

Cylindrical and spherical pressure vessels
are commonly used for storing gas and
liquids under pressure.

A thin cylinder is normally defined as one in
which the thickness of the metal is less
than 1/20 of the diameter of the cylinder.



THIN-WALLED PRESSURE 

VESSELS CONTD

In thin cylinders, it can be assumed that

the variation of stress within the metal is

negligible, and that the mean diameter,

Dm is approximately equal to the internal

diameter, D.

At mid-length, the walls are subjected to

hoop or circumferential stress, and a

longitudinal stress.



Hoop and Longitudinal Stress



Hoop stress in thin cylindrical shell



Hoop stress in thin cylindrical shell 

Contd.

The internal pressure, p tends to increase

the diameter of the cylinder and this

produces a hoop or circumferential stress

(tensile).

If the stress becomes excessive, failure in

the form of a longitudinal burst would

occur.



Hoop stress in thin cylindrical shell 

Concluded

Consider the half cylinder shown.  Force due to internal pressure, p is balanced by the 

force due to hoop stress,  h . 

 i.e.  hoop stress  x  area  =  pressure  x  projected area 

  h   x  2 L t  =  P x d  L 

  

  h  =  (P d) / 2 t 

 

Where:  d is the internal diameter of cylinder; t is the thickness of wall of cylinder.  



2.2.2.  Longitudinal  stress in thin cylindrical 

shell



Longitudinal  stress in thin cylindrical 

shell Contd.

The  internal pressure, P also produces a tensile stress in 

 longitudinal direction as shown above.    

 Force by   P acting on an area  
 d 2

4
  is balanced by  

longitudinal stress,  L    acting over an approximate area,  

 d t  (mean diameter should strictly be used).  That is: 

  



L

L

x d t P x
d

P d

t

=

=

2

4

4

 



Note

1. Since hoop stress is twice longitudinal stress,
the cylinder would fail by tearing along a line
parallel to the axis, rather than on a section
perpendicular to the axis.

The equation for hoop stress is therefore used to
determine the cylinder thickness.

Allowance is made for this by dividing the
thickness obtained in hoop stress equation by
efficiency (i.e. tearing and shearing efficiency) of
the joint.



Longitudinal  stress in thin cylindrical 

shell Concluded



Example

A cylindrical boiler is subjected to an internal
pressure, p. If the boiler has a mean
radius, r and a wall thickness, t, derive
expressions for the hoop and longitudinal
stresses in its wall. If Poisson’s ratio for
the material is 0.30, find the ratio of the
hoop strain to the longitudinal strain and
compare it with the ratio of stresses.



Solution

Hoop stress will cause expansion on the lateral direction and is  

equal to  y  while the longitudinal stress is     x  

Hoop stress,  h     = = =
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p r

t
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Pressure in Spherical Vessels

2.2.3  Pressure in Spherical Vessels 

 Problems dealing with spherical vessels follow similar solutions to that for thin cylinders 

except that there will be longitudinal stresses in all directions.  No hoop or circumferential 

stresses are produced. 

 

  i.e                        L

P d

t
=

4
 



Volume Changes

Example: A pressure cylinder, 0.8 m long is
made out of 5 mm thick steel plate which
has an elastic modulus of 210 x 103 N/mm2

and a Poisson’s ratio of 0.28. The cylinder
has a mean diameter of 0.3 m and is
closed at its ends by flat plates. If it is
subjected to an internal pressure of 3
N/mm2, calculate its increase in volume.



SOLUTION
Hoop stress,  h  =  (P d) / 2 t   =  

 
3 300

2 5
90

2
2N mm x mm

x mm
N mm

/
/=  

Longitudinal stress,  L  =  (P d) / 4 t  =  45 N/mm2 

Longitudinal strain,    

   L L h
E x N mm

x= − = − =
1 1

210 10
45 0 28 90 0 00009429

3 2
[ ]

/
[ . ] .  



SOLUTION CONCLUDED

Hoop strain,  

   h h L
E x N mm

x= − = − =
1 1

210 10
90 0 28 45 0 0003686

3 2
[ ]

/
[ . ] .  

 

Volumetric strain  =     L h+ =2 0 00083134.    (See Section 1.4) 

 

Original volume of cylinder is equal to : 

             

 x
x x mm

Increase in volume x x mm

300

4
800 56 5487 10

56 5487 10 0 00083134 47009

2
6 3

6 3

=

= =

−

−

.

. .

  



Example

The dimensions of an oil storage tank with
hemispherical ends are shown in the
Figure. The tank is filled with oil and the
volume of oil increases by 0.1% for each
degree rise in temperature of 10C. If the
coefficient of linear expansion of the tank
material is 12 x 10-6 per 0C, how much oil
will be lost if the temperature rises by
100C.



SOLUTION

For 100C rise in temperature: 

Volumetric strain of oil = 0.001 x 10  = 0.01 

Volumetric strain of tank =    3    T  

 =   3  x  12  x  10-6  x  10  =  0.00036 

Difference in volumetric strain =  0.01  -  0.00036  =  0.00964 

Volume of tank  =     x 102  x  100  +  4/3  x   x 103 =  

    10000


  +  1333.33 


  

              =  11333.33


 m3 

 

Volume of oil lost  =  strain difference  x  volume of tank  =  0.00964 x 11333.33


 m3 

 =  343.2 m3. 


