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Introduction

What is a control system?

Objective:

To make the system OUTPUT and the desired REFERENCE as close asTo make the system OUTPUT and the desired REFERENCE as close as

small as possible.

Key Issues: 

1) How to describe the system to be controlled? (Modeling)

2) How to design the controller? (Control)

To make the system OUTPUT and the desired REFERENCE as close as possible, i.e., to make the ERROR as To make the system OUTPUT and the desired REFERENCE as close as possible, i.e., to make the ERROR as 

How to describe the system to be controlled? (Modeling)



Introduction

What is important in a control system?

Stability

• (Transient) response speed

• Accuracy
dynamic overshooting and oscillation durationdynamic overshooting and oscillation duration
Steady state error

• Robustness
errors in models (uncertainties and nonlinearities)
effects of disturbances
effects of noises

nonlinearities)



Introduction

Modeling of dynamic systems

Model: A representation of a system.

Types of Models:

• Physical models (prototypes)

• Mathematical models (e.g., input-output relationships)

Analytical models (using physical laws)

Computer (numerical) models

Experimental models (using input/output experimental data)

Models for physical dynamic systems:Models for physical dynamic systems:

Lumped-parameter models

Continuous-parameter models. Example: Spring element (flexibility, 

output relationships)

models (using input/output experimental data)

models. Example: Spring element (flexibility, inertia, damping)
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Signal categories for identifying control system types

Continuous-time signal & quantized signal

Continuous-time signal is defined continuously in the time domain. Figure on the
time signal, represented by x(t).time signal, represented by x(t).

Quantized signal is a signal whose amplitudes are discrete and limited. Figure on
signal.

Analog signal or continuous signal is continuous in time and in amplitude. The
signals.

is defined continuously in the time domain. Figure on the left shows a continuous-

is a signal whose amplitudes are discrete and limited. Figure on the right shows a quantized 

is continuous in time and in amplitude. The real word consists of analog 
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Discrete-time signal & sampled-data signal

Discrete time signal

Discrete-time signal is defined only at certain time instants. For a discrete
two consecutive time instants is just not defined. Figure on 
by y(kh), or simply y(k), where k is an integer and h is the time interval

Sampled-data signal is a discrete-time signal resulting by sampling a 
right shows a sampled-data signal deriving from the continuous
by a sampling process. It isrepresented by x∗(t).

sampled data signal

is defined only at certain time instants. For a discrete-time signal, the amplitude between 
two consecutive time instants is just not defined. Figure on theleft shows a discrete-time signal, represented 

is the time interval.

time signal resulting by sampling a continuous-time signal. Figure on the 
continuous-time signal, shown in the figure at the center, 
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Digital signal or binary coded data signal

Digital signal is a sequence of binary numbers. In or out from a microprocessor, a
a shift register. 

In practice, a digital signal, as shown in the figures at the bottom, is derived by 
then quantizing.

Digital signal

is a sequence of binary numbers. In or out from a microprocessor, a semiconductor memory, or 

In practice, a digital signal, as shown in the figures at the bottom, is derived by two processes: sampling and 
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Control System Types
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Mathematical comparison between analog and digitaldigital control systems



Introduction

Digital Control systems

Digital controls are used for achieving optimal performance
productivity, maximum profit, minimum cost, or minimum 

performance-for example, in the form of maximum
minimum energy use.



Introduction

Digital Control systems

Digital controls are used for achieving optimal performance
productivity, maximum profit, minimum cost, or minimum 

performance-for example, in the form of maximum
minimum energy use.
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Advantages of digital computers: 

1. Reduced cost,

2. Flexibility in response to design changes, 

3. Noise immunity

4. Digital control systems are more suitable for Modern control systems. 

Disadvantages of digital computers:  

1. From the tracking performance side, the analog control system exhibits good performances than digital 
control system. control system. 

2. Digital control system will introduce a delay in the loop. 

control systems are more suitable for Modern control systems. 

From the tracking performance side, the analog control system exhibits good performances than digital 

control system will introduce a delay in the loop. 
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The loop (forward and feedback) contains both analog and digital signals must provide a means for conversion 
from one form to other to be used by each subsystem. 

Analog-to-Digital Converter(ADC)Analog-to-Digital Converter(ADC)

A device that converts analog signal to digital signal is called Analog

Digital Analog Converter(DAC)

A device that converts digital signals to analog signals is called a Digital Analog 

The loop (forward and feedback) contains both analog and digital signals must provide a means for conversion 

device that converts analog signal to digital signal is called Analog-to-Digital Converter.

device that converts digital signals to analog signals is called a Digital Analog Converter.
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Digital-To-Analog Conversion

From the binary number each bit is properly 

weighted voltages and are summed together

to yield analogue output. 
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Analog-To-Digital Conversion

ADC is not instantaneous and needs two-step process.

There is a delay between the analog input voltage and the output digital word. 

In ADC, the analog signal is first converted to a sampled signal and then converted to a sequence of binary 
numbers, the digital signal. 

is a delay between the analog input voltage and the output digital word. 

ADC, the analog signal is first converted to a sampled signal and then converted to a sequence of binary 
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Controller design in digital control systems - Design in S

Digitization (DIG) or discrete control design

The above design works very well if sampling period T is sufficiently small.

Design in S-domain

above design works very well if sampling period T is sufficiently small.
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Controller design in digital control systems -Design in 

Direct (DIR) control design

Design in Z domain 



State State Space ModelsSpace Models



There are many alternative model formats that 
can be used for linear dynamic systems.  In 
simple SISO problems, any representation is 
probably as good as any other.  However, as we probably as good as any other.  However, as we 
move to more complex problems (especially 
multivariable problems), it is desirable to use 
special model formats.  One of the most flexible 
and useful structures is the state space model.



We will examine linear state space models in a little 
more depth for the SISO case. Many of the ideas will 
carry over to the MIMO case which we will study 
later.  In particular we will studylater.  In particular we will study

• similarity transformations and equivalent state representations,

• state space model properties:
– controllability, reachability, and stabilizability,

– observability, reconstructability, and detectability,

• special (canonical) model formats.



Linear Continuous-Time State Space 
Models

A continuous-time linear time-invariant state 
space model takes the form

where x  n is the state vector, u  m is the 
control signal, y  p is the output, x0  

n is 
the state vector at time t = t0 and A, B, C, and D
are matrices of appropriate dimensions.



Similarity Transformations

It is readily seen that the definition of the state 
of a system is nonunique.  Consider, for 
example, a linear transformation of x(t) to          
defined as

)( tx
defined as

where  T is any nonsingular matrix, called a 
similarity transformation. 



The following alternative state description is 
obtained

where

The above model is an equally valid description 
of the system.



An illustration, say that the matrix A can be 
diagonalized by a similarity transformation T; 
then

where if 1, 2, …, n are the eigenvalues of A, 
then



Because  is diagonal, we have

where the subscript i denotes the ith component where the subscript i denotes the ith component 
of the state vector.



Example

The matrix T can also be obtained by using 
the MATLAB command eig, which yields



We obtain the similar state space description 
given by



Transfer Functions Revisited

The solution to the state equation model can be 
obtained via



We thus see that different choices of state 
variables lead to different internal descriptions 
of the model, but to the same input-output 
model, because the system transfer function can model, because the system transfer function can 
be expressed in either of the two equivalent 
fashions.

for any nonsingular T.



From Transfer Function to State Space 
Representation

We have seen above how to go from a state 
space description to the corresponding transfer 
function.  The converse operation leads to the 
following question:   following question:   

Given a transfer function G(s), how can 
a state representation for this system be 

obtained?



Development

Consider a transfer function G(s) = B(s)/A(s). We 
can then write

We note from the above definitions that



We can then choose, as state variables,  xi(t) = vi(t), which 
lead to the following state space model for the system.    

The above model has a special form.  We will see later that 
any completely controllable system can be expressed in this 
way.  Before we do this, we need to introduce the idea of 
controllability.



Controllability and Stabilizability

An important question that lies at the heart of 
control using state space models is whether we 
can steer the state via the control input to 
certain locations in the state space.  Technically, certain locations in the state space.  Technically, 
this property is called controllability or 
reachability.  A closely related issue is that of 
stabilizability.  We will begin with controllability.



Controllability

The issue of controllability concerns whether a 
given initial state x0 can be steered to the origin in 
finite time using the input u(t).

Formally, we have the following:Formally, we have the following:

Definition 17.1: A state x0 is said to be controllable 
if there exists a finite interval [0, T] and an input 
{u(t), t  [0, T]} such that x(T) = 0.  If all states are 
controllable, then the system is said to be 
completely controllable.



Our next step will be to derive a simple algebraic 
test for controllability that can easily be applied 
to a given state space model.  In deriving this 
result, we will use a result from linear algebra result, we will use a result from linear algebra 
known as the Cayley-Hamilton Theorem.  



Theorem 17.1: (Cayley-Hamilton theorem).  
Every matrix satisfies its own characteristic 
equation - i.e., if

then

Proof: See the book.



Test for Controllability

Theorem 17.2: Consider the state space model

(i) The set of all controllable states is the range space of the (i) The set of all controllable states is the range space of the 
controllability matrix  c[A, B], where

(ii) The model is completely controllable if and only if      
where c[A, B] has full row rank.

Proof: Uses Cayley-Hamilton Theorem - see book.



Example

Consider the state space model

The controllability matrix is given byThe controllability matrix is given by

Clearly, rank c[A, B] = 2; thus, the system is completely 

controllable.



Example

For

The controllability matrix is given by:The controllability matrix is given by:

Rank c[A, B] = 1 < 2;  thus, the system is not 
completely controllable.



Although we have derived the above result by 
using the delta model, it holds equally for shift 
and/or continuous-time models.



We see that controllability is a black and white 
issue:  a model either is completely controllable 
or it is not.  Clearly, to know that something is 
uncontrollable is a valuable piece of information.  
However, to know that something is controllable 
uncontrollable is a valuable piece of information.  
However, to know that something is controllable 
really tells us nothing about the degree of 
controllability, i.e., about the difficulty that might 
be involved in achieving a certain objective.  The 
latter issue lies at the heart of the fundamental 
design trade-offs in control that were the subject 
of Chapters 8 and 9.



Observability

Consider again the state space model 

In general, the dimension of the observed output, y, In general, the dimension of the observed output, y, 
can be less than the dimension of the state, x.  
However, one might conjecture that, if one 
observed the output over some nonvanishing time 
interval, then this might tell us something about the 
state.  The associated properties are called 
observability (or reconstructability).



Observability

Observability is concerned with the issue of what 
can be said about the state when one is given 
measurements of the plant output.

A formal definition is as follows:A formal definition is as follows:

Definition : The state x0  0 is said to be 
unobservable if, given x(0) = x0, and u[k] = 0 for k
 0, then y[k] = 0 for k  0.  The system is said to 
be completely observable if there exists no 
nonzero initial state that it is unobservable.



Test for Observability

A test for observability of a system is 
established in the following theorem. 

Theorem : Consider the state modelTheorem : Consider the state model

(i) The set of all unobservable states is equal to the null 
space of the observability matrix 0[A, C], where 



(ii) The system is completely observable if and only if   
0[A, C], has full column rank  n. 



Summary

• State variables are system internal variables, upon which a full 
model for the system behavior can be built. The state 
variables can be ordered in a state vector.

• Given a linear system, the choice of state variables is not 
unique - however,unique - however,

– the minimal dimension of the state vector is a system invariant,

– there exists a nonsingular matrix that defines a similarity 
transformation between any two state vectors, and

– any designed system output can be expressed as a linear combination 
of the state variables and the inputs.



• For linear, time-invariant systems, the state space model is 
expressed in the following equations:

continuous-time systems
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• Controllability tells us about the feasibility of attempting to 
control a plant.

• Observability tells us about whether it is possible to know 
what is happening inside a given system by observing its 
outputs.outputs.



• A transfer function can always be derived from a state space 
model.

• A state space model can be built from a transfer-function 
model.  However, only the completely controllable and 
observable part of the system is described in that state space observable part of the system is described in that state space 
model.  Thus the transfer-function model might be only a 
partial description of the system.
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