
POWER PRESENTATION

2

Fundamental OO Concepts

• Encapsulation

• Inheritance

• Dynamic Method Binding

3

Encapsulation

• Encapsulation

– Encapsulation allows the programmer to group data and the

subroutines that operate on them together in one place, and

to hide irrelevant details from the user.

• Information Hiding

– Making objects and algorithms invisible to portions of the

system that do not need them.

4

Modules

• If a module M exports a type T, the rest of the program can only
pass T to subroutines exported from M.

– T is said to be an opaque type.

var Database : module

exports (tuple with (:=, name))

…

type tuple = record

var name : packed array 1..80 of char

…

end tuple

…

• What can the code outside the Database module do?

5

Module Changing

• Body is Changed

• Private Part of Header is Changed

• Public Part of Header is Changed

6

Classes can limit visibility

• Private

• Protected

• Public

• Package (in some languages, e.g. Java)

7

Derived class can restrict visibility

• Private

– Protected and public members of base class are private in derived

class.

• Protected

– Protected and public members of base class are protected in derived

class.

• Public

– Protected and public members of base class are protected and public

in derived class.

• Private members of base class aren’t visible in derived class.

8

Initialization and Finalization

9

Four Important Issues

• Choosing a Constructor

• References and Values

• Execution Order

• Garbage Collection

– We’ve seen that already

10

Choosing a Constructor

• Object-Oriented Languages allow classes to have zero,

one or more different constructors.

• Two ways to distinguish between constructors

– Different Names

– Different Number and Types of Arguements

11

Constructors

• Eiffel code:

• class COMPLEX

creation

new_cartesian, new_polar

…

new_cartesian(x_val, y_va; : REAL) is

…

new_polar(rho, theta : REAL) is

…

• class mydata {

public:

mydata(string data);

mydata(int data);

mydata();

};

12

References and Values

• C++ vs. Java

– Java uses reference, C++ you can specify

• Reference

– Every object is created explicitly so it is easy to make sure

the correct constructor is called.

– More elegant, but requires allocation from heap and extra

indirections on every access of the object.

• Value

– More efficient but harder to control initialization

13

Execution Order

• If class B is derived from class A, A constructor is

called before B constructor

– To get arguments to the A constructor, you must use an

intializer list

class foo : bar {

...

}

foo::foo (foo_params) : bar(bar_params) {

…

– The part after the colon is a call to bar’s constructor

14

Destructors and Garbage Collection

• When an object is destroyed, the destructor is called

for the derived class first, then the destructors of the

base classes are called.

– Reverse order of derivation

• Destructors purpose is to return allocated space back to

the heap

• Many languages provide automatic garbage collection

– Java, Smalltalk, Eiffel, etc.

Dynamic Method Binding

Polymorphism

• A derived class (D) has all the members of its base

class (C)

– Class D can be used anytime class C is expected.

– If class D does not hide any publicly visible members of C

then D is a subtype of C.

• If class D is used in place of class C, this is a form of

polymorphism.

Polymorphism Example

class person { …

class student : public person { …

class professor : public person { …

student s;

professor p;

…

person *x = &s;

person *y = &p;

Dynamic vs. Static binding

• Static method binding uses the type of the reference:
s.print_mailing_label();

p.print_mailing_label();

• Dynamic method binding uses the class of the object

that is referred/pointed to:
x->print_mailing_label();

y->print_mailing_label();

Dynamic method binding

• Dynamic method binding: calls to virtual methods are

dispatched to the appropriate implementation at run time based

on the class of the object

– Simula: virtual methods listed at beginning of class

declaration

CLASS Person;

VIRTUAL: PROCEDURE PrintMailingLabel;

BEGIN

…

END Person;

Dynamic method binding

– C++: keyword “virtual” prefixes function declaration

class person {

public:

virtual void print_mailing_label ();

…

}

• This requires keeping a virtual method table

along with each object

– More on this in a bit…

Abstract Methods

• Bodyless virtual methods

In C++: called pure virtual method, created by following a

procedure declaration with an assignment to zero.

class person {

…

public:

virtual void print_mailing_label() = 0;

Abstract Classes

• Class that contains one or more abstract methods

– Java: called an interface (which has only abstract methods)

• Generally not possible to declare object of an abstract
class b/c it would be missing at least one member

– But you can do so in C++

• Serves as a base for concrete classes.

– Concrete class must provide a definition for every abstract
method it inherits

• Application to dynamic method binding: allows code
that calls methods of objects of a base class, assuming
that the concrete methods will be invoked at run time.

Arrange concepts into an

inheritance hierarchy
• Concepts at higher levels are more general

• Concepts at lower levels are more specific (inherit
properties of concepts at higher levels)

Vehicle

Wheeled vehicle Boat

Car Bicycle

4-door2-door

C++ and inheritance

• The language mechanism by which one class
acquires the properties (data and operations)
of another class

• Base Class (or superclass): the class being
inherited from

• Derived Class (or subclass): the class that
inherits

Advantages of inheritance

• When a class inherits from another class,
there are three benefits:

• (1) You can reuse the methods and data of
the existing class

(2) You can extend the existing class by
adding new data and new methods

(3) You can modify the existing class by
overloading its methods with your own
implementations

Inheritance and accessibility

• A class inherits the behavior of another
class and enhances it in some way

• Inheritance does not mean inheriting
access to another class’ private members

Rules for building a class hierarchy

• Derived classes are special cases of base classes

• A derived class can also serve as a base class for new
classes.

• There is no limit on the depth of inheritance allowed
in C++ (as far as it is within the limits of your
compiler)

• It is possible for a class to be a base class for more
than one derived class

Static vs. dynamic binding

• Static Binding: the determination of which
method to call at compile time

• Dynamic Binding: the determination of which
method to call at run time

Virtual Functions

• C++ uses virtual functions to implement run-
time binding.

• To force the compiler to generate code that
guarantees dynamic binding, the word virtual
should appear before the function
declaration in the definition of the base class.

REFRENCES

• WWW.CS.VIRGINIA.EDU

• WWW.CSE.UNR.EDU

