

Overview of Graphics Systems

• Four major task for rendering geometric objects
– modeling

– geometric processing

• transformations

• clipping
• shading

• hidden-surface removal

• projection

– Rasterization (Scan Conversion)

– Display

Four Major Tasks

Display

Rasterize

Geometry

Modeling

Agenda

1. Input devices

2. Hard-copy devices

3. Video display devices

4. Graphics workstations and viewing systems

Input Devices

• Input devices
– Keyboards, button boxes, dials
– Mouse devices
– Trackballs and space balls
– Joysticks
– Data gloves
– Digitizers
– Image scanners
– Touch panels
– Light pens
– Voice systems

Input Devices

• Keyboards, button boxes, dials
– Standard keyboard

• Alphanumeric

• Function keys

– Button box
set of input dials

Input Devices

• Mouse devices
– Mechanical mouse

• One-button
• Rotating ball
• Two perpendicular shafts to capture rotation

– Optical mouse
• Optical sensor
• Laser
• Grid to detect movement

– Added widgets
• Buttons
• Trackball
• Thumbwheel.

Input Devices

• Trackball
– A ball device that can be rotated with the

fingers or palm of hand

• Spaceball
– Six degrees of freedom

– Does not move, detects strain placed on the ball
by trying to move it.

Input Devices

• Joystick
– A small, vertical lever mounted on a base

– Movable joystick measures motion

– Stationary (isometric) joystick measures strain.

• Data glove
– Used to grasp a virtual object

– Measures hand and finger position

– 2D or 3D

– Can also be used as input device to detect surface

Input Devices
• Digitizers

– Used for drawing, painting, or selecting positions
– Graphics tablet used to input 2D coordinates by activating a hand

cursor or stylus at given positions on a flat surface
– Used to trace contours, select precise coordinate positions

• Hand held cursor
• Stylus

– Electromagnetic
• Grid of wires
• Electromagnetic pulses send an electrical signal in stylus or

cursor
– Acoustic

• Sound waves to detect stylus position by microphones
• Can be 3D

Input Devices

• Image scanners
– Used to store images on a computer

– Hand held

– Flatbed

– Drum.

Input Devices

• Light pens
– Pen-shaped device to select screen positions by

detecting lights coming from points on the CRT
screen

– Used to capture position of an object or select
menu options.

Input Devices

• Voice systems
– Speech recognition systems to recognize voice

commands

– Used to activate menu options or to enter data

– Uses a dictionary from a particular user
(learning system).

Hard-copy Devices

• Hard-copy devices
– Plotters

• 2D moving pen with stationary paper

• 1D pen and 1D moving paper

– Printers
• Impact devices

– Inked ribbon

• Non impact devices
– Laser, ink-jet, xerographic, electrostatic, electrothermal.

Video Display Devices

• Cathode-ray tubes
– Raster-scan displays
– Random-scan displays
– Color CRT displays
– Direct View Storage Tubes

• Flat-panel displays
• Three-dimensional viewing devices
• Stereoscopic and virtual-reality systems

Cathode-ray tubes
 –Raster-scan displays

–Random-scan displays
–Color CRT displays
–Direct View Storage Tubes

Cathode-Ray Tubes

(from Donald Hearn and Pauline Baker)

• Classical output device is a monitor.

• Cathode-Ray Tube (CRT)
– Invented by Karl Ferdinand Braun (1897)

Cathode-Ray Tubes

(from Donald Hearn and Pauline Baker)

Cathode-Ray Tubes

(from Donald Hearn and Pauline Baker)

Cathode-Ray Tubes
1. Working of CRT

– Beam of electrons directed from cathode (-)to
phosphor-coated (fluorescent) screen (anode (+))

– Directed by magnetic focusing and deflection coils
(anodes) in vacuum filled tube

– Phosphor emits photon of light, when hit by an
electron, of varied persistence (long 15-20 ms for texts /
short < 1ms for animation)

– Refresh rate (50-60 Hz / 72-76 Hz) to avoid flicker /
trail

– Phosphors are organic compounds characterized by
their persistence and their color (blue, red, green).

Cathode-Ray Tubes

– Horizontal deflection and vertical deflection direct the
electron beam to any point on the screen

– Intensity knob: regulates the flow of electrons by
controlling the voltage at the control grid (high voltage
reduces the electron density and thus brightness)

– Accelerating voltage from positive coating inside
screen (anode screen) or an accelerating anode

2. Image maintenance
– Charge distribution to store picture information OR
– Refresh CRT: refreshes the display constantly to

maintain phosphor glow.

Cathode-Ray Tubes
3. Focusing

– Focusing forces the electron beam to converge to a
point on the monitor screen

– Can be electrostatic (lens) or magnetic (field)

4. Deflection
– Deflection directs the electron beam horizontally and/or

vertically to any point on the screen
– Can be controlled by electric (deflection plates, slide 9)

or magnetic fields (deflection coils, slide 5)
– Magnetic coils: two pairs (top/bottom, left/right) of

tube neck
– Electric plates: two pairs (horizontal, vertical)

Cathode-Ray Tubes

Characteristics of Cathode-Ray Tube (CRT)
1. Intensity is proportional to the number of electrons

repelled in beam per second (brightness)

2. Resolution is the maximum number of points that can
be displayed without overlap; is expressed as number
of horizontal points by number of vertical points;
points are called pixels (picture elements); example:
resolution 1024 x 768 pixels. Typical resolution is
1280 x 1024 pixels.

• High-definition systems: high resolution systems.

Cathode-Ray Tubes
3. Persistence is defined as the time taken by the emitted

light to decay one tenth of its original intensity.
• Max persistence 1 Sec, Min Persistence 10-60  sec
• Higher persistence  Low refresh rate  complex images
• Lower persistence  High refresh rate  Animations

4. Refresh Rate (Hz) number of times screen drawn or
refreshed per second.
• Usually 60 Hz (Why)
• Depends upon persistence

5. Pixel Picture Element
• Mapping of phosphorus element to pixel
• Bit for monochrome
• Byte for 256 color levels
• 3 Bytes to produce more than 16.7 million colors

Cathode-Ray Tubes
Aspect ratio

– Aspect ratio is the ratio of vertical pixels to horizontal
pixels for an equal length line.

– A square plotted with same number of pixels with
different aspect ratios will look as:

Ar = 1 Ar > 1 Ar < 1

Cathode-Ray Tubes
– It is also defined as the ratio of the vertical dimension over
the horizontal dimension. If and resolution of 640 x 480
pixels:

Horizontal 640/8 = 80 pixels / inch

Vertical 480/6 = 80 pixels / inch

Square pixels (no distortion).

Cathode-ray tubes
 –Raster-scan displays

–Random-scan displays
–Color CRT displays
–Direct View Storage Tubes

Raster-scan Displays

1. Introduction
– Raster-scan display is the most common type of

monitor using a CRT.
– A raster is a matrix of pixels covering the screen area

and is composed of raster lines.
– The electron beam scans the screen from top to

bottom one row at a time. Each row is called a scan
line.

– The electron beam is turned on and off to produce a
collection of dots painted one row at a time. These
will form the image.

Raster-scan Displays

(from Donald Hearn and Pauline Baker)

Raster-scan Displays

2. Refresh Procedure
– Retracing

• Horizontal retrace – beam returns to left of screen

• Vertical retrace – bean returns to top left corner of screen

– Blanking
• Horizontal Retrace Blanking

• Vertical Retrace Blanking

– Interlacing
• display first even-numbered lines, then odd-numbered lines

• permits to see the image in half the time

• useful for slow refresh rates (30 Hz shows as 60 Hz).

Raster-scan Displays

– Over scanning
• Scan lines extended beyond visibility edge as there is limit on

speed of sweep generator

• Avoid cracking at borders and distortion

• Top and Bottom Vertical Over scanning

• Left and Right Horizontal Over scanning

– Refresh rate
• 24 is a minimum to avoid flicker, corresponding to 24 Hz (1

Hz = 1 refresh per second)

• Current raster-scan displays have a refresh rate of at least 60
frames (60 Hz) per second, up to 120 (120 Hz).

Raster-scan Displays

3. Architecture of Raster Scan System
– Simple architecture

(from Donald Hearn and Pauline Baker)

Raster-scan Displays

– Architecture with reserved Frame Buffer

(from Donald Hearn and Pauline Baker)

Raster-scan Displays

– Architecture with reserved Frame Buffer and separate
Display Processor

(from Donald Hearn and Pauline Baker)

Raster-scan Displays

3.1 Frame Buffer
– Also called Refresh Buffer, contains picture definition
– The image is stored in a frame buffer containing the total

screen area and where each memory location corresponds
to a pixel.

– Consider it as 2-D memory array
– E.g. Frame buffer

• size 8x8
• Color depth 8 (values 0-7)

– Uses large memory:
640x480  307200 bits  38 kB

Raster-scan Displays

– Bitmap In a monochrome system, each bit is 1 or 0 for
the corresponding pixel to be on or off making frame a
bitmap.

– The display processor scans the frame buffer to turn
electron beam on/off depending if the bit is 1 or 0.

– Example Bitmap

Raster-scan Displays

– Pixmap for color monitors, the frame buffer also contains
the color of each pixel (color buffer) as well as other
characteristics of the image (gray scale, …).

– Depth of the buffer area is the number of bits per pixel
(bit planes), up to 24. 8 bits/pixel  0..255

– Examples: television panels, printers, PC monitors
– 8 level Pixmap

Raster-scan Displays

3.2 Video Controller
– Also called scan controller

– display an image onto screen

– Read the frame buffer and display on screen

Video Controller

Raster-scan Displays

– How each pixel value in the frame buffer is sent to the right
place on the display surface

Raster-scan Displays

– Basic Operation of Video Controller/Scan Controller

(from Donald Hearn and Pauline Baker)

Raster-scan Displays

3.3 Display Processor
– Relieves CPU from graphics chores

– It digitize the picture definition in the application
program

– It does SCAN CONVERSION

– Define Graphic objects and characters to be displayed

Cathode-ray tubes
 –Raster-scan displays

–Random-scan displays
–Color CRT displays
–Direct View Storage Tubes

Random-scan Displays

1. Introduction
– Random scan systems are also called

• Vector Displays
• stroke-writing, or
• calligraphic displays.

– The electron beam directly draws the picture in
any specified order.

– A pen plotter is an example of such a system.

Random-scan Displays

– Picture is stored in a display list, refresh display
file, vector file, or display program as a set of line
drawing commands.

– Refresh rate depends upon the size of the file.
– Refreshes by scanning the list 30 to 60 times per

second.
– More suited for line-drawing applications such as

architecture and manufacturing

Random-scan Displays

2. Architecture of Random Scan System
– Simple architecture

(from Donald Hearn and Pauline Baker)

Random-scan Displays

3. Advantages:
– Good quality lines
– No need of scan conversion
– Easy animation and requires little memory

4. Disadvantages:

– Requires intelligent electron beam (processor controlled)
– Limited screen density, limited to simple, line-based images
– Limited color capability.

• Improved in the 1960’s by the Direct View Storage Tube

(DVST) from Tektronix.

Raster vs. Random-scan Displays
RASTER RANDOM

DISPLAY MECHANISM E-beam traces entire screen from
upper left corner to bottom right

E-beam can highlight random
positions on the screen

DRAWING UNIT Pixel Line

IMAGE STORAGE Frame Buffer Display File

IMAGE TYPES Can display very complex images
with greater accuracy

Wire Frame modeling

IMAGE QUALITY •May be Jagged due to digitization

•Diagonal Lines are produced with
lower intensity

•Smooth lines as e-beam directly
follows the line path

•Diagonal Lines are produced with
equal intensity

REFRESHING Entire Screen has to be refreshed Only selected portions are redrawn

REFRESH RATE Maximum 80 Hz Higher refresh rates.

ANIMATIONS Supported Not supporting

COLORS Higher Color Depth Lesser colors and shades

COLOR TECHNIQUE Shadow Masking Beam Penetration

Cathode-ray tubes
 –Raster-scan displays

–Random-scan displays
–Color CRT displays
–Direct View Storage Tubes

Color CRT Monitor

1. Introduction
– Uses different phosphors, a combination of

Red, Green, and Blue, to produce any color.

– Two methods:
• Beam penetration

• Shadow Masking

Color CRT Monitor

2. Beam Penetration Method
– Random scan systems uses beam penetration.

– 2 layers (Red, Green) phosphors; low speed electrons
excite Red, high speed electrons excite Green.

– Intermediate speed excite both to get yellow and
orange.

– Color is controlled by electron beam voltage.
– It is inexpensive

– Only produces a restricted set of colors.

– Quality of Picture is low

Color CRT Monitor

3. Shadow Masking Method
– Raster scan systems uses a shadow mask with three

electron guns: Red, Green, and Blue (RGB color
model).

– Color is produced by adjusting the intensity level of
each electron beam.

– Produces a wide range of colors, from 8 to several
millions.

– The arrangement of color components can be
• Delta-Delta arrangement

• In line arrangement

Color CRT Monitor

(from Donald Hearn and Pauline Baker)

Color CRT Monitor

R G B color

0 0 0 black

0 0 1 blue

0 1 0 green

0 1 1 cyan

1 0 0 red

1 0 1 magenta

1 1 0 yellow

1 1 1 white

Color CRT Monitor

– Color CRT’s are designed as RGB monitors also called

full-color system or true-color system.

– Use shadow-mask methods with intensity from each
electron gun (red, green, blue) to produce any color
directly on the screen without preprocessing.

– Frame buffer contains 24 bits per pixel, for 256 voltage
settings to adjust the intensity of each electron beam,
thus producing a choice of up to 17 million colors for
each pixel (2563).

Cathode-ray tubes
 –Raster-scan displays

–Random-scan displays
–Color CRT displays
–Direct View Storage Tubes

DVST Displays

1. Introduction
– Picture is stored inside the CRT

– No refreshing required

– Diagrammatically

DVST Displays

2. Components
– Flooding Gun to flood the entire screen and charge the

collector plate

– Writing Gun is same as e-gun in CRT having heating
filament, cathode, focusing anode and deflection yokes

– Collector Plate partly energized by the flooding gun,
has background charge to keep fired phosphorus
illuminated

– Phosphorus Screen higher persistence CRT screen

– Ground to discharge the collector to erase the screen

DVST Displays

3. Advantages/Disadvantages
– No Refreshing required

– It can draw complex images with higher resolution

– Does not display colors

– Selected part of the picture cannot be erased

– Animation not supported

Flat Panel Displays

Flat Panel Displays

1. Introduction
– Flat panel displays are video devices that are thinner,

lighter, and require less power than CRT’s.
– Examples: wall frames, pocket notepads, laptop

computer screens, …

2. Types of Flat Panel Displays
– Emissive panels convert electrical energy into light:

plasma panels, thin-film electroluminescent display
device, light-emitting diodes.

– Non-emissive convert light into graphics using optical
effects:
liquid-crystal device (LCD).

Flat Panel Displays

(from Donald Hearn and Pauline Baker)

Vertical
Cathode (-ve)

Horizontal
Anode (+ve)

2.1 Plasma-panel display:

Flat Panel Displays

Components of Plasma-panel displays
– Cathode Fine wires attached to glass plates deliver –ve

voltage to gas cells on vertical axis

– Fluorescent cells Small pockets of gas liquid or solids
to emit light in excited state

– Anode Fine wires attached to glass plates deliver +ve
voltage to gas cells on horizontal axis

– Glass Plates to act as capacitors to maintain sustaining
voltage

Flat Panel Displays

Working of Plasma-panel displays
– An array of small fluorescent gas lights

– Constructed by filling a mixture of gases (usually neon)
between two glass plates

– vertical conducting ribbons are placed in one plate, and
horizontal conducting ribbons are placed in the other
plate

– voltage is applied to the two ribbons to transform gas
into glowing plasma of electrons and ions.

Flat Panel Displays

– Two voltage levels
• Firing Voltage 60
• Sustaining Voltage 40

Advantages/Disadvantages:

– No need of refreshing
– Provides Fairly High resolution
– However MONOCHROME with few grey levels

Flat Panel Displays

(from Donald Hearn and Pauline Baker)

2.2 Thin-film electroluminescent display:

Flat Panel Displays

Thin-film electroluminescent displays are
– similar devices except that the region between the

plates is filled with phosphor instead of gas.

Example: zinc sulfide with manganese
voltage applied between the plates moves electrons to
the manganese atoms that release photons of light.

Flat Panel Displays

2.3 Light-emitting diode:
– a matrix of diodes, one per pixel

– apply voltage stored in the refresh buffer

– convert voltage to produce light in the display.

Flat Panel Displays
2.4 Liquid-crystal displays (LCD):

– LCD screens are often used in small devices such as
calculators and laptop monitors.

– non-emissive types of displays
– the picture produced by passing light from a light

source through liquid-crystal material
– Liquid-crystal material contains crystals within a liquid

nematic (thread-like) liquid-crystals have rod shape that
can either align to with the light direction or not
when voltage is applied to conductors.

– Liquid-crystal material can be programmed to either let
the light through or not

Flat Panel Displays

(from Donald Hearn and Pauline Baker)

Flat Panel Displays

Components of Liquid Crystal Displays
– Glass Plates contains the liquid crystal and serve as

bonding surface for conductive coating.

– Transparent Conductor To apply voltage to two
ribbons (across liquid crystals) to make plasma glow.

– Liquid Crystals Substance that polarize light when
voltage is applied.

– Two Polarized Films Transparent sheet that polarize
light.

– Reflectors

Flat Panel Displays

– ON STATE when light is twisted

– OFF STATE when block the light

– Passive matrix LCD have refresh buffer
screen refreshed at 60 frames per second

– Active matrix LCD transistor stored at each
pixel prevents charge from leaking out of
liquid-crystals

– Temperature dependent, sluggish

– Require little power to operate

3-D Viewing Devices

• For the display of 3D scenes.

• Often using a vibrating, flexible mirror.

• Scan alternate images in alternate frames.

• Multiple stereo images (time multiplexing)

Stereoscopic and
Virtual-Reality Systems

• Another technique for the display of 3D scenes.

• Not true 3D images, but provides a 3D effect.

• Uses two views of a scene along the lines of right
and left eye. Gives perception of a scene depth
when right view is seen from right eye and left
scene is seen from left eye (stereoscopic effect).
Display each view at alternate refresh cycles.

Stereoscopic and
Virtual-Reality Systems

• Stereoscopic systems are used in virtual reality
systems:

– Augmented reality

– Immersive reality
• Headset generates stereoscopic views

• Input devices (gloves, helmet, …) capture motion

• Sensing system in headset tracks user’s position

• Scene projected on an arrangement of walls

Graphics Workstations
• Graphics monitors use raster-scan displays (CRT

or flat-panel monitors).
• Graphics workstations provide more powerful

graphics capability:
– Screen resolution 1280 x 1024 to 1600 x 1200.
– Screen diagonal > 18 inches.

• Specialized workstations (medical imaging,
CAM):
– Up to 2560 x 2048.
– Full-color.

• 360 degrees panel viewing systems.

2-D Transformations

Contents

1. Homogeneous coordinates

2. Matrices

3. Transformations

4. Geometric Transformations

5. Inverse Transformations

6. Coordinate Transformations

7. Composite transformations

Homogeneous Coordinates
• There are three types of co-ordinate systems

1. Cartesian Co-ordinate System
– Left Handed Cartesian Co-ordinate System(Clockwise)

– Right Handed Cartesian Co-ordinate System (Anti Clockwise)

2. Polar Co-ordinate System

3. Homogeneous Co-ordinate System

We can always change from one co-ordinate system to
another.

Homogeneous Coordinates
– A point (x, y) can be re-written in homogeneous

coordinates as (xh, yh, h)

– The homogeneous parameter h is a non-zero value such
that:

– We can then write any point (x, y) as (hx, hy, h)

– We can conveniently choose h = 1 so that

(x, y) becomes (x, y, 1)

h

x
x h

h

y
y h

Homogeneous Coordinates
Advantages:

1. Mathematicians use homogeneous coordinates as they allow
scaling factors to be removed from equations.

2. All transformations can be represented as 3*3 matrices
making homogeneity in representation.

3. Homogeneous representation allows us to use matrix
multiplication to calculate transformations extremely
efficient!

4. Entire object transformation reduces to single matrix
multiplication operation.

5. Combined transformation are easier to built and understand.

Contents

1. Homogeneous coordinates

2. Matrices
3. Transformations

4. Geometric Transformations

5. Inverse Transformations

6. Coordinate Transformations

7. Composite transformations

Matrices

• Definition: A matrix is an n X m array of scalars, arranged
conceptually in n rows and m columns, where n and m are
positive integers. We use A, B, and C to denote matrices.

• If n = m, we say the matrix is a square matrix.

• We often refer to a matrix with the notation

 A = [a(i,j)], where a(i,j) denotes the scalar in the ith row and
the jth column

• Note that the text uses the typical mathematical notation where
the i and j are subscripts. We'll use this alternative form as it is
easier to type and it is more familiar to computer scientists.

Matrices

• Scalar-matrix multiplication:
 A = [ a(i,j)]

• Matrix-matrix addition: A and B are both n X m
 C = A + B = [a(i,j) + b(i,j)]

• Matrix-matrix multiplication: A is n X r and B is r X m
 r
 C = AB = [c(i,j)] where c(i,j) =  a(i,k) b(k,j)
 k=1

Matrices

• Transpose: A is n X m. Its transpose, AT, is the m X n matrix
with the rows and columns reversed.

• Inverse: Assume A is a square matrix, i.e. n X n. The
identity matrix, In has 1s down the diagonal and 0s elsewhere
The inverse A-1 does not always exist. If it does, then

 A-1 A = A A-1 = I

 Given a matrix A and another matrix B, we can check whether
or not B is the inverse of A by computing AB and BA and
seeing that AB = BA = I

Matrices

– Each point P(x,y) in the homogenous matrix form is
represented as

– Recall matrix multiplication takes place:

131333

xxx
ziyhxg

zfyexd

zcybxa

z

y

x

ihg

fed

cba



























































13
1

x

y

x

















Matrices

• Matrix multiplication does NOT commute:

– (unless one or the other is a uniform scale)

• Matrix composition works right-to-left.
– Compose:

– Then apply it to a column matrix v:

– It first applies C to v, then applies B to the result, then applies A to the result of
that.

M N  N M

v  M v

v  A B C  v

v  A B C v  

M  A B C

Contents

1. Homogeneous coordinates

2. Matrices

3. Transformations

4. Geometric Transformations

5. Inverse Transformations

6. Coordinate Transformations

7. Composite transformations

Transformations

– A transformation is a function that maps a point (or vector)
into another point (or vector).

– An affine transformation is a transformation that maps lines
to lines.

– Why are affine transformations "nice"?

• We can define a polygon using only points and the line segments
joining the points.

• To move the polygon, if we use affine transformations, we only must
map the points defining the polygon as the edges will be mapped to
edges!

– We can model many objects with polygons---and should---
for the above reason in many cases.

Transformations

– Any affine transformation can be obtained by applying, in
sequence, transformations of the form

• Translate

• Scale

• Rotate

• Reflection

– So, to move an object all we have to do is determine the
sequence of transformations we want using the 4 types of
affine transformations above.

Transformations

– Geometric Transformations: In Geometric transformation
an object itself is moved relative to a stationary coordinate
system or background. The mathematical statement of this
view point is described by geometric transformation applied
to each point of the object.

– Coordinate Transformation: The object is held stationary
while coordinate system is moved relative to the object. These
can easily be described in terms of the opposite operation
performed by Geometric transformation.

Transformations

– What does the transformation do?

– What matrix can be used to transform the original
points to the new points?

– Recall--- moving an object is the same as changing a
frame so we know we need a 3 X 3 matrix

– It is important to remember the form of these
matrices!!!

Contents

1. Homogeneous coordinates

2. Matrices

3. Transformations

4. Geometric Transformations

5. Inverse Transformations

6. Coordinate Transformations

7. Composite transformations

Geometric Transformations

– In Geometric transformation an object itself is moved relative
to a stationary coordinate system or background. The
mathematical statement of this view point is described by
geometric transformation applied to each point of the object.
Various Geometric Transformations are:

• Translation
• Scaling

• Rotation

• Reflection

• Shearing

Geometric Transformations

–Translation

–Scaling

–Rotation

–Reflection

–Shearing

Geometric Translation

• Is defined as the displacement of any object by a given
distance and direction from its original position. In simple
words it moves an object from one position to another.

 x’ = x + tx y’ = y + ty

Note: House shifts position relative to origin

y

x
 0

 1

 1

 2

 2

 3 4 5 6 7 8 9 10

 3

 4

 5

 6

V = txI+tyJ

Geometric Translation Example
y

x 0 1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

(1, 1) (3, 1)

(2, 3)

Translation by 3I+2J

(4, 3)

(5, 5)

(6, 3)

Geometric Translation

– To make operations easier, 2-D points are written as
homogenous coordinate column vectors

– The translation of a point P(x,y) by (tx, ty) can be written
in matrix form as:





























































11100

10

01

)(

y

x

Py

x

Pty

tx

T

JtyItxvwherePTP

v

v

Geometric Translation

– Representing the point as a homogeneous column vector
we perform the calculation as:

tyyy

txxx

comparingon

tyy

txx

yx

tyyx

txyx

y

x

ty

tx

y

x











































































































11*1*0*0

1**1*0

1**0*1

1100

10

01

1

Geometric Transformations

–Translation

–Scaling

–Rotation

–Reflection

–Shearing

Geometric Scaling

• Scaling is the process of expanding or compressing the
dimensions of an object determined by the scaling factor.

• Scalar multiplies all coordinates
 x’ = Sx × x y’ = Sy × y

• WATCH OUT:
– Objects grow and move!

Note: House shifts position relative to origin

y

x
 0

 1

 1

 2

 2

 3 4 5 6 7 8 9 10

 3

 4

 5

 6










1

2









1

3










3

6









3

9

Geometric Scaling

– The scaling of a point P(x,y) by scaling factors Sx and Sy
about origin can be written in matrix form as:











































































































































11100

00

00

1

11100

00

00

)(

,

,

ys

xs

y

x

s

s

y

x

thatsuch

y

x

Py

x

Ps

s

S

wherePSP

y

x

y

x

y

x

sysx

sysx

Geometric Scaling Example

y

0 1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

(1, 1) (3, 1)

(2, 3)

(2, 2) (6, 2)

(4,6)

Scale by (2, 2)

Geometric Transformations

–Translation

–Scaling

–Rotation

–Reflection

–Shearing

Geometric Rotation
– The rotation of a point P (x,y) about origin, by specified

angle θ (>0 counter clockwise) can be obtained as
 x’ = x × cosθ – y × sinθ

 y’ = x × sinθ + y × cosθ

– To rotate an object we have to rotate all coordinates

6


 

y

x 0
 1

 1

 2

 2

 3 4 5 6 7 8 9 10

 3

 4

 5

 6

x

y

(x,y) 
•

•

(x',y')

Let us derive these equations

Geometric Rotation























































 













































































 





1

cossin

sincos

1100

0cossin

0sincos

1

11100

0cossin

0sincos

)(

yx

yx

y

x

y

x

thatsuch

y

x

Py

x

PR

wherePRP

















– The rotation of a point P(x,y) by an angle  about origin
can be written in matrix form as:

Geometric Rotation Example
y

0 1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

(0,0) (2,0)

(2,1)

Geometric Transformations

–Translation

–Scaling

–Rotation

–Reflection
–Shearing

Geometric Reflection

– Mirror reflection is obtained about X-axis
 x’ = x

 y’ = – y

– Mirror reflection is obtained about Y-axis
 x’ = – x

 y’ = y

y

x 0
 1

 1

 2

 2

 3 4 5 6 7 8 9 10

 3

 4

 5

 6

 -9 -8 -7 -6 -5 -4 -3 -2 -1 -10

Geometric Reflection

– The reflection of a point P(x,y) about X-axis can be written
in matrix form as:







































































































































11100

010

001

1

11100

010

001

)(

y

x

y

x

y

x

thatsuch

y

x

Py

x

PM

wherePMP

x

x

Geometric Reflection

– The reflection of a point P(x,y) about Y-axis can be written
in matrix form as:







































































































































11100

010

001

1

11100

010

001

)(

y

x

y

x

y

x

thatsuch

y

x

Py

x

PM

wherePMP

y

y

Geometric Reflection

– The reflection of a point P(x,y) about origin can be written
in matrix form as:



















































































































































11100

010

001

1

11100

010

001

)(

y

x

y

x

y

x

thatsuch

y

x

Py

x

PM

wherePMP

xy

xy

Geometric Transformations

–Translation

–Scaling

–Rotation

–Reflection

–Shearing

Geometric Shearing

– It us defined as tilting in a given direction

– Shearing about y-axis
 x’ = x + ay

 y’ = y + bx
y

x 0
 1

 1

 2 3 4 5

 2

 3

 (1,1)

y

x 0
 1

 1

 2 3 4 5

 2

 3

 a = 2
b = 3

 4 (3,4)

(2,1)

(1,3)

Geometric Shearing

– The shearing of a point P(x,y) in general can be written in
matrix form as:











































































































































11100

01

01

1

11100

01

01

)(

,

,

bxy

ayx

y

x

b

a

y

x

thatsuch

y

x

Py

x

Pb

a

Sh

wherePShP

ba

ba

Geometric Shearing

– If b = 0 becomes Shearing about X-axis
 x’ = x + ay

 y’ = y

y

x 0
 1

 1

 2 3 4 5

 2

 3

 (1,1)

y

x 0
 1

 1

 2 3 4 5

 2

 3 a = 2

(2,1)
(3,1)

Geometric Shearing

– The shearing of a point P(x,y) about X-axis can be written
in matrix form as:















 























































































































11100

010

01

1

11100

010

01

)(

0,

0,

y

ayx

y

xa

y

x

thatsuch

y

x

Py

x

P

a

Sh

wherePShP

a

a

Geometric Shearing

– If a = 0 it becomes Shearing about y-axis
 x’ = x

 y’ = y + bx

y

x 0
 1

 1

 2 3 4 5

 2

 3

 (1,1)

y

x 0
 1

 1

 2 3 4 5

 2

 3 b = 3

 4

(1,3)

(1,4)

Geometric Shearing

– The shearing of a point P(x,y) about Y-axis can be written
in matrix form as:







































































































































11100

01

001

1

11100

01

001

)(

,0

,0

bxy

x

y

x

by

x

thatsuch

y

x

Py

x

PbSh

wherePShP

b

b

Contents

1. Homogeneous coordinates

2. Matrices multiplications

3. Transformations

4. Geometric Transformations

5. Inverse Transformations
6. Coordinate Transformations

7. Composite transformations

Inverse Transformations

– Inverse Translation: Displacement in direction of –V

– Inverse Scaling: Division by Sx and Sy





















 



100

10

01
1 ty

tx

TT vv




















100

010

001

/1,/1
1

, y

x

sysxsysx S

S

SS

Inverse Transformations

– Inverse Rotation: Rotation by an angle of –

– Inverse Reflection: Reflect once again




















100

010

001
1

xx MM

















 



100

0cossin

0sincos
1





 RR

Contents

1. Homogeneous coordinates

2. Matrices multiplications

3. Transformations

4. Geometric Transformations

5. Inverse Transformations

6. Coordinate Transformations

7. Composite transformations

Transformations

– Geometric Transformations: In Geometric transformation

an object itself is moved relative to a stationary coordinate
system or background. The mathematical statement of this
view point is described by geometric transformation applied
to each point of the object.

– Coordinate Transformation: The object is held stationary
while coordinate system is moved relative to the object. These
can easily be described in terms of the opposite operation
performed by Geometric transformation.

Coordinate Transformations

– Coordinate Translation: Displacement of the coordinate
system origin in direction of –V

– Coordinate Scaling: Scaling an object by Sx and Sy or
reducing the scale of coordinate system.





















 

100

10

01

ty

tx

TT vv



















100

010

001

/1,/1, y

x

sysxsysx S

S

SS

Coordinate Transformations

– Coordinate Rotation: Rotating Coordinate system by an
angle of –

– Coordinate Reflection: Same as Geometric Reflection
(why?)



















100

010

001

xx MM

















 

100

0cossin

0sincos





 RR

Contents

1. Homogeneous coordinates

2. Matrices multiplications

3. Transformations

4. Geometric Transformations

5. Inverse Transformations

6. Coordinate Transformations

7. Composite transformations

Composite Transformations

– A number of transformations can be combined into one matrix to
make things easy

• Allowed by the fact that we use homogenous coordinates

– Matrix composition works right-to-left.

 Compose:

Then apply it to a point:

It first applies C to v, then applies B to the result, then applies A to the result of that.

M  A B C

v  M v

v  A B C  v

v  A B C v  

Composite Transformations

• Matrix multiplication does NOT commute:

– (unless one or the other is a uniform scale)

– Try this: rotate 90 degrees about x then 90 degrees about y, versus
 rotate 90 degrees about y then 90 degrees about x.

M N  N M

Composite Transformations

Rotation about Arbitrary Point (h,k)
– Imagine rotating a polygon around a point (h,k) other than

the origin
• Transform to centre point to origin

• Rotate around origin

• Transform back to centre point

Composite Transformations
)(HHouse HT kh),(

HTR kh),( HTRT khkh),(),(

1 2

3 4

Composite Transformations

– The three transformation matrices are combined as follows























































 



















1100

10

01

100

0cossin

0sincos

100

10

01

y

x

k

h

k

h





REMEMBER: Matrix multiplication is not
commutative so order matters

)(.'),(),(PTRTP khkh  

Composite Transformations

– The composite Transformation is



























































 





















100

cossincossin

sincossincos

100

10

01

100

0cossin

0sincos

100

10

01

),(,

kkh

hkh

k

h

k

h

R kh











Exercises 1

x

y

0 1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

(2, 3)

(3, 2) (1, 2)

(2, 1)

Translate the shape below by (7, 2)

 Exercises 2

x

y

0 1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

(2, 3)

(3, 2) (1, 2)

(2, 1)

Scale the shape below by 3 in x and 2 in y

 Exercises 3
Rotate the shape below by 30° about the origin

x

y

0 1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

(7, 3)

(8, 2) (6, 2)

(7, 1)

Exercise 4

Write out the homogeneous matrices for the previous
three transformations

















































Translation Scaling Rotation

 Exercises 5
Using matrix multiplication calculate the rotation of the

shape below by 45° about its centre (5, 3)

x

y

0 1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

(5, 4)

(6, 3) (4, 3)

(5, 2)

Exercise 6

Rotate a triangle ABC A(0,0), B(1,1), C(5,2) by 450

1. About origin (0,0)

2. About P(-1,-1)















 



100

02222

02222

45R























100

122222

12222

)1,1(,45R


















111

210

510

][ABC

Exercise 7

Magnify a triangle ABC A(0,0), B(1,1), C(5,2) twice keeping
point C(5,2) as fixed.























100

220

502

)2,5(,2,2S






















111

202

535

][CBA



















111

210

510

][ABC

Exercise 8

Describe transformation ML which reflects an object about a
Line L: y=m*x+b.











































100

1

2

1

1
1

2

1

2

1

2

1

1

22

2

2

222

2

m

b

m

m
m

m

m

bm

m

m

m

m

ML

Exercise 9

Reflect the diamond shaped polygon whose vertices are A(-1,0)
B(0,-2) C(1,0) and D(0,2) about

1. Horizontal Line y=2

2.Vertical Line x = 2

3. Line L: y=x+2.



















100

410

001

2yM



















100

010

401

2xM















 



100

201

210

2xyM

Exercise 10

 Obtain reflection about Line y = x



















100

001

010

xyM

Exercise 11

 Prove that

1. Two successive translations are additive /commutative.

2. Two successive rotations are additive /commutative.

3. Two successive Scaling are multiplicative /commutative.

4. Two successive reflections are nullified /Invertible.

Is Translation followed by Rotation equal to Rotation followed
by translation ?

Scratch

x

y

0 1

1

2

2

3 4 5 6 7 8 9 10

3

4

5

6

2D Viewing Transformation
&

2D Clipping

2D Viewing Transformation

1. Definition
2. 2D Viewing Pipeline
3. Approaches
4. Aspect Ratio

1. Definitions: It is defined as a process for displaying views
of a two-dimensional picture on an output device:
– Specify which parts of the object to display (clipping window, or world

window, or viewing window)
– Where on the screen to display these parts (view port).

2D Viewing Transformation

– World Co – Ordinate System is a right handed Cartesian
coordinate system in which picture is actually defined.

– Physical Device Co – Ordinate System is a coordinate
system that correspond to output device or work stations
where image to be displayed. E.g. with our monitor it is a
Left handed Cartesian coordinate system.

– Normalized Co – Ordinate System It is a right handed
coordinate system in which display area of virtual display
device correspond to the unit square (1x1).

2D Viewing Transformation

– Window or Clipping window is the selected section of a

scene that is displayed on a display window. It is a finite
region from World Coordinate System.

– View port is the window where the object is viewed on the
output device. It is a finite region from Device Coordinate
System.

2D Viewing Transformation

2D Viewing Transformation

1. Definition
2. 2D Viewing Pipeline
3. Approaches
4. Aspect Ratio

2. 2D viewing pipeline
– Construct world-coordinate scene using modeling-

coordinate transformations
– Convert world-coordinates to viewing coordinates
– Transform viewing-coordinates to normalized-coordinates

(ex: between 0 and 1, or between -1 and 1)
– Map normalized-coordinates to device-coordinates.

CONSTRUCT
WORLD

COORDINATE
SCENE

CONVERT
WORLD CORD

TO
VIEW CORD

MAP
VIEW CORD

TO
NORM VIEW CO

MAP NORM
VIEW CORD

TO
DEVICE CORD

MC WC VC NC DC

2D Viewing Transformation

2D Viewing Transformation

1. Definition
2. 2D Viewing Pipeline
3. Approaches
4. Aspect Ratio

3. Approaches
– Two main approaches to 2D viewing Transformation

are

1. Direct Approach
2. Normalized Approach

2D Viewing Transformation

3.1. Direct Approach
– Mapping the clipping window into a view port which

may be normalized

– Its involves
• translating the origin of the clipping window to that of the view

port

• scaling the clipping window to the size of the view port

– We can drive it by three methods

2D Viewing Transformation

(from Donald Hearn and Pauline Baker)

2D Viewing Transformation

2D Viewing Transformation

Method 1: Let P (xw,yw) be any point in the window, which is
to be mapped to P’ (xv,yv) in the associated view port. The

two steps required are:

1. Translation Tv that takes (xwmin,ywmin) to (xvmin,yvmin) , where
v = (xvmin – xwmin)I + (yvmin – ywmin)J

2. Scaling by following scaling factors about point (xvmin,yvmin)

minmax

minmax

minmax

minmax

ywyw

yvyv
sand

xwxw

xvxv
s yx











2D Viewing Transformation



































































100

*0

*0

100

10

01

.

100

0

0

.

minmin

minmin

minmin

minmin

minmin

minmin

),(,, minmin

yvywss

xvxwss

ywyv

xwxv

yvyvss

xvxvss

TSV

yy

xx

yy

xx

vyvxvsysx

Method

2D Viewing Transformation

Method 2: We get the same result if we perform













































































 

100

*0

*0

100

10

01

100

00

00

100

10

01

.

minmin

minmin

min

min

min

min

),(,),(minminminmin

yvywss

xvxwss

yw

xw

s

s

yv

xv

TSTV

yy

xx

y

x

ywxwsysxyvxv

2D Viewing Transformation

Method 3: Let P (xw,yw) be any point in the window, which is
to be mapped to P’ (xv,yv) in the associated view port. To

maintain the same relative placement in the view port as in
window, we require that

minmax

min

minmax

min

minmax

min

minmax

min

ywyw

ywyw

yvyv

yvyv

and
xwxw

xwxw

xvxv

xvxv



















2D Viewing Transformation

Which means

minmax

minmax
minmin

minmax

minmax
minmin

)(
*)(

)(
*)(

ywyw

yvyv
ywywyvyv

and
xwxw

xvxv
xwxwxvxv











Put these equations in the matrix form.

2D Viewing Transformation

3. 2 Normalized Approach
– Mapping the clipping window into a normalized square

– It involves
• transforming the clipping window into a normalized square

• Then clipping in normalized coordinates (ex: -1 to 1) or (ex: 0 to 1)

• Then transferring the scene description to a view port specified in
screen coordinates.

• Finally positioning the view port area in the display window.

– Thus V = W.N, where N is a transformation that maps
window to normalized view port and W maps Normalized
points to view port.

(from Donald Hearn and Pauline Baker)

2D Viewing Transformation

(from Donald Hearn and Pauline Baker)

2D Viewing Transformation

2D Viewing Transformation

1. Definition
2. 2D Viewing Pipeline
3. Approaches
4. Aspect Ratio

4. Aspect Ratio
– Since viewing involves scaling, so undesirable

distortions may be introduced when sx ≠ sy

– Aspect ratio is defined as (ymax-ymin)/ (xmax-xmin)

– If aw= av => no distortion

– If aw> av => Horizontal spanning

– If aw< av => Vertical spanning

2D Viewing Transformation

Window
(aw = 1)

Centered
Sub view
(av=3/4)

Exercise 1

 Find the normalization transformation that maps a window
defined by (0,0) to (3,5) on to

1. The view port that is entire normalized device.

2. Has lower left corner (0,0) and upper right corner as
(1/2,1/2)























100

41410

21021

V























100

81810

41041

V

Exercise 2

 Find the complete viewing transformation that
1. First maps a window defined by (1,1) to (10,10) on to a view port

of size(1/4,0) to (3/4,1/2) in normalized device space

2. Then maps a window of (1/4,1/4) to (1/2,1/2) in normalized device
space to view port of (0,0) to (10,10)



















100

1811810

3670181

N























100

120

102

.NWV























100

8360

8036

W

Exercise 3

 Find the normalization transformation that maps a window
defined by (0,0) to (4,3) on to normalized device screen
keeping aspect ratio preserved.



















100

0410

0041

N

Sol: aw = ¾

 av = 1

 In normalized device we will keep

 x extent 0 to 1 and y extent 0 to ¾

 Sx = (1-0)/(4-0) = ¼

 Sy=(¾ - 0)/(3-0) = ¼

Exercise 4

 Find the normalization transformation that maps a window
defined by A(1,1) B(5,3) C(4,5) and D(0,3) on to
normalized device screen.



































































 

100

1015251

10310151

100

5115251

5315152

100

51510

5210521

.)1,1(,RNV

2D Clipping

1. Introduction
2. Point Clipping

3. Line Clipping

4. Polygon/Area Clipping

5. Text Clipping

2D Clipping
1. Introduction:
A scene is made up of a collection of objects specified in world
coordinates

World Coordinates

2D Clipping

When we display a scene only those objects within a particular
window are displayed

wymax

wymin

wxmin wxmax

Window

World Coordinates

2D Clipping

Because drawing things to a display takes time we clip
everything outside the window

wymax

wymin

wxmin wxmax

World Coordinates

Window

1.1 Definitions:
– Clipping is the process of determining which elements of

the picture lie inside the window and are visible.

– Shielding is the reverse operation of clipping where
window act as the block used to abstract the view.

– By default, the “clip window” is the entire canvas
• not necessary to draw outside the canvas

• for some devices, it is damaging (plotters)

– Sometimes it is convenient to restrict the “clip window” to

a smaller portion of the canvas
• partial canvas redraw for menus, dialog boxes, other obscuration

2D Clipping

2D Clipping

1.2 Example:
For the image below consider which lines and points should be kept
and which ones should be clipped against the clipping window

wymax

wymin

wxmin wxmax

Window

P1

P2

P3
P6

P5 P7

P10

P9

P4

P8

1.3 Applications:
– Extract part of a defined scene for viewing.

– Drawing operations such as erase, copy, move etc.

– Displaying multi view windows.

– Creating objects using solid modeling techniques.

– Anti-aliasing line segments or object boundaries.

– Identify visible surfaces in 3D views.

2D Clipping

2D Clipping

1.4 Types of clipping:
– Three types of clipping techniques are used depending

upon when the clipping operation is performed

a. Analytical clipping

– Clip it before you scan convert it

– used mostly for lines, rectangles, and polygons, where
clipping algorithms are simple and efficient

2D Clipping

b. Scissoring

– Clip it during scan conversion

– a brute force technique
• scan convert the primitive, only write pixels if inside the clipping

region

• easy for thick and filled primitives as part of scan line fill

• if primitive is not much larger than clip region, most pixels will fall
inside

• can be more efficient than analytical clipping.

2D Clipping

c. Raster Clipping

– Clip it after scan conversion

– render everything onto a temporary canvas and copy the
clipping region

• wasteful, but simple and easy,

• often used for text

2D Clipping

Foley and van Dam suggest the following:

– for floating point graphics libraries, try to use analytical
clipping

– for integer graphics libraries

• analytical clipping for lines and polygons

• others, do during scan conversion

– sometimes both analytical and raster clipping performed

1.5 Levels of clipping:
– Point Clipping

– Line Clipping

– Polygon Clipping

– Area Clipping

– Text Clipping

– Curve Clipping

2D Clipping

2D Clipping

1. Introduction

2. Point Clipping

3. Line Clipping

4. Polygon/Area Clipping

5. Text Clipping

Point Clipping

– Simple and Easy

– a point (x,y) is not clipped if:

 wxmin ≤ x ≤ wxmax

 &

 wymin ≤ y ≤ wymax

– otherwise it is clipped

wymax

wymin

wxmin wxmax

Window

P1

P2

P5
P7

P10

P9

P4

P8

Clipped

Points Within the Window
are Not Clipped

Clipped

Clipped

Clipped

2D Clipping

1. Introduction
2. Point Clipping
3. Line Clipping
4. Polygon/Area Clipping
5. Text Clipping

Line Clipping

– It is Harder than point
clipping

– We first examine the end-
points of each line to see
if they are in the window
or not

• Both endpoints inside, line
trivially accepted

• One in and one out, line is
partially inside

• Both outside, might be
partially inside

• What about trivial cases?

ymin

ymax

xmin xmax

Line Clipping

Situation Solution Example

Both end-points inside
the window

Don’t clip

One end-point inside the
window, one outside

Must clip

Both end-points outside
the window

Don’t know!

2D Line Clipping Algorithms

1. Analytical Line Clipping
2. Cohen Sutherland Line Clipping
3. Liang Barsky Line Clipping

Analytical Line Clipping

Also called Brute force line clipping can be performed
as follows:

1. Don’t clip lines with both
end-points within the
window

Analytical Line Clipping

2. For lines with one end-point inside the window and one
end-point outside, calculate the intersection point (using
the equation of the line) and clip from this point out

– Use parametric equations

x=x0+t(x1-x0)

y=y0+t(y1-y0)

– Intersection if 0 ≤t ≤ 1

Analytical Line Clipping

3. For lines with both end-points
outside the window test the
line for intersection with all of
the window boundaries, and
clip appropriately

+ Very Simple method

– However, calculating line intersections is computationally
expensive

– Because a scene can contain so many lines, the brute force
approach to clipping is much too slow

2D Line Clipping Algorithms

1. Analytical Line Clipping
2. Cohen Sutherland Line Clipping
3. Liang Barsky Line Clipping

Cohen-Sutherland Line Clipping

– An efficient line clipping
algorithm

– The key advantage of the
algorithm is that it vastly
reduces the number of line
intersections that must be
calculated.

Dr. Ivan E. Sutherland co-
developed the Cohen-
S u t h e r l a n d c l i p p i n g
algorithm. Sutherland is a
graphics giant and includes
amongst his achievements
the invention of the head
m o u n t e d d i s p l a y .

Cohen is something of a mystery – can
a n y b o d y f i n d o u t w h o h e w a s ?

Cohen-Sutherland Line Clipping

– Two phases Algorithm

Phase I: Identification Phase

All line segments fall into one of the following categories
1. Visible: Both endpoints lies inside
2. Invisible: Line completely lies outside
3. Clipping Candidate: A line neither in category 1 or 2

Phase II: Perform Clipping

 Compute intersection for all lines that are candidate for
clipping.

Cohen-Sutherland Line Clipping

Phase I: Identification Phase: World space is divided into regions
based on the window boundaries
– Each region has a unique four bit region code

– Region codes indicate the position of the regions with respect to the
window

1001 1000 1010

0001
0000

Window
0010

0101 0100 0110

above below right left

3 2 1 0

Region Code Legend

Cohen-Sutherland Line Clipping

Every end-point is labelled with the appropriate region code

wymax

wymin

wxmin wxmax

Window

P3 [0001]
P6 [0000]

P5 [0000]
P7 [0001]

P10 [0100]

P9 [0000]

P4 [1000]

P8 [0010]

P12 [0010]

P11 [1010]

P13 [0101] P14 [0110]

Cohen-Sutherland Line Clipping
Visible Lines: Lines completely contained within the window
boundaries have region code [0000] for both end-points so are
not clipped

wymax

wymin

wxmin wxmax

Window

P3 [0001]
P6 [0000]

P5 [0000]
P7 [0001]

P10 [0100]

P9 [0000]

P4 [1000]

P8 [0010]

P12 [0010]

P11 [1010]

P13 [0101] P14 [0110]

Cohen-Sutherland Line Clipping

Invisible Lines: Any line with a common set bit in the region
codes of both end-points can be clipped completely

– The AND operation can efficiently check this

– Non Zero means Invisible

wymax

wymin

wxmin wxmax

Window

P3 [0001]
P6 [0000]

P5 [0000]
P7 [0001]

P10 [0100]

P9 [0000]

P4 [1000]

P8 [0010]

P12 [0010]

P11 [1010]

P13 [0101] P14 [0110]

Cohen-Sutherland Line Clipping
Clipping Candidates: Lines that cannot be identified as

completely inside or outside the window may or may not cross
the window interior. These lines are processed in Phase II.
– If AND operation result in 0 the line is candidate for clipping

wymax

wymin

wxmin wxmax

Window

P3 [0001]
P6 [0000]

P5 [0000]
P7 [0001]

P10 [0100]

P9 [0000]

P4 [1000]

P8 [0010]

P12 [0010]

P11 [1010]

P13 [0101] P14 [0110]

Cohen-Sutherland Clipping Algorithm

Phase II: Clipping Phase: Lines that are in category 3 are now
processed as follows:
– Compare an end-point outside the window to a boundary

(choose any order in which to consider boundaries e.g. left,
right, bottom, top) and determine how much can be
discarded

– If the remainder of the line is entirely inside or outside the
window, retain it or clip it respectively

– Otherwise, compare the remainder of the line against the
other window boundaries

– Continue until the line is either discarded or a segment
inside the window is found

Cohen-Sutherland Line Clipping

• Intersection points with the window boundaries are calculated
using the line-equation parameters

– Consider a line with the end-points (x1, y1) and (x2, y2)

– The y-coordinate of an intersection with a vertical window
boundary can be calculated using:

 y = y1 + m (xboundary - x1)

 where xboundary can be set to either wxmin or wxmax

– The x-coordinate of an intersection with a horizontal
window boundary can be calculated using:

 x = x1 + (yboundary - y1) / m

 where yboundary can be set to either wymin or wymax

Cohen-Sutherland Line Clipping

• We can use the region codes to determine which window
boundaries should be considered for intersection
– To check if a line crosses a particular boundary we

compare the appropriate bits in the region codes of its end-
points

– If one of these is a 1 and the other is a 0 then the line
crosses the boundary.

Cohen-Sutherland Line Clipping
Example1: Consider the line P9 to P10 below

– Start at P10

– From the region codes
of the two end-points we
know the line doesn’t
cross the left or right
boundary

– Calculate the intersection
 of the line with the bottom boundary

 to generate point P10’

– The line P9 to P10’ is completely inside the window so is

retained

wymax

wymin

wxmin wxmax

Window

P10 [0100]

P9 [0000]

P10’ [0000]

P9 [0000]

Cohen-Sutherland Line Clipping

Example 2: Consider the line P3 to P4 below

– Start at P4

– From the region codes
of the two end-points
we know the line
crosses the left
boundary so calculate
the intersection point to
generate P4’

– The line P3 to P4’ is completely outside the window so is

clipped

wymax

wymin

wxmin wxmax

Window
P4’ [1001]

P3 [0001]

P4 [1000]

P3 [0001]

Cohen-Sutherland Line Clipping

Example 3: Consider the line P7 to P8 below

– Start at P7

– From the two region
codes of the two
end-points we know
the line crosses the
left boundary so
calculate the
intersection point to
generate P7’

wymax

wymin

wxmin wxmax

Window

P7’ [0000]
P7 [0001] P8 [0010]

P8’ [0000]

Cohen-Sutherland Line Clipping

Example 4: Consider the line P7’ to P8

– Start at P8

– Calculate the
intersection with the
right boundary to
generate P8’

– P7’ to P8’ is inside
the window so is
retained

wymax

wymin

wxmin wxmax

Window

P7’ [0000]
P7 [0001] P8 [0010]

P8’ [0000]

Cohen-Sutherland Line Clipping

Mid-Point Subdivision Method
– Algorithm

1. Initialise the list of lines to all lines

2. Classify lines as in Phase I

3. Remove all lines from the list in category 1 or 2;

4. Divide all lines of category 3 are into two smaller segments at
mid-point (xm,ym) where xm = (x1 +x2)/2 and ym = (y1 +y2)/2

5. Remove the original line from list and enter its two newly created
segments.

6. Repeat step 2-5 until list is null.

Cohen-Sutherland Line Clipping

wymax

wymin

wxmin wxmax

Window

Cohen-Sutherland Line Clipping

Mid-Point Subdivision Method

– Integer Version

– Fast as Division by 2 can be performed by simple shift
right operation

– For NxN max dimension of line number of subdivisions
required log2 N.

– Thus a 1024x1024 raster display require just 10
subdivisions………

2D Line Clipping Algorithms

1. Analytical Line Clipping
2. Cohen Sutherland Line Clipping
3. Liang Barsky Line Clipping

Liang-Barsky Line Clipping

Introduction:

– Cohen-Sutherland sometimes performs a lot of fruitless
clipping due to external intersections, but oldest, widely
published, most common

– Cyrus-Beck (1978) and Liang-Barsky (1984) are more
efficient

– C-B is a parametric line-clipping algorithm
– L-B is based on C-B algorithm. It adds efficient trivial

rejection tests
• can be used for 2D line clipping against arbitrary convex polygons

Liang-Barsky Line Clipping

– Using parametric equations, compute line segment
intersections (actually, just values of u) with clipping
region edges

– Determine if the four values of u actually correspond to
real intersections

– Then calculate x and y values of the intersections

– L-B examines values of u for earlier reject

Liang-Barsky Line Clipping

– Parametric definition of a line:
• x = x1 + uΔx

• y = y1 + uΔy

• Δx = (x2-x1), Δy = (y2-y1), 0<=u<=1

– Goal: find range of u for which x and y both inside the
viewing window

Liang-Barsky Line Clipping

– Mathematically:
xmin <= x1 + uΔx <= xmax

ymin <= y1 + uΔy <= ymax

– Rearranged

1: u*(-Δx) <= (x1 – xmin)

2: u*(Δx) <= (xmax – x1)

3: u*(-Δy) <= (y1 – ymin)

4: u*(Δy) <= (ymax – y1)

– In general
 u*(pk) <= (qk) k = 1,2,3,4

where p1 = -Δx q1 = x1 - xmin (left)
 p2 = Δx q2 = xmax – x1 (right)
 p3 = -Δy q3 = y1 - ymin (bottom)
 p4 = Δy q4 = ymax – y1 (top)

Liang-Barsky Line Clipping

– Rules:
1) pk = 0: the line is parallel to boundaries

– If for that same k, qk < 0, it’s outside
– Otherwise it’s inside

2) pk < 0: the line starts outside this boundary
– rk = qk/pk

– u1 = max(0, rk, u1)

3) pk > 0: the line starts inside the boundary
– rk = qk/pk
– u2 = min(1, rk, u2)

4) If u1 > u2, the line is completely outside

Liang-Barsky Line Clipping
1. A line parallel to a clipping window edge has pk = 0 for that

boundary.

2. If for that k, qk < 0, the line is completely outside and can be
eliminated.

3. When pk < 0 the line proceeds outside to inside the clip window and
when pk > 0, the line proceeds inside to outside.

4. For nonzero pk, u = qk / pk gives the intersection point.

5. For each line, calculate u1 and u2. For u1, look at boundaries for
which pk < 0 (outside→ in). Take u1 to be the largest among (0, qk /
pk). For u2, look at boundaries for which pk k > 0 (inside → out).
Take u2 to be the minimum of (1, qk / pk). If u1 > u2, the line is
outside and therefore rejected.

Liang-Barsky Line Clipping

– Faster than Cohen-Sutherland, does not need to iterate

– can be used for 2D line clipping against arbitrary convex
polygons

– Also extends to 3D
• Add z = z1 + uΔz

• Add 2 more p’s and q’s

• Still only 2 u’s

2D Clipping

1. Introduction

2. Point Clipping

3. Line Clipping

4. Polygon / Area Clipping

5. Text Clipping

Polygon Clipping

• Polygons have a distinct inside and outside…

• Decided by
– Even/Odd

– Winding Number

Polygon Clipping

• Note the difference between clipping lines and
polygons:

NOTE!

Polygon Clipping

• Some difficulties:
– Maintaining correct inside/outside

– Variable number of vertices

– Handle screen corners

 correctly

Sutherland-Hodgman Area Clipping

• A technique for clipping areas
developed by Sutherland &
Hodgman

• Put simply the polygon is clipped
by comparing it against each
boundary in turn

Original Area Clip Left Clip Right Clip Top Clip Bottom

Sutherland
turns up
again. This
time with
Gary Hodgman with
whom he worked at
the first ever graphics
company Evans &
Sutherland

1. Basic Concept:

• Simplify via separation

• Clip whole polygon against one edge
– Repeat with output for other 3 edges

– Similar for 3D

• You can create intermediate vertices that get thrown
out

Sutherland-Hodgeman Polygon Clipping

Sutherland-Hodgeman Polygon Clipping

• Example

Start Left Right Bottom Top

Note that the point one of the points added when clipping

on the right gets removed when we clip with bottom

2. Algorithm:
 Let (P1, P2,…. PN) be the vertex list of the Polygon to be

clipped and E be the edge of +vely oriented, convex clipping
window.

 We clip each edge of the polygon in turn against each window
edge E, forming a new polygon whose vertices are determined
as follows:

Sutherland-Hodgeman Polygon Clipping

Sutherland-Hodgeman Polygon Clipping

Creating New Vertex List

in  out

save new clip vert

Leaving

out  out

save nothing

Outside

Pi-1

Pi-1
Pi

Pi

out  in

save new clip vert

and ending vert

Entering

Pi
Pi-1

in  in

save ending vert

Inside

Pi-1

Pi

Four cases
1. Inside: If both Pi-1 and Pi are to the left of window edge

vertex then Pi is placed on the output vertex list.
2. Entering: If Pi-1 is to the right of window edge and Pi is to

the left of window edge vertex then intersection (I) of Pi-1 Pi
with edge E and Pi are placed on the output vertex list.

3. Leaving: If Pi-1 is to the left of window edge and Pi is to the
right of window edge vertex then only intersection (I) of Pi-1
Pi with edge E is placed on the output vertex list.

4. Outside: If both Pi-1 and Pi are to the right of window edge
nothing is placed on the output vertex list.

Sutherland-Hodgeman Polygon Clipping

START

INPUT VERTEX LIST
(P1, P2........, PN)

IF PiPi-1
INTERSECT

E ?

FOR i =1 TO (N-1) DO

COMPUTE I

OUTPUT I IN VERTEX LIST

IF Pi TO
LEFT OF E ?

YES NO

YES

OUTPUT Pi IN VERTEX
LIST

NO

i = i+1

Flow Chart

Special case for
first Vertex

Flow Chart
Special case for
first Vertex

IF PNP0
INTERSECT

E ?

COMPUTE I

OUTPUT I IN VERTEX
LIST

YES NO

END

YOU CAN ALSO APPEND AN ADDITIONAL VERTEX
PN+1 = P1 AND AVOID SPECIAL CASE FOR FIRST
VERTEX

Sutherland-Hodgeman Polygon Clipping

Inside/Outside Test:
 Let P(x,y) be the polygon vertex which is to be tested against

edge E defined form A(x1, y1) to B(x2, y2). Point P is to be said
to the left (inside) of E or AB iff

 or C = (x2 – x1) (y – y1) – (y2 – y1)(x – x1) > 0

 otherwise it is said to be the right/Outside of edge E

0
12

1

12

1 









xx

xx

yy

yy

Other Area Clipping Concerns

• Clipping concave areas can be a little more tricky as often
superfluous lines must be removed

• Clipping curves requires more work
– For circles we must find the two intersection points on the window

boundary

Window Window Window Window

2D Clipping

1. Introduction

2. Point Clipping

3. Line Clipping

4. Polygon/Area Clipping

5. Text Clipping

Text Clipping

Text clipping relies on the concept of bounding rectangle

TYPES
– All or None String Clipping: The bounding rectangle is on the

word.

– All or None Character Clipping: The bounding rectangle is on
the character.

– Character Clipping

STRING

S T R I N G

Text Clipping

METHODS

– Point Clipping in case of Bit Mapped Fonts

– Curve, Line or Polygon clipping in case of Outlined fonts

Visible-Surface Detection
Methods

Contents

• Abstract

• Introduction

• Back-Face
Detection

• Depth-Buffer
Method

• A-Buffer Method

• Scan-Line
Method

• Depth-Sorting
Method

243

 Area-Subdivision

Method

 Octree Method

 Ray-Casting

Method

 Image-Space

Method vs.

Object-Space

Method

 Curved Surfaces

 Wireframe

Methods

Abstract

• Hidden-surface elimination methods
• Identifying visible parts of a scene from a viewpoint
• Numerous algorithms

– More memory - storage
– More processing time – execution time
– Only for special types of objects - constraints

• Deciding a method for a particular application
– Complexity of the scene
– Type of objects
– Available equipment
– Static or animated scene

244

<Ex. Wireframe Displays>

Introduction

Classification of Visible-Surface Detection
Algorithms

• Object-space methods vs. Image-space methods
– Object definition directly vs. their projected images

– Most visible-surface algorithms use image-space methods

– Object-space can be used effectively in some cases

• Ex) Line-display algorithms

• Object-space methods

– Compares objects and parts of objects to each other

• Image-space methods

– Point by point at each pixel position on the projection plane

246

Sorting and Coherence
Methods

• To improve performance

• Sorting
– Facilitate depth comparisons

• Ordering the surfaces according to their distance
from the viewplane

• Coherence
– Take advantage of regularity

• Epipolar geometry

• Topological coherence
247

Back-Face Detection

 Inside-outside test

• A point (x, y, z) is “inside” a surface with plane

parameters A, B, C, and D if

• The polygon is a back face if

– V is a vector in the viewing direction from the eye(camera)

– N is the normal vector to a polygon surface

249

0 DCzByAx

0 NV
V

N = (A, B, C)

Advanced Configuration

• In the case of concave polyhedron
– Need more tests

• Determine faces totally or partly obscured by other faces

– In general, back-face removal can be expected to eliminate
about half of the surfaces from further visibility tests

250

<View of a concave polyhedron with

one face partially hidden by other surfaces>

Depth-Buffer Method

Characteristics

• Commonly used image-space approach

• Compares depths of each pixel on the projection plane
– Referred to as the z-buffer method

• Usually applied to scenes of polygonal surfaces
– Depth values can be computed very quickly

– Easy to implement

252

Yv

Xv

Zv

S1
S2

S3

(x, y)

Depth Buffer & Refresh Buffer

• Two buffer areas are required

– Depth buffer

• Store depth values for each (x, y) position

• All positions are initialized to minimum depth

– Usually 0 – most distant depth from the viewplane

– Refresh buffer

• Stores the intensity values for each position

• All positions are initialized to the background
intensity

253

Algorithm

• Initialize the depth buffer and refresh buffer
 depth(x, y) = 0, refresh(x, y) = Ibackgnd

• For each position on each polygon surface
– Calculate the depth for each (x, y) position on the polygon
– If z > depth(x, y), then set
 depth(x, y) = z, refresh(x, y) = Isurf(x, y)

• Advanced
– With resolution of 1024 by 1024

• Over a million positions in the depth buffer
– Process one section of the scene at a time

• Need a smaller depth buffer
• The buffer is reused for the next section

254

A-Buffer Method

Characteristics

• An extension of the ideas in the depth-buffer method
• The origin of this name

– At the other end of the alphabet from “z-buffer”
– Antialiased, area-averaged, accumulation-buffer
– Surface-rendering system developed by ‘Lucasfilm’

• REYES(Renders Everything You Ever Saw)

• A drawback of the depth-buffer method
– Deals only with opaque surfaces
– Can’t accumulate intensity values
 for more than one surface

256

Foreground

transparent surface

Background

opaque surface

Algorithm(1 / 2)

• Each position in the buffer can reference a linked list of
surfaces
– Several intensities can be considered at each pixel position
– Object edges can be antialiased

• Each position in the A-buffer has two fields
– Depth field

• Stores a positive or negative real number
– Intensity field

• Stores surface-intensity information or a pointer value

257

d >

0

I d

< 0

Sur

f1

Sur

f2

 

 Depth

field

Intensity

field

Depth

field

Intensity

field (a) (b)

<Organization of an A-buffer pixel position : (a) single-surface overlap (b) multiple-surface overlap>

Algorithm(2 / 2)

• If the depth field is positive
– The number at that position is the depth

– The intensity field stores the RGB

• If the depth field is negative
– Multiple-surface contributions to the pixel

– The intensity field stores a pointer to a linked list of surfaces

– Data for each surface in the linked list

258

 RGB intensity components

 Opacity parameters(percent of transparency)

 Depth

 Percent of area coverage

 Surface identifier

 Pointers to next surface

Scan-Line Method

Characteristics

• Extension of the scan-line algorithm for

filling polygon interiors

– For all polygons intersecting each scan line

• Processed from left to right

• Depth calculations for each overlapping surface

• The intensity of the nearest position is entered into

the refresh buffer

260

Tables for The Various Surfaces

• Edge table

– Coordinate endpoints for each line

– Slope of each line

– Pointers into the polygon table

• Identify the surfaces bounded by each line

• Polygon table

– Coefficients of the plane equation for each surface

– Intensity information for the surfaces

– Pointers into the edge table

261

Active List & Flag

• Active list
– Contain only edges across the current scan

line
– Sorted in order of increasing x

• Flag for each surface
– Indicate whether inside or outside of the

surface
– At the leftmost boundary of a surface

• The surface flag is turned on

– At the rightmost boundary of a surface
• The surface flag is turned off

262

Example

• Active list for scan line 1

– Edge table

• AB, BC, EH, and FG

• Between AB and BC, only

 the flag for surface S1 is on

– No depth calculations are necessary

– Intensity for surface S1 is entered into the refresh buffer

• Similarly, between EH and FG, only the flag for S2

is on
263

xv

yv

A

B

S1

E
F

S2

H

D

C

G

Scan line 1

Scan line 2

Scan line 3

Example(cont.)

• For scan line 2, 3
– AD, EH, BC, and FG

• Between AD and EH, only the flag for S1 is on
• Between EH and BC, the flags for both surfaces

are on
– Depth calculation is needed
– Intensities for S1 are loaded into the refresh buffer until

BC

– Take advantage of coherence
• Pass from one scan line to next
• Scan line 3 has the same active list as scan line 2
• Unnecessary to make depth calculations between

EH and BC 264

Drawback

• Only if surfaces don’t cut through or

otherwise cyclically overlap each other
– If any kind of cyclic overlap is present

• Divide the surfaces

265

Depth-Sorting Method

Operations

• Image-space and object-space operations
– Sorting operations in both image and object-

space
– The scan conversion of polygon surfaces in

image-space

• Basic functions
– Surfaces are sorted in order of decreasing

depth
– Surfaces are scan-converted in order,

starting with the surface of greatest depth 267

Algorithm

• Referred to as the painter’s algorithm
– In creating an oil painting

• First paints the background colors
• The most distant objects are added
• Then the nearer objects, and so forth
• Finally, the foregrounds are painted over all objects

– Each layer of paint covers up the previous layer

• Process
– Sort surfaces according to their distance from the viewplane
– The intensities for the farthest surface are then entered into the

refresh buffer
– Taking each succeeding surface in decreasing depth order

268

Overlapping Tests

• Tests for each surface that overlaps with S
– The bounding rectangle in the xy plane for the two surfaces do

not overlap (1)
– Surface S is completely behind the overlapping surface relative

to the viewing position (2)
– The overlapping surface is completely in front of S relative to the

viewing position (3)
– The projections of the two surfaces onto the viewplane do not

overlap (4)

• If all the surfaces pass at least one of the tests, none of
them is behind S
– No reordering is then necessary and S is scan converted

269

Easy

Difficult

Overlapping Test Examples

270

zv

xv

S

S’

zv

xv

S

S’

zv

xv

zv

xv

S

S’

(1) (2)

(3) (4)

Surface Reordering

• If all four tests fail with S’
– Interchange surfaces S and S’ in the sorted

list
– Repeat the tests for each surface that is

reordered in the list

271

zv

xv

S S’

<S  S’>
zv

xv

S
S’

S’’

<S  S’’, then S’’  S’>

Drawback

• If two or more surfaces alternately
obscure each other
– Infinite loop

– Flag any surface that has been reordered to
a farther depth

• It can’t be moved again

– If an attempt to switch the surface a second
time

• Divide it into two parts to eliminate the cyclic loop

• The original surface is then replaced by the two
new surfaces

272

BSP-Tree Method

Characteristics

• Binary Space-Partitioning(BSP) Tree

• Determining object visibility by painting
surfaces onto the screen from back to
front

– Like the painter’s algorithm

• Particularly useful

– The view reference point changes

– The objects in a scene are at fixed positions 274

Process

• Identifying surfaces
– “inside” and “outside” the partitioning plane

• Intersected object
– Divide the object into two separate objects(A,

B)

275

P2 P1

C

D

A

B
front

front back
back

P1

P2 P2

A C B D

front

front front

back

back back

Area-Subdivision Method

Characteristics

• Takes advantage of area coherence

– Locating view areas that represent part of a single surface

– Successively dividing the total viewing area into smaller
rectangles

• Until each small area is the projection of part of a single visible
surface or no surface

– Require tests

• Identify the area as part of a single surface

• Tell us that the area is too complex to analyze easily

• Similar to constructing a quadtree

277

Process

• Staring with the total view
– Apply the identifying tests
– If the tests indicate that the view is sufficiently

complex
• Subdivide

– Apply the tests to each of the smaller areas
• Until belonging to a single surface
• Until the size of a single pixel

• Example
– With a resolution 1024  1024

• 10 times before reduced to a point 278

Identifying Tests

• Four possible relationships
– Surrounding surface

• Completely enclose the area

– Overlapping surface
• Partly inside and partly outside the area

– Inside surface
– Outside surface

• No further subdivisions are needed if one of the following conditions
is true
– All surface are outside surfaces with respect to the area
– Only one inside, overlapping, or surrounding surface is in the area
– A surrounding surface obscures all other surfaces within the area

boundaries  from depth sorting, plane equation

279

Surrounding

Surface

Overlapping

Surface

Inside

Surface

Outside

Surface

Octree Method

Characteristics

• Extension of area-subdivision method

• Projecting octree nodes onto the
viewplane
– Front-to-back order  Depth-first traversal

• The nodes for the front suboctants of octant 0 are
visited before the nodes for the four back
suboctants

• The pixel in the framebuffer is assigned that color
if no values have previously been stored

– Only the front colors are loaded 281

0
1

3
2 7

4
5

6

Displaying An Octree

• Map the octree onto a quadtree of visible
areas
– Traversing octree nodes from front to back in

a recursive procedure
– The quadtree representation for the
 visible surfaces is loaded into the
 framebuffer

282

1

3

2 7

4

5

6

0

Octants in Space

Ray-Casting Method

Characteristics

• Based on geometric optics methods
– Trace the paths of light rays

• Line of sight from a pixel position on the viewplane through a scene
• Determine which objects intersect this line
• Identify the visible surface whose intersection point is closest to the

pixel

– Infinite number of light rays
• Consider only rays that pass through pixel positions

– Trace the light-ray paths backward from the pixels

• Effective visibility-detection method
– For scenes with curved surfaces

284

Image-Space Method vs.
Object-Space Method

• Image-Space

Method

– Depth-Buffer

Method

– A-Buffer Method

– Scan-Line

Method

– Area-Subdivision

Method
285

 Object-Space

Method

• Back-Face

Detection

• BSP-Tree

Method

• Area-Subdivision

Method

• Octree Methods

• Ray-Casting

Method

Curved Surfaces

Abstract

• Effective methods for curved surfaces

– Ray-casting

– Octree methods

• Approximate a curved surface as a set of
plane, polygon surfaces

– Use one of the other hidden-surface methods

– More efficient as well as more accurate than
using ray casting and the curved-surface
equation

287

Curved-Surface
Representations

• Implicit equation of the form

• Parametric representation
• Explicit surface equation

– Useful for some cases

• A height function over an xy ground plane

• Scan-line and ray-casting algorithms
– Involve numerical approximation techniques 288

0),,(zyxf

),(yxfz 

Surface Contour Plots

• Display a surface function with a set of
contour lines that show the surface shape
– Useful in math, physics, engineering, ...

• With an explicit representation
– Plot the visible-surface contour lines
– To obtain an xy plot 

• Plotted for values of z
• Using a specified interval z

289

),(zxfy 

<Color-coded surface contour plot>

Wireframe Methods

Characteristics

• In wireframe display

– Visibility tests are applied to surface edges

– Visible edge sections are displayed

– Hidden edge sections can be eliminated or
displayed differently from the visible edges

• Procedures for determining visibility of
edges

– Wireframe-visibility(Visible-line detection,
Hidden-line detection) methods

291

Wireframe Visibility Methods

• Compare each line to each surface

– Direct approach to identifying the visible lines

– Depth values are compared to the surfaces

– Use coherence methods

• No actual testing each coordinate

• With depth-sorting

– Interiors are in the background color

– Boundaries are in the foreground color

– Processing the surfaces from back to front

• Hidden lines are erased by the nearer surfaces

292

Comparison(1 / 2)

• Back-face detection methods
– Fast and effective as an initial screening

• Eliminate many polygons from further visibility
tests

– In general, this can’t completely identify all

hidden surfaces

• Depth-buffer(z-buffer) method
– Fast and simple
– Two buffers

• Refresh buffer for the pixel intensities
• Depth buffer for the depth of the visible surface

293

Comparison(2 / 2)

• A-buffer method
– An improvement on the depth-buffer approach
– Additional information

• Antialiased and transparent surfaces

• Other visible-surface detection schemes
– Scan-line method
– Depth-sorting method(painter’s algorithm)
– BSP-tree method
– Area subdivision method
– Octree methods
– Ray casting

294

References

• Donald Hearn, M. Pauline
Baker(Computer Graphics)

• Junglee graphics laboratory,korea
university

