1.1 — What is Digital Signal Processing ?

A)Digital : Signals are either Analogue, Discrete, or Digital signals.

* Analooue Sienal : * Discrete Signal .  Digital Sienal :
Continuous in both time Discrete in time (sampled Discrete in time (sampled
and amplitude, any value signal) & Continuous in signal) & Discrete in
at any time can be found. amplitude. amplitude (Quantized
Samples).
2

arlg
T
4 S— . -
-hi‘--"'- | i
TR T
3 ."i;. . v ..I:.,',u
T

43.5m“n”'”

B, NEVNNNNNY ESS5==

-1.5 \—\l.ﬂl Em=e
:"\- A




B) Sig nal : Itis an information-bearing function, It is either:

» 1-D signal as speech.

l{ \ﬂ,\ﬂ Wa" i lllyljwm )WM«\JD MM\J w\ ﬁ w\\ﬁm\hw

2-D signal as grey-scale image {i(x,v)}.

LT R

» 3-D signal as video {r(x,y,1).g(x.y,1),b(x,v,1)}.



Signal Processing refers to the work of manipulating signals so that
information carried can be expressed, transmitted, restored, ... etc in a

moryfem ?ﬁabk way by the svstem (| f?a;‘-(fwapg | software).

I

rel;.zisrtce Least . G..er"neral IPurpose Processors (GPP), Micro-Controllers.
error * Digital Signal Processors (DSP); Dedicated Integrated
usage Circuits. ~  Fast — | Real-
— time
* Programmable Logic (PLD, FPGA). . Faster — | DSP’ing

* Programming Languages: Pascal, C, C++,...
* High-Level Languages: Matlab, MathCad,...
* Dedicated Tools (e.g. Filter design s/w packages).




1.2 — Why DSP ?

* Greater Flexibility

The same DSP hardware can be programmed and rveprogrammed to perform a variety of functions.

* Guaranteed Precision

Accuracy is only determined by the number of bits used. (nof on resistors, .._efc; analogue parameters).
* No drift in performance with temperature or age.

* Perfect Reproducibility

Identical Performance from unit fo unit is obtained since there are no variations due fo component
folerance. e.g. a digital recording can be copied or reproduced several times with the same quality.

* Superior Performance

Performing tasks that are not possible with ASP, e.g. linear phase response and complex adaptive
filtering algorithms.

* DSP benefits from the tremendous advances in semiconductor
technology.

Achieving greater reliability, lower cost, smaller size, lower power consumption, and higher speed.



1.3 — DSP LIMITATIONS

* Speed & Cost Limitations of ADC & DAC
Either too expensive or don 't have sufficient resolution for large-bandwidth DSP
applications.

» Finite Word-Length Problems
Degradation in system performance may result due to the usage of a limited number of
bits for economic considerations.

* Design Time

DSP system design requires a knowledgeable DSP engineer possessing necessary
software resources to accomplish a design in a reasonable time.



What is DSP Used For?

...And much more!



Application Areas

L
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Image Processing
Pattern recognition
Robotic vision
Image enhancement
Facsimile

animation

Telecommunications
Echo cancellation
Adaptive equalization
ADPCM trans-coders
Spread spectrum
Video conferencing

N

Instrumentation/Control
spectrum analysis

noise reduction

data compression
position and rate control

Speech/Audio
speech recognition
speech synthesis
text to speech
digital audio

equalization

Biomedical

patient monitoring

scanners

EEG brain mappers

ECG Analysis

X-Ray storage/enhancement

Consumer applications

cellular mohile phones

Military
secure communications
radar processing

sonar processing
missile guidance

UMTS (universal Mobile Telec. Sys.)

digital television
digital cameras
internet phone
etc.

J




DSP Devices & Architectures

* Selecting a DSP — several choices:
— Fixed-point;
— Floating point;
— Application-specific devices

(e.g. FFT processors, speech recognizers,etc.).

* Main DSP Manufacturers:
— Texas Instruments (http://www.ti.com)
— Motorola (http://www.motorola.com)

— Analog Devices (http://www.analog.com)



2.1 — Typical Real-Time DSP System

[IfPsignalfrcm‘ | Band-limitingor Anti-aliasingFilter

transducer
.‘: .
x(t) p(t)| sample& |X:(0)
— LPF = P = | Quantizer Encoder
Hold
|
A
[ |/P preparatory stage ]
DSP
[ Analoguefilters ] Processor
y(n)
y(t)
— LPF < ' DAC ’

[ Smoothing or averaging Filter J




x(0) x (1) = X(OP®)

2.2 — Sampling Theorem & Aliasing =1
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2.2 — Sampling Theorem & Aliasing - continued

I
X(f)
Sampling Theory: f, = 2f, 1T, E
Nyquist Frequency: fy = % = fo ! /\ /\ . f
£ [ cyl t T T —L } -
50, when 3 > f.. = No aliasing —f A 0 7 T ) T

fv < fon Aliasing distortion

« In practice, aliasing is ahvays present because of noise & the existence of signal outside the
band of interest.

* The problem then is deciding the level of aliasing that is acceptable and then designing a
suitable anti-aliasing filter & choosing an appropriate sampling frequency to achieve this.




2.3 — Anti-aliasing Filtering

To reduce the effect of aliasing:

a)Sharp Cut-off anti-aliasing filters are normally used to band-limif the signal.
biIncreasing the sampling frequency to widen the separation between the signal & the image
spectra.
c/Practical LPF provides sufficient attenuation at > fi. | f = f,,,, to a level not detectable be ADC,
A . =20log(v1.5x2")
=6.02n+1.76 dB

where n is the n2 of bits used by ADC
Transition Band

| H(P)I| «— e
ilHU-)l () L Pass Band Y« Stop Band | —

S

Je = Jm

Ideal LPF Practical LPF




2.3.1 — Butterworth(LPF)

v 1/jmc

1

H{fy ===

i R+1/j,. 1+j2nfRC v, -

oL

&

‘H(f)‘:é,atf=ﬁ =

1

then, f, = ——
|H(f)| =

[y
Generally, |H(f)| = -

ZN
~J| 1+(%)

First Order LPF (N=1)

; N order of the filter



2.3.1 — Butterworth(LPF) - continued

Higher N
# narrower transition width (steeper roll-off). |H (f) |
» more phase distortion. A

#allows the use of low sampling rate. Increasing N

~ slower, cheaper ADC

S e

Higher f

» fast, expensive ADC. (real-time signal

processing trend).
~ usage of a simple anti-aliasing filter which ﬁ’
minimizes phase distortion.

» Improved SNR.



SIGNALS & SYSTEMS

Introduction to signals & systems



Signals & Systems

Signal: a function of one or more variables that conveys information on
the nature of a physical phenomenon.

System: an entity that manipulates one or more signals to accomplish
a function, thereby yielding new signals.

Input signal Output signal
>  System >

System analysis: analyze the output signal when input signal and
system is given.

System synthesis: design the system when input and output signal is
given.



Continuous-time system

input output
A AN !\
continuous-time : JA‘}V
V V.V V
O—>— system —>—0

Continuous-time system: the input and output signals
are continuous time



input

o 7

Discrete-time system

Q

Q

discrete-time

output

|

oO—>—

system

]
]

Discrete-time system has discrete-time input and
output signals



Signal classification

Signal classification

Continous time Discrete time
Even Odd
Periodic Nonperiodic/aperiodic
Deterministic Random
Energy Power




Continuous & discrete time signal

x(t) is defined for all time t.

* x[n]is defined only at discrete instants of time.
x[n] =x(nT), n=0, £1, +2, £3, ...
* T.:sampling period

x(1) x[n]

(a) (b)

(a) Continuous-time signal x(t). (b) Representation of x(t) as a discrete-
time signal x[n].



Even & odd signal

* Even signal (symmetric about vertical axis)

— X(-t) = x(t) for all t.

e (Odd signal (asymmetric about vertical axis)

— x(-t) = -x(t) for all t.

x,(1)
A

“T,/2 0 T,

(a)

~T,/2

Xo(1)

A




Even & odd signal (example)

Consider the signal

X(t) = sin( ?),—T <t<T

0, otherwise

Is the signal x(t) an even or an odd function of time t?
Clue: replace t with —t
Answer: odd signal because x(-t) = -x(t)



Periodic & nonperiodic signals

* Periodic signal

— x(t) = x(t+T), for all t

— T = fundatamental period

— Fundamental frequency, f = 1/T unit Hz

— Angular frequency, w = 2ntf unit rad/s
* Nonperiodic signal

— No value of T satisties the condition above



x(

(a) Periodic signal
(b) Nonperiodic signal

1)

02 | 0.4 | 0.6 08 1.0
Time t

(a)

For (a), find the amplitude and period of x(t)

x(1)

-<—T'—>—

(b)



(example)

 What is the fundamental frequency of triangular wave below?
Express the fundamental frequency in units of Hz and rad/s.

x(1)
0

O 01 02 03 04 05 06 07 08 09 1

Time t, seconds



Periodic & nonperiodic signal for
discrete time signal

e Periodic discrete time signal
— X[n] =x[n + N], forintegern

x[n]
Q000 loooo 000
x[n]
‘lI I
n O o o O o O
-8 0 8 4 3 2 -1 0 1 2 3 4
foXe) 60000+-1 0606606

Periodic signal Nonperiodic signal



* For each of the following signals, determine
whether it is periodic, and if it is, find the
fundamental period.

— X(t) = cos?(2mt)
— X(t) = sin3(2t)
— x[n] =(-1)"

— X[n] = cos (2n)

— X[n] = cos (2mn)

T=05s, T=ms, T=2sample, nonperiodic, T =1
sample



Deterministic & random signal

* Deterministic signal: there is no uncertainty
with respect to its value at any time. Specified
function.

 Random signal: there is uncertainty before it
occurs.



Energy & power signals

* Energysignal; 0<E<w

* Powersignal; 0 <P <

E:Tﬁamt

Continuous time signals 1 T/2
P== [X*(t)dt
T ~T/2
E=) x*[n]
Discrete time signals N=—0

N-1
P==2% x*[n]
N n=0



Useful signal models

Sinusoidal
Exponential

Unit step function
Unit impulse function



Sinusoidal

(a) Sinusoidal signal A cos(wt + @) with phase ® = +1/6 radians.
(b) Sinusoidal signal A sin (wt + @) with phase @ = +1/6 radians.

5 .
x(t) 0
-5 i : - - .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time t
(a)
5
x(r) 0L
5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Time t

(b)

0.9

0.9



Exponential

Xo (t) = X o €°°

54 SR aviival

P (b)

{\ )\“"‘ﬂ o>0 /\
e f o e
Ry

‘r‘.“‘ T {:} {d} -......_ l‘---l;

Fig. 1.21 Sinusoids of complex frequency o + juw.



Unit step function

0(t) = 1 t>0
~]o, t<0

u(t)

_I1 :

0



Unit impulse function

O<t<e¢

(1
e Pulsesignal= p.(t)={¢’
|0, otherwise

* Unit impulse _ %0
(Dirac delta) = ﬂt)z!inopg(t) o(t)=0, t=0 jé(t)dtzl

—Q0

d[n]
1.09

O O O O O O O O n

4 3 2 -1 0

(-
(G
vy
=



Operation on signal

 Dependent variable: x, y, etc...
— Multiplication
— Addition
— Substraction
— Integration
— Differentiation

* Independent variable: (t) etc...
— Time flip / reflection / time reverse

— Time scale
— Time shift



Time flip/reflection

e Operation of reflection: (a) continuous-time signal x(t)
and (b) reflected version of x(t) about the origin.

X(1) Y(t) = x(~1)



Time scale

¥(1) = x(21)

0

0 | |
b9 | e

(a)

(b)

(c)

Time scale on continuous signal

x[n] y[n] = x[2n]

bl bl LT LT

1 2 3 4 5 6 -3 -2 -1 0 I 2 3

(b)

(a)

Time scale on discrete signal



Time shift

* Time-shifting operation: (a) continuous-time signal in the form of a rectangular
pulse of amplitude 1.0 and duration 1.0, symmetric about the origin; and (b) time-
shifted version of x(t) by 2 time shifts.

x(1) y(1) = x(t - 2)
1

B |0
DI |t

(a) (b)



Exercise of signal operation

Suppose x(t) is a triangular signal

Find

x(t)
1
{
-1 0 1
(a) x(3t) (d) x(2(t+2))
(b) x(3t+2) (e) x(2(t-2))

(c) x(-2t-1) (f) x(3t) + x(3t+2)



x(31)

X(2(t+2))=x(21t +4)

0

03 |
| =

(a)

x(31t+2)

t
0
(d)
x(1(t =2)) =x(2t - 4)
1
0 23 =25
2 2
(e)
x(3t) + x(3t + 2)
"
t

(c)




Properties of system

Memory
Stability
Invertibility
Causality
Linearity
Time-invariance



Memory vs. Memoryless Systems

Memoryless (or static) Systems: System output y(t) depends only on the
input at time t, i.e. y(t) is a function of x(t).

Memory (or dynamic) Systems: System output y(t) depends on input at

past or future of the current time t, i.e. y(t) is a function of x(z) where -0 <
<00,

Examples:
— Arresistor: y(t) = R x(t)

. t
— A capacitor: y(t)=éJX(r)dz‘

— A one unit delayer: y[n] = x[n-1]

n

— Anaccumulator:  yrpy- > x[K]

k=—o0



Stability and Invertibility

Stability: A system is stable if it results in a bounded output for any bounded input, i.e.
bounded-input/bounded-output (BIBO).

— If [x(t)] < k,, then [y(t)] < k,.
— Example: t
y(t) = j x()dt  y[n]=100x[n]
Invertibility: A system is invértible if distinct inputs result in distinct outputs. If a system is

invertible, then there exists an “inverse” system which converts output of the original
system to the original input.

X(t) . (0 . W(t)=x(t)

— Examples:

y(t) = 4x(t) y[n] = X[k] Y(t)— X(t)dt

—00

k=—o0

W) =3y®  winl=yln] - yin-1 W(t):¥



Causality

e A system is called causal if the output
depends only on the present and past values
of the input



Linearity

 Asystem is linear if it satisfies the properties:
— Itis additivity: X(t) = x,(t) + x,(t) D y(t) =y,(t) +y,(t)

— And it is homogeneity (or scaling): x(t) = a x,(t) = y(t) = a y,(t), for a
any complex constant.

 The two properties can be combined into a single property:
— Superposition:
X(t) =a x,(t) + b x,(t) Dy(t)=ay,(t) +by,(t)
x[n] = a x,[n] +b x,[n] D y[n] =ay,[n]+by,[n]



Time-Invariance

* A system is time-invariant if a delay (or a time-shift) in the input signal
causes the same amount of delay (or time-shift) in the output signal,
le.:

X(t) = x,(t-t,) D y(t) = y,(t-ty)
x[n] = x,[n-n,] > y[n] =y,[n-n,]



Time and frequency domains

Most analysis were done in frequency domain.

Much more information can be extracted from a
signal in frequency domain.

To represent a signal in frequency domain, some
method were introduced, the first one is

FOURIER SERIES...



Z-Trangform



Introduction

The Laplace Transform (s domain) is a valuable tool for
representing, analyzing & designing continuos-time signals &
Sysiems.

The z-transform is convenient yet invaluable tool for representing,
analyzing & designing discrete-time signals & systems.

The res;ﬂ.ffrfng transformation from s-domain to z-domain is called
z-transform.

The relation between s-plane and z-plane is described below :

The z-transform maps any point s = ¢ + jw in the s-plane to z-
plane (r£6).



Z-Transform

For continuous-time sienal, Y A :
x(t) = X(s)

Time Domain |/ i
X(s) = f x(t) e =t dt

S-Domain

For discrete-time signal, j — Z ! t = HT =% z I(HT)

E—s’fn
ht
k=

Time Domain |« x(n) % X(Z)_’ Z-Domain F 4
o 00
X(Z) — Z }:[(H:[z_n = Z X(_H)Z_ﬂ‘ Causal
. : System
H=—1n !ﬂ=ﬂ M 1
e z=e¥ ,s=o+jw,T=sampling time =—

5




Z-Transform Definition

» The z-transform of sequence x(n) is defined by

Gﬁ'

X(Z) — I(FZ)Z . Two sided z transform

Bilateral z transform

H=—00

» For causal system

X(Z) — i_}f(ﬁ)z_ﬂ ) One sided z transform

Unilateral z transform
n=0

» The z transform reduces to the Discrete Time Fourier transform

) ()= xme’



Geometrical interpretation of
z-transform

o The pointz =red®is a
vector of length r from .
origin and an angle w with
respect to real axis.

-
e Unit circle : The contour -1 1
z| = 1 is a circle on the z-
-

plane with unity radius

DTFT 1s to evaluate z-transform on a unit circle.




Pole-zero Plot

» A graphical representation

of z-transform on z-plane h? ’
— Poles denote by “x”" and |
— zeros denote by “0”
- Rez




Example

» Find the z-transform of, ) &(re) by w(rn)
v’ Solution:
o0
@) Z{Em} =) )z = 8(0)2° = 6(0) =1
=0
€1
b)Y Z{u(m)} = Z umz =14z 14272+ ..
n=0
Its a geometric sequence @ = 1, = z'l, n=auw
1 — == Recall: Sum of a Geometric Sequence
Z{u(n)} = E— 1z] = 1 1 — 7
S=a
z 1l—r
— where, a: first term, r: common ratio,
z—1 n: number of terms




Region Of Convergence (ROC)

* ROC of X(z) is the set of all values of z for which X(z) attains a
finite value.

» Give a sequence, the set of values of = for which the z-transform
converges, i.e., | X(z)|< o is called the region of convergence.

| X(2)|=| Zx(m)z”|= Z|x(m) | z[" <
H=—a0 H=—a
t Im Z I(”)?A_” ‘{ 0
S Fl=—00
ROC is an annual ring centered on
the origin.
.’;ﬂ; Rx— <‘ 4 |< RI+
ROC={z=re’|R_<r<R_}




Ex. | Find the z-transform of the following sequence
x ={2,-3,7,400, ... /!

X(Z) — ZJC[H]Z_H = 2—32_1 +7Z.—2 +4Z—3

B 2z° —3z°+7z+4

= : , |z|>0
z

The ROC 1s the entire complex z - plane except the origin.

Ex. 2 Find the z-transform of & [n]

oo

X(z)= > 8[n]z7" =1

n=—0

with an ROC consisting of the entire z - plane.



Ex. 3 Find the z-transform of & [n -1]

X(z)=>Y [n-1]z"=z" = {

H=—00 s

with an ROC consisting of the entire z - plane except z =0.

Ex. 4 Find the z-transform of o [n +1]

X(z)=)Y sn+1]z7" =z

n=—0

with an ROC consisting of the entire z - plane except z = o,

1.e.. there 1s a pole at infinity.



Ex.5 Find the z-transform of the following right-sided sequence

(causal) :
x[nl=a uln]

e 0 1 ."'“""“"t, ;""';"“."'3
X(z)= 2Za"uln]z” =2 (az7)" =—=:= :
H=— n=0 / '."h:-l'.._ qiﬂ'. '-.: —ays

This form to find inverse /f

LT using PFE
This form to find
_ Unit Circle pole and zero locations

z-plane
If laz71| < 1, i.e., |2] > |a]
Re
That is, ROC |z| > |al.

outside a circle




Ex.6 Find the z-transform of the following left-sided sequence

z[n| = —a™u[-n — 1]
X -]
X(z) = Z {-a"u|-n-1z""} = - Z a"z™"
n=-—0oc n=—00
oo o
Im = - Z a "z"=1- Z(a‘lz)"
n=1 n=
p Unit Gircle 1 EI-]'E

7 = ] - ==

z-plane >

a1 Re
/ If [a™'z| < 1, i.e.,|2| <|al

Same X(z) as in Ex #1. but different ROC.



Ex. 7 Find the z-transform of z[n] = bl™, b >

x[n]=b'" x[n]=b!™
.I

n n

11

-~

Rewriting x[n] as a sum of lefi-sided and right-sided sequences
and finding the corresponding z-transforms.

xn| — b"uln] + b "u[-n — 1]



X(z) = b< |z| < =+
(z) 1—bz1 T 1—b1z-1 "’ |z| b
where
I9m

i Unit circle
b ul—n—1] T 1,1’ 2| <
; 1 z-plane
b"u|n| =T 2] > b

Notice from the ROC that the z-transform
doesn t exist for b > I



Characteristic Families of Signals with Their
Corresponding ROC

Signal ROC
o Finite-Duratuion Signals
Cuausul i _
DRIV | e
0 n %
Anticausal
- T 1 7/// Entire z-plane
| e —— e ’ ’ except = = vo
R " Z %/ p
Two-sided |
o1 1 I ° %// 7= Eatire z-planc
| except = =0
YA, ) s [ T e P oo > . 5 ///2: a:‘d Al L =

Infinite-Duration Sianals

Sa . /////’ P
,'.'Q? % k/ s
Ant |

ICALSA |
: T 6 T R A — Iz
oL L LS Sl e /
0 " "
wo-side 7 >
L




Properties of ROC

A ring or disk in the z-plane centered at the origin.

The Fourier Transform of x(n) is converge absolutely iff the
ROC includes the unit circle.

The ROC cannot include any poles

Finite Duration Sequences. The ROC is the entire z-plane
except possibly z=0 or z==

Right sided sequences (causal seq.): The ROC extends
outward from the outermost finite pole in X(z) to z=o2,

Left sided sequences.: The ROC extends inward from the
innermost nonzero pole in X(z) to z=0.

Two-sided sequence: The ROC' is a ring bounded by two
circles passing through two pole with no poles inside the ring



Properties of z-Transform

(1) Linearity : ax[n]+by[n] <— aX(z)+bY(2)

(2) Time Shiftmg  x[n — ng| «— 27" X (2),

(3) z-Domain Differentiation nen| «— —2

(4) Z-scaleProperty: a’'x[n] <«— X[Z]
a

1
(5) Time Reversal :  x[-n] «— X(—)

Z

(6) Convolution: hln]*x[n] <«— H/(Z)X(Z)
/

Transfer

Function




Rational ZTransform

For most practical signals, the z-transform can be expressed
as a ratio of two polynomials

N(z) _G (z—z)(z—z5) - (z—-2y)

X(z)=
D(iz)  (z—p)z—p,)--(z—py)

where
G 1s scalar gain,
2. 25,00, Iy, are the zeroes of X(z),1.e., the roots
of the numerator polynomial
and p,, p,.---, py are the poles of X(z),1.e., the roots

of the denominator polynomial



Commonly used z-Transform pairs

Sequence z-Transform ROC
&[n] 1 All values of z
ufnj] 1% |z] >1

auln] 1 L Izl > |l
— o=
o
nanufn] I—a ) lz| > ||
1
(n+1) eu[n] T 121 > |al
—(reosa. )z
(r" cos w,n) ufn] A — 1z] > |r]
- 1-(2rcosamy )z =77z
S |
(r"sin w_n) [n] 1—(rsinay)z |z] = |r]

1—'1:2}'(‘09&1[.]:_] +piz?




Z-Transform & pole-zero distribution &
Stability considerations

Yy =0+ jw

nz= T = gletjw)T — ,0T 4 jwT

2w 27w
Thus, Izl — %7 & gng(z) = aT = f —
;‘

AT ¥ :
}i‘s (1), unstable
Z
+» Mapping between S-plane & Z-plane is done as follows:

/"

Jw
—

—

1) Mapping of Poles on the jw-axis of the s-domain to the z-domain

w/a L Am(2)

S\
N e

w=0

W=,

Maps to a unit circle & represents Marginally stable terms

w2 [©




Z-Transform & pole-zero distribution &
Stability considerations — cont.

2) Mapping of Poles in the L.H.S. of the s-plane to the z-plane Alm(z)
[ . P "-': 1
z=8ﬂ'T8_iWT, a0 2|
7 \_Re(z)
Maps to inside the unit circle & represents stable terms & the
system is stable.

3) Mapping of Poles in the R.H.S. of the s-plane to the z-plane

z= T giwT 5=

Outside the unit circle & represents unstable terms.

» Discrete Svstems Stability Testing Steps

1) Find the pole positions of the z-transform.
2) If anv pole is on or outside the unit circle. (Unless coincides with zero on the unit

circle) = The system is unstable.



Pole Location and Time-domain
Behavior of Causal Signals




Stable and Causal Systems

Causal Systems : ROC extends outward from the outermost pole.

Stable Systems : ROC includes the unit circle.

A stable system requires that its Fourier transform is
uniformiy convergent.




