
Database Management
Systems I (DBMS I)

BCSE1-412

Chapter 1

Databases And Database Users

Topics to be covered
⚫ Types of Database Applications

⚫ Basic Definitions

⚫ Example of a Database

⚫ Main Characteristics of Database Technology

⚫ Database Users

⚫ Advantages of Database Technology

⚫ Extending Database Functionality

⚫ When Not to Use a DBMS

Types of Databases and Database
Applications

Numeric and Textual Databases

Multimedia Databases

Geographic Information Systems (GIS)

Data Warehouses

Real-time and Active Databases

Basic Definitions

Database: A collection of related data.

Data: Known facts that can be recorded and have an
implicit meaning.

Mini-world: Some part of the real world about
which data is stored in a database. For example,
student grades and transcripts at a university.

Database Management System (DBMS): A
software package/ system to facilitate the creation
and maintenance of a computerized database.

Database System: The DBMS software together
with the data itself. Sometimes, the applications
are also included.

Typical DBMS Functionality

• Define a database : in terms of data types, structures and
constraints

• Construct or Load the Database on a secondary storage
medium

• Manipulating the database : querying, generating reports,
insertions, deletions and modifications to its content

• Concurrent Processing and Sharing by a set of users and
programs – yet, keeping all data valid and consistent

Other features:

- Protection or Security measures to prevent
unauthorized access
- “Active” processing to take internal actions
on data
- Presentation and Visualization of data

Example of a Database
(with a Conceptual Data Model)

Mini-world for the example: Part of a
UNIVERSITY environment.

Some mini-world entities:
- STUDENTs
- COURSEs
- SECTIONs (of COURSEs)
- (academic) DEPARTMENTs
- INSTRUCTORs

Some mini-world relationships:
- SECTIONs are of specific COURSEs
- STUDENTs take SECTIONs
- COURSEs have prerequisite COURSEs
- INSTRUCTORs teach SECTIONs
- COURSEs are offered by DEPARTMENTs
- STUDENTs major in DEPARTMENTs

NOTE: The above could be expressed in the ENTITY-
RELATIONSHIP data model.

Main Characteristics of the
Database Approach

- Self-describing nature of a database system: A
DBMS catalog stores the description of the
database. The description is called meta-data). This
allows the DBMS software to work with different
databases.

- Insulation between programs and data: Called
program-data independence. Allows changing data
storage structures and operations without having to
change the DBMS access programs.

- Data Abstraction: A data model is used to hide storage
details and present the users with a conceptual view of the
database.

- Support of multiple views of the data: Each user may see a
different view of the database, which describes only the data
of interest to that user.

- Sharing of data and multiuser transaction processing :
allowing a set of concurrent users to retrieve and to update the
database. Concurrency control within the DBMS guarantees
that each transaction is correctly executed or completely
aborted. OLTP (Online Transaction Processing) is a major part
of database applications.

Database Users
Users may be divided into those who actually use and control the
content (called “Actors on the Scene”) and those who enable the
database to be developed and the DBMS software to be designed and
implemented (called “Workers Behind the Scene”).

Actors on the scene
• Database administrators: responsible for authorizing access to

the database, for co-ordinating and monitoring its use, acquiring
software, and hardware resources, controlling its use and monitoring
efficiency of operations.

• Database Designers: responsible to define the content, the
structure, the constraints, and functions or transactions against the
database. They must communicate with the end-users and understand
their needs.

• End-users: they use the data for queries, reports and some of them
actually update the database content.

Categories of End-users

• Casual : access database occasionally when needed
• Naïve or Parametric : they make up a large section of the
end-user population. They use previously well-defined
functions in the form of “canned transactions” against the
database. Examples are bank-tellers or reservation clerks
who do this activity for an entire shift of operations.
• Sophisticated : these include business analysts, scientists,
engineers, others thoroughly familiar with the system
capabilities. Many use tools in the form of software
packages that work closely with the stored database.
• Stand-alone : mostly maintain personal databases using
ready-to-use packaged applications. An example is a tax
program user that creates his or her own internal database.

Advantages of Using the Database Approach
- Controlling redundancy in data storage and in
development and maintenance efforts.

- Sharing of data among multiple users.

- Restricting unauthorized access to data.

- Providing persistent storage for program Objects.

- Providing Storage Structures for efficient Query
Processing

- Providing backup and recovery services.

- Providing multiple interfaces to different classes of
users.

- Representing complex relationships among data.

- Enforcing integrity constraints on the database.

- Drawing Inferences and Actions using rules

Historical Development of
Database Technology

Early Database Applications: The Hierarchical and
Network Models were introduced in mid 1960’s and
dominated during the seventies. A bulk of the worldwide
database processing still occurs using these models.

Relational Model based Systems: The model that was
originally introduced in 1970 was heavily researched and
experimented with in IBM and the universities. Relational
DBMS Products emerged in the 1980’s.

Object-oriented applications: OODBMSs were introduced in
late 1980’s and early 1990’s to cater to the need of complex
data processing in CAD and other applications. Their use has
not taken off much.

Data on the Web and E-commerce Applications: Web
contains data in HTML (Hypertext markup language) with
links among pages. This has given rise to a new set of
applications and E-commerce is using new standards like
XML (eXtended Markup Language).

Extending Database Capabilities

New functionality is being added to DBMSs in the
following areas:

Scientific Applications

Image Storage and Management

Audio and Video data management

Data Mining

Spatial data management

Time Series and Historical Data Management

When not to use a DBMS

Main inhibitors (costs) of using a DBMS:

- High initial investment and possible need for
additional hardware.

-Overhead for providing generality, security, concurrency
control, recovery, and integrity functions.

When a DBMS may be unnecessary:

- If the database and applications are simple, well
defined, and not expected to change.

- If there are stringent real-time requirements that may
not be met because of DBMS overhead.

- If access to data by multiple users is not required.

When no DBMS may suffice:

- If the database system is not able to handle the complexity
of data because of modeling limitations

- If the database users need special operations not supported
by the DBMS.

Chapter 2

Database System Concepts And
Architecture

Topics to be covered
1 Data Models

1A. History of data Models

1B. Network Data Model

1C. Hierarchical Data Model

2 Schemas versus Instances

3 Database Schema vs. Database State

4 Three-Schema Architecture

5 Data Independence

6 DBMS Languages

7 DBMS Interfaces

8 Database System Environment

9 Classification of DBMSs

Data Models

Data Model: A set of concepts to describe the
structure of a database, and certain constraints that
the database should obey.

Data Model Operations: Operations for specifying
database retrievals and updates by referring to the
concepts of the data model. Operations on the data
model may include basic operations and user-
defined operations.

Categories of data models:

- Conceptual (high-level, semantic) data models:
Provide concepts that are close to the way many users
perceive data. (Also called entity-based or object-based
data models.)

- Physical (low-level, internal) data models: Provide
concepts that describe details of how data is stored in the
computer.

- Implementation (representational) data models:
Provide concepts that fall between the above two, balancing
user views with some computer storage details.

HISTORY OF DATA MODELS
• Relational Model: proposed in 1970 by E.F. Codd (IBM), first
commercial system in 1981-82.

• Network Model: the first one to be implemented by Honeywell in
1964-65 (IDS System). Later implemented in a large variety of
systems -DMS 1100 (Unisys), IMAGE (H.P.), VAX -DBMS
(Digital Equipment Corp.).

• Hierarchical Data Model: a joint effort by IBM and North
American Rockwell around 1965. Resulted in the IMS family of
systems. The most popular model.

• Object-oriented Data Model(s): comprises models of persistent O-
O Programming Languages such as C++

• Object-Relational Models: Most Recent Trend. Started with
Informix Universal Server. Exemplified in the latest versions of
Oracle-10i, DB2, and SQL Server etc. systems.

HIERARCHICAL MODEL

ADVANTAGES:

• Hierarchical Model is simple to construct and operate on

• Corresponds to a number of natural hierarchically
organized domains - e.g., assemblies in manufacturing,
personnel organization in companies

• Language is simple

DISADVANTAGES:

• Navigational and procedural nature of processing

• Database is visualized as a linear arrangement of records

• Little scope for "query optimization"

NETWORK MODEL

ADVANTAGES:

• Network Model is able to model complex relationships and represents
semantics of add/delete on the relationships.

• Can handle most situations for modeling using record types and
relationship types.

• Language is navigational; uses constructs like FIND, FIND member,
FIND owner, FIND NEXT within set, GET etc. Programmers can do
optimal navigation through the database.

DISADVANTAGES:

• Navigational and procedural nature of processing

• Database contains a complex array of pointers that thread through a
set of records.

• Little scope for automated "query optimization"

Schemas versus Instances

Database Schema: The description of a database. Includes
descriptions of the database structure and the constraints that
should hold on the database.

Schema Diagram: A diagrammatic display of (some aspects
of) a database schema.

Schema Construct: A component of the schema or an object
within the schema, e.g., STUDENT, COURSE.

Database Instance: The actual data stored in a database at a
particular moment in time. Also called database state (or
occurrence).

Database Schema Vs. Database State

Database State: Refers to the content of a database at a
moment in time.
Initial Database State: Refers to the database when it is
loaded
Valid State: A state that satisfies the structure and constraints
of the database.

Distinction

•The database schema changes very infrequently. The
database state changes every time the database is updated.
•Schema is also called intension, whereas state is called
extension.

Three-Schema Architecture

Proposed to support DBMS characteristics of:
-Program-data independence.
-Support of multiple views of the data.

Defines DBMS schemas at three levels:
-Internal schema at the internal level to describe physical storage
structures and access paths. Typically uses a physical data model.
Conceptual schema at the conceptual level to describe the structure

and constraints for the whole database for a community of users. Uses
a conceptual or an implementation data model.
External schemas at the external level to describe the various user

views. Usually uses the same data model as the conceptual level.

Mappings among schema levels are needed to transform requests and
data. Programs refer to an external schema, and are mapped by the
DBMS to the internal schema for execution.

Data Independence

Logical Data Independence: The capacity to change the
conceptual schema without having to change the external
schemas and their application programs.

Physical Data Independence: The capacity to change the
internal schema without having to change the conceptual
schema.

When a schema at a lower level is changed, only the
mappings between this schema and higher-level schemas need
to be changed in a DBMS that fully supports data
independence. The higher-level schemas themselves are
unchanged. Hence, the application programs need not be
changed since they refer to the external schemas.

DBMS Languages

Data Definition Language (DDL): Used by the DBA and
database designers to specify the conceptual schema of a
database. In many DBMSs, the DDL is also used to define
internal and external schemas (views). In some DBMSs,
separate storage definition language (SDL) and view
definition language (VDL) are used to define internal and
external schemas.
Data Manipulation Language (DML): Used to specify

database retrievals and updates.
- DML commands (data sublanguage) can be embedded in a
general-purpose programming language (host language), such
as COBOL, C or an Assembly Language.
- Alternatively, stand-alone DML commands can be
applied directly (query language).

High Level or Non-procedural Languages: e.g., SQL, are
set-oriented and specify what data to retrieve than how to
retrieve. Also called declarative languages.

Low Level or Procedural Languages: record-at-a-time; they
specify how to retrieve data and include constructs such as
looping.

DBMS Interfaces

• Stand-alone query language interfaces.
• Programmer interfaces for embedding DML in
programming languages:

- Pre-compiler Approach
- Procedure (Subroutine) Call Approach

• User-friendly interfaces:
- Menu-based, popular for browsing on the web
- Forms-based, designed for naïve users
- Graphics-based (Point and Click, Drag and Drop etc.)
- Natural language: requests in written English
- Combinations of the above

Others:

- Speech as Input (?) and Output

- Web Browser as an interface

- Parametric interfaces (e.g., bank tellers) using
function keys.

- Interfaces for the DBA:

➢ Creating accounts, granting authorizations

➢ Setting system parameters

➢ Changing schemas or access path

Database System Environment

Database System Environment

Classification of DBMSs

Based on the data model used:
- Traditional: Relational, Network, Hierarchical.
- Emerging: Object-oriented, Object-relational.

Other classifications:
- Single-user (typically used with micro- computers)
vs. multi-user (most DBMSs).
- Centralized (uses a single computer with one
database) vs. distributed (uses multiple computers, multiple
databases)
Distributed Database Systems have now come to be known
as client server based database systems because they do not
support a totally distributed environment, but rather a set of
database servers supporting a set of clients.

Chapter 3

Data Modeling Using the
Entity-Relationship (ER)

Model

Chapter Outline

⚫ Example Database Application (COMPANY)
⚫ ER Model Concepts

– Entities and Attributes
– Entity Types, Value Sets, and Key Attributes
– Relationships and Relationship Types
– Weak Entity Types
– Roles and Attributes in Relationship Types

⚫ ER Diagrams - Notation
⚫ ER Diagram for COMPANY Schema
⚫ Alternative Notations – UML class diagrams, others

Example COMPANY Database

⚫ Requirements of the Company (oversimplified for
illustrative purposes)
– The company is organized into DEPARTMENTs.

Each department has a name, number and an
employee who manages the department. We keep
track of the start date of the department manager.

– Each department controls a number of PROJECTs.
Each project has a name, number and is located at a
single location.

Example COMPANY Database (Cont.)

–We store each EMPLOYEE’s social security number,
address, salary, sex, and birthdate. Each employee
works for one department but may work on several
projects. We keep track of the number of hours per
week that an employee currently works on each project.
We also keep track of the direct supervisor of each
employee.

–Each employee may have a number of DEPENDENTs.
For each dependent, we keep track of their name, sex,
birthdate, and relationship to employee.

ER Model Concepts

⚫ Entities and Attributes
– Entities are specific objects or things in the mini-world

that are represented in the database. For example the
EMPLOYEE John Smith, the Research DEPARTMENT,
the ProductX PROJECT

– Attributes are properties used to describe an entity. For
example an EMPLOYEE entity may have a Name, SSN,
Address, Sex, BirthDate

– A specific entity will have a value for each of its
attributes. For example a specific employee entity may
have Name='John Smith', SSN='123456789', Address
='731, Fondren, Houston, TX', Sex='M', BirthDate='09-
JAN-55‘

– Each attribute has a value set (or data type) associated
with it – e.g. integer, string, subrange, enumerated type,
…

Types of Attributes (1)

⚫ Simple
– Each entity has a single atomic value for the attribute. For

example, SSN or Sex.
⚫ Composite

– The attribute may be composed of several components.
For example, Address (Apt#, House#, Street, City, State,
ZipCode, Country) or Name (FirstName, MiddleName,
LastName). Composition may form a hierarchy where
some components are themselves composite.

⚫ Multi-valued
– An entity may have multiple values for that attribute. For

example, Color of a CAR or PreviousDegrees of a
STUDENT. Denoted as {Color} or {PreviousDegrees}.

Types of Attributes (2)

⚫ In general, composite and multi-valued attributes may be
nested arbitrarily to any number of levels although this is
rare. For example, PreviousDegrees of a STUDENT is a
composite multi-valued attribute denoted by
{PreviousDegrees (College, Year, Degree, Field)}.

Entity Types and Key Attributes

⚫ Entities with the same basic attributes are grouped or typed
into an entity type. For example, the EMPLOYEE entity type
or the PROJECT entity type.

⚫ An attribute of an entity type for which each entity must have
a unique value is called a key attribute of the entity type. For
example, SSN of EMPLOYEE.

⚫ A key attribute may be composite. For example,
VehicleTagNumber is a key of the CAR entity type with
components (Number, State).

⚫ An entity type may have more than one key. For example, the
CAR entity type may have two keys:
– VehicleIdentificationNumber (popularly called VIN) and
– VehicleTagNumber (Number, State), also known as

license_plate number.

ENTITY SET corresponding to the ENTITY
TYPE CAR

car1

((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 1999, {red, black})
car2

((ABC 123, NEW YORK), WP9872, Nissan 300ZX, 2-door, 2002, {blue})
car3

((VSY 720, TEXAS), TD729, Buick LeSabre, 4-door, 2003, {white, blue})

.

.

.

CAR
Registration(RegistrationNumber, State), VehicleID, Make, Model, Year, {Color}

SUMMARY OF ER-DIAGRAM
NOTATION FOR ER SCHEMAS

Meaning

ENTITY TYPE

WEAK ENTITY TYPE

RELATIONSHIP TYPE

IDENTIFYING RELATIONSHIP TYPE

ATTRIBUTE

KEY ATTRIBUTE

MULTIVALUED ATTRIBUTE

COMPOSITE ATTRIBUTE

DERIVED ATTRIBUTE

TOTAL PARTICIPATION OF E2 IN R

CARDINALITY RATIO 1:N FOR E1:E2 IN R

STRUCTURAL CONSTRAINT (min, max) ON PARTICIPATION
OF E IN R

Symbol

E1 R E2

E1 R E2

R
(min,max) E

N

ER DIAGRAM – Entity Types are:
EMPLOYEE, DEPARTMENT, PROJECT,
DEPENDENT

Relationships and Relationship Types (1)

⚫ A relationship relates two or more distinct entities with a
specific meaning. For example, EMPLOYEE John Smith
works on the ProductX PROJECT or EMPLOYEE Franklin
Wong manages the Research DEPARTMENT.

⚫ Relationships of the same type are grouped or typed into a
relationship type. For example, the WORKS_ON relationship
type in which EMPLOYEEs and PROJECTs participate, or
the MANAGES relationship type in which EMPLOYEEs and
DEPARTMENTs participate.

⚫ The degree of a relationship type is the number of
participating entity types. Both MANAGES and
WORKS_ON are binary relationships.

Example relationship instances of the WORKS_FOR
relationship between EMPLOYEE and DEPARTMENT

e1

e2

e3

e4

e5

e6

e7

EMPLOYEE

r1

r2

r3

r4

r5

r6

r7

WORKS_FOR

d1

d2

d3

DEPARTMENT

Example relationship instances of the
WORKS_ON relationship between EMPLOYEE
and PROJECT

e1

e2

e3

e4

e5

e6

e7

r1

r2

r3

r4

r5

r6

r7

p1

p2

p3

r8

r9

Relationships and Relationship Types (2)

⚫ More than one relationship type can exist with the same
participating entity types. For example, MANAGES and
WORKS_FOR are distinct relationships between
EMPLOYEE and DEPARTMENT, but with different
meanings and different relationship instances.

ER DIAGRAM – Relationship Types are:
WORKS_FOR, MANAGES, WORKS_ON, CONTROLS,
SUPERVISION, DEPENDENTS_OF

Weak Entity Types

⚫ An entity that does not have a key attribute

⚫ A weak entity must participate in an identifying relationship
type with an owner or identifying entity type

⚫ Entities are identified by the combination of:

– A partial key of the weak entity type

– The particular entity they are related to in the identifying
entity type

Example:
Suppose that a DEPENDENT entity is identified by the

dependent’s first name and birhtdate, and the specific
EMPLOYEE that the dependent is related to. DEPENDENT is
a weak entity type with EMPLOYEE as its identifying entity
type via the identifying relationship type DEPENDENT_OF

Weak Entity Type is: DEPENDENT
Identifying Relationship is:

DEPENDENTS_OF

Constraints on Relationships

⚫ Constraints on Relationship Types
– (Also known as ratio constraints)
– Maximum Cardinality

⚫ One-to-one (1:1)
⚫ One-to-many (1:N) or Many-to-one (N:1)
⚫ Many-to-many

– Minimum Cardinality (also called participation
constraint or existence dependency constraints)
⚫ zero (optional participation, not existence-dependent)
⚫ one or more (mandatory, existence-dependent)

Many-to-one (N:1) RELATIONSHIP

e1

e2

e3

e4

e5

e6

e7

EMPLOYEE

r1

r2

r3

r4

r5

r6

r7

WORKS_FOR

d1

d2

d3

DEPARTMENT

Many-to-many (M:N) RELATIONSHIP

e1

e2

e3

e4

e5

e6

e7

r1

r2

r3

r4

r5

r6

r7

p1

p2

p3

r8

r9

Relationships and Relationship Types (3)

⚫ We can also have a recursive relationship type.

⚫ Both participations are same entity type in different roles.

⚫ For example, SUPERVISION relationships between
EMPLOYEE (in role of supervisor or boss) and (another)
EMPLOYEE (in role of subordinate or worker).

⚫ In following figure, first role participation labeled with 1 and
second role participation labeled with 2.

⚫ In ER diagram, need to display role names to distinguish
participations.

A RECURSIVE RELATIONSHIP
SUPERVISION

e1

e2

e3

e4

e5

e6

e7

EMPLOYEE

r1

r2

r3

r4

r5

r6

SUPERVISION

2
1

1 2

2

1

1

1

2

1

2

2

Recursive Relationship Type is: SUPERVISION
(participation role names are shown)

Attributes of Relationship types

⚫ A relationship type can have attributes; for
example, HoursPerWeek of WORKS_ON; its
value for each relationship instance describes
the number of hours per week that an
EMPLOYEE works on a PROJECT.

Attribute of a Relationship Type is:
Hours of WORKS_ON

Structural Constraints – one way to express
semantics of relationships

Structural constraints on relationships:

Cardinality ratio (of a binary relationship): 1:1, 1:N, N:1,
or M:N

SHOWN BY PLACING APPROPRIATE NUMBER
ON THE LINK.

Participation constraint (on each participating entity
type): total (called existence dependency) or partial.

SHOWN BY DOUBLE LINING THE LINK

NOTE: These are easy to specify for Binary Relationship
Types.

Alternative (min, max) notation for relationship
structural constraints:
Specified on each participation of an entity type E in a relationship type R

Specifies that each entity e in E participates in at least min and at most max
relationship instances in R

Default(no constraint): min=0, max=n

Must have minmax, min0, max 1

Derived from the knowledge of mini-world constraints

Examples:

A department has exactly one manager and an employee can manage at most
one department.

– Specify (0,1) for participation of EMPLOYEE in MANAGES

– Specify (1,1) for participation of DEPARTMENT in MANAGES

An employee can work for exactly one department but a department can have
any number of employees.

– Specify (1,1) for participation of EMPLOYEE in WORKS_FOR

– Specify (0,n) for participation of DEPARTMENT in WORKS_FOR

The (min,max) notation
relationship constraints

(1,1)(0,1)

(1,N)(1,1)

COMPANY ER Schema Diagram using (min, max)
notation

Relationships of Higher Degree

Relationship types of degree 2 are called binary

Relationship types of degree 3 are called ternary and of
degree n are called n-ary

In general, an n-ary relationship is not equivalent to n
binary relationships

Higher-order relationships

Data Modeling Tools

A number of popular tools that cover conceptual
modeling and mapping into relational schema
design. Examples: ERWin, S- Designer
(Enterprise Application Suite), ER- Studio, etc.

POSITIVES: serves as documentation of
application requirements, easy user
interface - mostly graphics editor support

Problems with Current Modeling Tools

⚫ DIAGRAMMING
– Poor conceptual meaningful notation.
– To avoid the problem of layout algorithms and

aesthetics of diagrams, they prefer boxes and lines and
do nothing more than represent (primary-foreign key)
relationships among resulting tables.(a few exceptions)

⚫ METHODOLGY
– lack of built-in methodology support.
– poor tradeoff analysis or user-driven design preferences.
– poor design verification and suggestions for

improvement.

Some of the Currently Available Automated Database
Design Tools

COMPANY TOOL FUNCTIONALITY

Embarcadero
Technologies

ER Studio Database Modeling in ER and IDEF1X

DB Artisan Database administration and space and security
management

Oracle Developer 2000 and Designer
2000

Database modeling, application development

Popkin Software System Architect 2001 Data modeling, object modeling, process modeling,
structured analysis/design

Platinum
Technology

Platinum Enterprice
Modeling Suite: Erwin,
BPWin, Paradigm Plus

Data, process, and business component modeling

Persistence Inc. Pwertier Mapping from O-O to relational model

Rational Rational Rose Modeling in UML and application generation in C++
and JAVA

Rogue Ware RW Metro Mapping from O-O to relational model

Resolution Ltd. Xcase Conceptual modeling up to code maintenance

Sybase Enterprise Application Suite Data modeling, business logic modeling

Visio Visio Enterprise Data modeling, design and reengineering Visual Basic
and Visual C++

ER DIAGRAM FOR A BANK DATABASE

© The Benjamin/Cummings Publishing Company, Inc. 1994, Elmasri/Navathe, Fundamentals of Database Systems, Second Edition

Chapter 4

The Relational Data Model and
Relational Database Constraints,

The Relational Algebra and
Relational Calculus

Chapter Outline

⚫ Relational Model Concepts
⚫ Relational Model Constraints and Relational Database

Schemas
⚫ Update Operations and Dealing with Constraint

Violations
⚫ Basic Relational Algebra Operations
⚫ Example of Queries in Relational Algebra
⚫ The Tuple Relational Calculus
⚫ The Domain Relational Calculus

Relational Model Concepts

⚫ The relational Model of Data is based on
the concept of a Relation.

⚫ A Relation is a mathematical concept based
on the ideas of sets.

⚫ The strength of the relational approach to
data management comes from the formal
foundation provided by the theory of
relations.

Relational Model Concepts

⚫ The model was first proposed by Dr. E.F. Codd of
IBM in 1970 in the following paper:
"A Relational Model for Large Shared Data
Banks," Communications of the ACM, June 1970.

The above paper caused a major revolution in the field of
Database management and earned Ted Codd the coveted
ACM Turing Award.

INFORMAL DEFINITIONS

⚫ RELATION: A table of values
– A relation may be thought of as a set of rows.
– A relation may alternately be though of as a set of

columns.
– Each row represents a fact that corresponds to a

real-world entity or relationship.
– Each row has a value of an item or set of items

that uniquely identifies that row in the table.
– Sometimes row-ids or sequential numbers are

assigned to identify the rows in the table.
– Each column typically is called by its column

name or column header or attribute name.

FORMAL DEFINITIONS

⚫ A Relation may be defined in multiple ways.
⚫ The Schema of a Relation: R (A1, A2,An)

Relation schema R is defined over attributes A1, A2,
.....An
For Example -
CUSTOMER(Cust-id,Cust-name,Address, Phone#)

Here, CUSTOMER is a relation defined over the four
attributes Cust-id, Cust-name, Address, Phone#, each
of which has a domain or a set of valid values. For
example, the domain of Cust-id is 6 digit numbers.

FORMAL DEFINITIONS

⚫ A tuple is an ordered set of values
⚫ Each value is derived from an appropriate domain.
⚫ Each row in the CUSTOMER table may be referred

to as a tuple in the table and would consist of four
values.

⚫ <632895, "John Smith", "101 Main St. Atlanta,
GA 30332", "(404) 894-2000">
is a tuple belonging to the CUSTOMER relation.

⚫ A relation may be regarded as a set of tuples (rows).
⚫ Columns in a table are also called attributes of the

relation.

FORMAL DEFINITIONS

⚫ A domain has a logical definition: e.g.,
“USA_phone_numbers” are the set of 10 digit phone
numbers valid in the U.S.

⚫ A domain may have a data-type or a format defined
for it. The USA_phone_numbers may have a format:
(ddd)-ddd-dddd where each d is a decimal digit.
E.g., Dates have various formats such as
monthname, date, year or yyyy-mm-dd, or dd
mm,yyyy etc.

⚫ An attribute designates the role played by the
domain. E.g., the domain Date may be used to define
attributes “Invoice-date” and “Payment-date”.

FORMAL DEFINITIONS

⚫ The relation is formed over the cartesian product of
the sets; each set has values from a domain; that
domain is used in a specific role which is conveyed
by the attribute name.

⚫ For example, attribute Cust-name is defined over the
domain of strings of 25 characters.

⚫ Formally,
Given R(A1, A2,, An)

r(R)  dom (A1) X dom (A2) XX dom(An)
⚫ R: schema of the relation
⚫ r of R: a specific "value" or population of R.
⚫ R is also called the intension of a relation
⚫ r is also called the extension of a relation

FORMAL DEFINITIONS

⚫ Let S1 = {0,1}

⚫ Let S2 = {a,b,c}

⚫ Let R  S1 X S2

⚫ Then for example: r(R) = {<0,a> , <0,b> , <1,c> }

is one possible “state” or “population” or
“extension” r of the relation R, defined over domains
S1 and S2. It has three tuples.

DEFINITION SUMMARY

Informal Terms Formal Terms

Table Relation

Column Attribute/Domain

Row Tuple

Values in a column Domain

Table Definition Schema of a Relation

Populated Table Extension

Example - Figure 5.1

CHARACTERISTICS OF RELATIONS

⚫ Ordering of tuples in a relation r(R): The tuples are
not considered to be ordered, even though they appear
to be in the tabular form.

⚫ Ordering of attributes in a relation schema R (and
of values within each tuple): We will consider the
attributes in R(A1, A2, ..., An) and the values in t=<v1,
v2, ..., vn> to be ordered .
(However, a more general alternative definition of
relation does not require this ordering).

⚫ Values in a tuple: All values are considered atomic
(indivisible). A special null value is used to represent
values that are unknown or inapplicable to certain
tuples.

CHARACTERISTICS OF RELATIONS

⚫ Notation:

- We refer to component values of a tuple t by
t[Ai] = vi (the value of attribute Ai for tuple t).

Similarly, t[Au, Av, ..., Aw] refers to the
subtuple of t containing the values of
attributes Au, Av, ..., Aw, respectively.

CHARACTERISTICS OF RELATIONS- Figure 5.2

Relational Integrity Constraints

⚫ Constraints are conditions that must hold
on all valid relation instances. There are
three main types of constraints:

1. Key constraints

2. Entity integrity constraints

3. Referential integrity constraints

Key Constraints

⚫ Superkey of R: A set of attributes SK of R such that no two
tuples in any valid relation instance r(R) will have the same
value for SK. That is, for any distinct tuples t1 and t2 in r(R),
t1[SK]  t2[SK].

⚫ Key of R: A "minimal" superkey; that is, a superkey K such
that removal of any attribute from K results in a set of
attributes that is not a superkey.

Example: The CAR relation schema:
CAR(State, Reg#, SerialNo, Make, Model, Year)
has two keys Key1 = {State, Reg#}, Key2 = {SerialNo}, which

are also superkeys. {SerialNo, Make} is a superkey but not
a key.

⚫ If a relation has several candidate keys, one is chosen
arbitrarily to be the primary key. The primary key attributes
are underlined.

Key Constraints

5.4

Entity Integrity

⚫ Relational Database Schema: A set S of relation
schemas that belong to the same database. S is the
name of the database.

S = {R1, R2, ..., Rn}
⚫ Entity Integrity: The primary key attributes PK of

each relation schema R in S cannot have null values
in any tuple of r(R). This is because primary key
values are used to identify the individual tuples.

t[PK]  null for any tuple t in r(R)
⚫ Note: Other attributes of R may be similarly

constrained to disallow null values, even though
they are not members of the primary key.

Referential Integrity

⚫ A constraint involving two relations (the previous
constraints involve a single relation).

⚫ Used to specify a relationship among tuples in two
relations: the referencing relation and the
referenced relation.

⚫ Tuples in the referencing relation R1 have attributes
FK (called foreign key attributes) that reference the
primary key attributes PK of the referenced relation
R2. A tuple t1 in R1 is said to reference a tuple t2 in
R2 if t1[FK] = t2[PK].

⚫ A referential integrity constraint can be displayed in a
relational database schema as a directed arc from
R1.FK to R2.

Referential Integrity Constraint

Statement of the constraint

The value in the foreign key column (or columns)
FK of the the referencing relation R1 can be either:

(1) a value of an existing primary key value of the
corresponding primary key PK in the referenced
relation R2,, or..

(2) a null.

In case (2), the FK in R1 should not be a part of its own
primary key.

