INTRODUCTION OF 8085
MICROPROCESSOR

CHAPTER OUTLINE

Block diagram of a computer system

Basic components of a computer system using block
diagrams:

o Cpu

o Memory

o Input and output unit

Evolution of microprocessor : 4,8,16,32 dan 64 byte
Nibble, byte, word dan longword
Fecthing and execution cycles.

Internal structure and basic operation of a microprocessor
(arithmetic and logic unit, control unit, register sets,
accumulator, condition code register, program counter, stack
pointer)

Bus system: data bus, address bus and control bus.
Microprocessor clock system
Examples of microprocessor: 8085,8086.

Introduction

A computer is a programmable machine that
receives input, stores and manipulates
data//information, and provides output in a useful
format.

http://en.wikipedia.org/wiki/Machine
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Information

1.1 DIAGRAM OF ACOMPUTER
SYSTEM

A computer is a programmable machine that receives input, stores and
manipulates data//information, and provides output in a useful format.

Syattren LI Scwan oo

QC“““ ‘.. “.
-

- !’1."-;....

Kovbonand - Mizrophons
‘ M

Diagram Of A Computer System

http://en.wikipedia.org/wiki/Machine
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Information

1.1 BLOCK DIAGRAM OF A BASIC
COMPUTER SYSTEM

Basic computer system consist of a Central processing unit (CPU),
memory (RAM and ROM), input/output (1/0) unit.

CPU

Address

bus

ROM

y

I/O

interface

A 4

4

A

A

y

Data bus

y

A

Block diagram of a basic computer system

1/0
devices

Control
bus

BASIC COMPONENT OF MICROCOMPUTER

CPU - Central Processing Unit

the portion of a computer system that carries out the
instructions of a computer program

the primary element carrying out the computer's functions. It is
the unit that reads and executes program instructions.

The data in the instruction tells the processor what to do.

Pentium D dual core processors

http://en.wikipedia.org/wiki/File:Pentiumd.JPG

2.

Memory

physical devices used to store data or programs (sequences of
instructions) on a temporary or permanent basis for use in an
electronic digital computer.

Computer main memory comes in two principal varieties:
random-access memory (RAM) and read-only memory (ROM).

RAM can be read and written to anytime the CPU commands it,
but ROM is pre-loaded with data and software that never
changes, so the CPU can only read from it.

ROM is typically used to store the computer's initial start-up
instructions.

In general, the contents of RAM are erased when the power to
the computer is turned off, but ROM retains its data indefinitely.

In a PC, the ROM contains a specialized program called the
BlOS that orchestrates loading the computer's operating system
from the hard disk drive into RAM whenever the computer is

turned on or reset.

http://en.wikipedia.org/wiki/Random-access_memory
http://en.wikipedia.org/wiki/Random-access_memory
http://en.wikipedia.org/wiki/Random-access_memory
http://en.wikipedia.org/wiki/Read-only_memory
http://en.wikipedia.org/wiki/Read-only_memory
http://en.wikipedia.org/wiki/Read-only_memory
http://en.wikipedia.org/wiki/BIOS
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/File:Eprom.jpg

3. 1/0 Unit

Input/output (1/0), refers to the communication between an
iInformation processing system (such as a computer), and the
outside world possibly a human, or another information
processing system.

Inputs are the signals or data received by the system, and
outputs are the signals or data sent from it

Devices that provide input or output to the computer are called
peripherals

On a typical personal computer, peripherals include input devices
like the keyboard and mouse, and output devices such as the
display and printer. Hard disk drives, floppy disk drives and
optical disc drives serve as both input and output devices.
Computer networking is another form of 1/O.

http://en.wikipedia.org/wiki/Information_processing_system
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Output
http://en.wikipedia.org/wiki/Peripheral
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Mouse_(computing)
http://en.wikipedia.org/wiki/Computer_monitor
http://en.wikipedia.org/wiki/Printer_(computing)
http://en.wikipedia.org/wiki/Hard_disk_drive
http://en.wikipedia.org/wiki/Floppy_disk
http://en.wikipedia.org/wiki/Optical_disc_drive
http://en.wikipedia.org/wiki/Computer_networking

EVOLUTION OF MICROPROCESSOR

Number of Transistors

Pazmmm 1" e 4

T — = . T

.Ilu‘-. ill"'i'i

A e
A wd
M
- an

I oDE W TR T N e MR D IR

DATA SIZE

Nibble 4 bit
Nibble = 4 bt {n=0-3)
Range 0-15 —_— m
3 0
Byte 8 bit - -
. i dEd
L ..|.|||-l. 1 I-ﬁulﬁlll-ln
Word 16 bit
Wend = 26 [l =023 | y i
Em.m.-nxﬁnslzfn 1 p— M |
S e 15 Upper byl
Long word 32 bit T AL i ST
WD 31 renEeE s e s

e

Lowa e = 17 ol §1 = 370

L P

8085

8-bit general purpose microprocessor
Capable to address 64k of memory

Forty pins, requires +5 V single power supply
3-MHz single-phase clock.

1

BLOCK DIAGRAM

i TRES SETAY =TT AETIS mra L] pou i

¥

TT 00000117 |

. .) aLL-AR A D
fil MET B Wl kL 28 51 I0/M ROLD mifh RESETEN SSSEY A el

afte WLm
it

FETCHING & EXECUTION CYCLES

Fetching Cycles

The fetch cycle takes the instruction required
from memory, stores it in the instruction register,
and

moves the program counter on one so that it
points to the next instruction.

Execute cycle

The actual actions which occur during the
execute cycle of an instruction.

depend on both the instruction itself and the
addressing mode specified to be used to access
the data that may be required.

FETCHING AN INSTRUCTION
o Step 1

Instruction pointer (program counter) hold the address
of the next instruction to be fetch.

Im At o B ol e Meisney Lesnhion cerrtems
=" - | o
ooaz oFaD
[Addrass Bus] _
| C
(4% 1) 0105
e oCA
PO oo

FETCHING AN INSTRUCTION (cont.)
o Step 2

FETCHING AN INSTRUCTION (cont.)
o Step 3

Instruction Pairter Memoary locatian contanty

0001 The atdress 0ot] OFFF I
moves ovet the

address bus fo :

4, the Memory Xz OFAD
Wm‘ Bus Access Registes | |
Il 0003 8100
Memory Access Register —

0008 0010

FETCHING AN INSTRUCTION (cont.)

o Step 4

Mamacy lection contents

Va -
™he mamary lacation | _ 1
of tha nest instrucsion Ly o
s locatesd
\aads 0004 peen
Mamary AZcess Ragidter 1

FETCHING AN INSTRUCTION (cont.)

o Step 5 r/

J

Memory localon contanis
[owmss | B @/}

The contents of _ i I
méemory & ihe 13 179 (TE
given localion 2w '
movad across the
dala bus 0003 o100

oo0e oot

D00S DO

FETCHING AN INSTRUCTION (cont.)

o Step 6
Memory lsalian

[Data Bus]
1 o the Instruction o003 o
regiabar (IR}
aEFF
Westruction Resster D005 0010

INTERNAL STRUCTURE AND BASIC OPERATION
OF MICROPROCESSOR

ALU Register Address bus >

Section
Data bus
Control and timing
section < Control bus >

Block diagram of a microprocessor Q

ARITHMETIC AND LOGIC UNIT (ALU)

The component that performs the arithmetic and
logical operations

the most important components in a microprocessor,
and is typically the part of the processor that is
designed first.

able to perform the basic logical operations (AND,
OR), including the addition operation.

The inclusion of inverters on the inputs enables the
same ALU hardware to perform the subtraction
operation (adding an inverted operand), and the
operations NAND and NOR.

INTERNAL STRUCTURE OF ALU

S i-
=Ll Ltk

Bk, o g |

=i

2 bits of ALU

CONTROL UNIT

The circuitry that controls the flow of information
through the processor, and coordinates the
activities of the other units within it.

In a way, it is the "brain within the brain", as it
controls what happens inside the processor, which
in turn controls the rest of the PC.

On a regular processor, the control unit performs
the tasks of fetching, decoding, managing
execution and then storing results.

INTERNAL STRUCTURE OF CONTROL UNIT

counter
LI

| Step decoder

| — | Status flags |
Instruction
decoder | Eunﬁltiar':
3 SN codas

REGISTER SETS

The register section/array consists completely of
circuitry used to temporarily store data or program
codes until they are sent to the ALU or to the
control section or to memory.

The number of registers are different for any
particular CPU and the more register a CPU have
will result in easier programming tasks.

Registers are normally measured by the number of
bits they can hold, for example, an "8-bit register" or
a "32-bit register".

http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/32-bit

REGISTER IN MOTOROLA 68000
MICROPROCESSOR

31 16 15

8 7

31 16 15

8 7

USER STACK POINTER

SUPERVISOR STACK POINTER

145 8 7

SYSTEM BYTE !

USER VYTE

DO
D1
D2
D3
D4

D5
D6

D7

AO
A1
A2
A3
A4
A5
A6
A7

A7

PC

SR

DATA REGISTERS

ADDRESS REGISTERS

STACK POINTER

PROGRAM CONTER
STATUS REGISTER

ACCUMULATOR

a register in which intermediate arithmetic and logic
results are stored.

example for accumulator use is summing a list of
numbers.

The accumulator is initially set to zero, then each
number in turn I1s added to the value in the accumulator.

Only when all numbers have been added is the result
held in the accumulator written to main memory or to
another, non-accumulator, CPU register.

CONDITION CODE REGISTER (CCR)

an 8 bit register used to store the status of CPU,
such as carry, zero, overflow and half carry.

Zero flag

Carry flag

Extend flag

Negative/ Sign flag

Overflow Flag

interrupts

Indicates that the result of a mathematical or logical operation was zero.

Indicates that the result of an operation produced an answer greater
than the number of available bits. (This flag may also be set before a
mathematical operation as an extra operand to certain instructions, e.g.
"add with carry".)

Masks the XIRQ request when set. It is set by the hardware and
cleared by the software as well is set by unmaskable XIRQ.

Indicates that the result of a mathematical operation is negative. In
some processors, the N and S flags have different meanings: the S flag
indicates whether a subtraction or addition has taken place, whereas
the N flag indicates whether the last operation result is positive or
negative.

Indicates that the result of an operation has overflowed according to the
CPU's word representation, similar to the carry flag but for signed
operations.

Interrupts can be enabled or disabled by respectively setting or clearing
this flag. Modifying this flag may be restricted to programs executing in
supervisor mode

PROGRAM COUNTER (PC)

a 16 bit reqister, used to store the next
address of the operation code to be fetched
by the CPU.

Not much use in programming, but as an
iIndicator to user only.

Purpose of PC in a Microprocessor
to store address of tos (top of stack)

to store address of next instruction to be
executed.

count the number of instructions.
to store base address of the stack.

INTERNAL STRUCTURE OF PC

STACK POINTER (SP)

The stack is configured as a data structure
that grows downward from high memory to
low memory.

At any given time, the SP holds the 16-bit
address of the next free location in the
stack.

The stack acts like any other stack when
there is a subroutine call or on an interrupt.
le. pushing the return address on a jump,
and retrieving it after the operation is
complete to come back to its original
location.

BUS SYSTEM

o a subsystem that transfers data between computer
components inside a computer or between
computers.

4 PCI Express bus card slots (from top to bottom: x4, x16, x1 and x16),
compared to a traditional 32-bit PCI bus card slot (very bottom).

BUS SYSTEM CONNECTION

cruchip Starage/inpat ingernal memory
Mitroprocessor ’ RAM ROMN]
ey Rzad/\write kzad only
ALl | ‘

(calzulating)
lternal l ‘ ’
Communication J’ : Bus System

Requstars

(L2anporary

il | ihput Intarface | | OuTput (hrarface |
;7;'("‘";';" Iput devices output devices
b weyboard g Munitor
= Mollse ' Printey

o 10y SBCE
Scanner
J Lghtpen

e > 4

STOIAG R ZTAPUT EXTHrNAT MSIMory .
Flopoy disc deive CONOM
m, oo " e @ €O

Hard discdriye Magnesic tape

5 Microsoft Corporahon, Al Rights Hessrvyed

DATA BUS

The data bus is 'bi-directional’

data or instruction codes from memory or
input/output.are transferred into the
microprocessor

the result of an operation or computation is sent
out from the microprocessor to the memory or
input/output.

Depending on the particular microprocessor,
the data bus can handle 8 bit or 16 bit data.

ADDRESS BUS

The address bus is 'unidirectional’, over which the
microprocessor sends an address code to the
memory or input/output.

The size (width) of the address bus is specified by
the number of bits it can handle.

The more bits there are in the address bus, the
more memory locations a microprocessor can
access.

A 16 bit address bus is capable of addressing
65,536 (64K) addresses.

CONTROL BUS

The control bus is used by the microprocessor to
send out or receive timing and control signals in
order to coordinate and regulate its operation and
to communicate with other devices, i.e. memory or
input/output.

MICRO PROCESSOR CLOCK

Also called clock rate, the speed at which a microprocessor
executes instructions. Every computer contains an internal
clock that regulates the rate at which instructions are executed
and synchronizes all the various computer components.

The CPU requires a fixed number of clock ticks (or clock
cycles) to execute each instruction. The faster the clock, the
more instructions the CPU can execute per second. Clock
?(pzaeﬁd)s are expressed in megahertz (MHz) or gigahertz

2).

Some microprocessors are superscalar, which means that
they can execute more than one instruction per clock cycle.

Like CPUs, expansion buses also have clock speeds. Ideally,
the CPU clock speed and the bus clock speed should be the
same so that neither component slows down the other. In
practice, the bus clock speed is often slower than the CPU
clock speed, which creates a bottleneck. This is why new local
buses, such as AGP, have been developed.

EXAMPLES OF MICRO PROCESSOR

o Intel 8085
o Intel 8086

3086

The 8086 is a 16-bit microprocessor | use fum
chip designed by Intel, which gave soely 7 whv
rise to the x86 architecture; wiarf: e
development work on the 8086 i i
design started in the spring of 1976 “indl: e
and the chip was introduced to the e ER
market in the summer of 1978. i el ;‘giiﬂ;ﬁfﬁ it
The Intel 8088, released in 1979, Wi Sl
was a slightly modified chip with an ~ ‘ada abBa e
external 8-bit data bus (allowing the }5d.. =N
use of cheaper and fewer piEse br o
supporting logic chips and is notable #*4* iyl

as the processor used in the original
IBM PC.

38085

The Intel 8085 is an 8-bit
microprocessor introduced by
Intel in 1977.

It was binary-compatible with the
more-famous Intel 8080 but
required less supporting
hardware, thus allowing simpler
and less expensive
microcomputer systems to be
built.

e

An Intel 8085AH processor.

Produced

From 1977 to
1990s

Common manufacturer(s)

*Intel and
several others

3,5and
Max. CPU clock rate 6 MHz
Instruction set pre x86
Package(s) *40 pin DIP

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Clock_rate
http://en.wikipedia.org/wiki/Instruction_set
http://en.wikipedia.org/wiki/X86
http://en.wikipedia.org/wiki/Dual_in-line_package

TIMING DIAGRAM
Instruction Cycle:

! |

! |
i i .
E_ Fefoh cyce FC) pe Checute ycl —j

nstruction cycle (G = FC + EC)
Fetch

Decode &
Execute |

Machine Cycle:

T Ty Iy T4 Ts Tg Ty

_I—I_I—LI—LI—IM Time

IH—FC—'T'_EC_H
|

|
Machine cycle-1 (M) = Machine cycle-2 (M;) >
|

«—Instruction Cycle—|

time required to access the memory or
input/output devices is called machine cycle

Aomplitude

T- States:

The machine cycle and instruction cycle takes multiple
—— Machme Cvele-1 ’l‘ -Machine Cyele -2—

clock periods.
' Instruction Cycle :

A portion of an operation carried out in one
system clock period is called as T-state

"_Tq_ﬁ_T_!_H:'.‘_T;‘_P%""_‘TJ T1_+_Tg'—"‘+'_1.]_'.'

One syvstem Clock period

Clock Signal:
1 —

Tirme

o | » |
Hise Fall
Tirme Tirme

 Microprocessor operates with reference to
clock signals.

X1 and X2 we provide clock signals and this
frequency is divided by two.

* This frequency is called as the operating
frequency.

|-— one Cycle —-|

Single signal representation

Logic 1 Logic 1
I Tn-state “
Logic 0 Logic
Tl' e Tf -
Group of Signals :

\ _/ . Trslatele
Silechange~/ 1+ Vld slala-J':

Ay - Ays (Higher Byte Address) :

| ' | |
|
R - -
w “K Ag-hay, H Ag-hgy }
| .

Higher byte address on Ag- A,
D, - D, (Data Bus) :

; |
f 1y f I, Ty T,
i
------- = =)
, | i
(a) read machinecycle (b) write cycle

Data bus

Iﬂfﬁ, Eu, 51 "

: 0f=0,5,=1,5,=1 oM =0,5,20,5,=1

Opcode felch ——— --[-——-—Mﬁmnrymad——-‘;
Status signals

Rule for timing diagram:
1. ALE=1. T1 States.

2. A0-A7=Group Signal. T1 States.

3. A8-AlS = Group Signal. T1,T2,T3 States.

4. DO-D7=Group Signal.
Read Cycle : T1-Address, T3 - Data
Write Cycle : T1-Address, T2,T3 -Data

5. 10/M 80,51 = Group Signal. T1,T2,T3,T4 States.

6. RD,WR=0. T2,T3 States

"N/ N/ N/ NN

A..s 1
x High order memory address Unspecified x
As

A y Low order T_}«(Opcode

Memory address

ALE ! \ —
10/ M \
| Status IO/M=0,S,=1.S, =1 Opcode fetch

-

(b) Opcode fetch machine cycle

t— Memory Read e |

T4 (T2 T

CLK

Aig - Ag x Memory address

ALE _/_\

AD, - ADg x Al - Ay ~—-<Data from memory)--<l

Oo/s/M. S,. S, —< IO/ M=0,.S,=1,S,=0
RD /--'-"-

(b)) Memory read machine cycle

p— Memory Wit

Ty T2 Ts
CLK
Aus - Ag X Memory address
ALE
AD, - ADg A, - Ag Data from CPU
Ios/mM IO/ =0,S,=0,Sg=1

oo | /-

(b)) Memory write machine cycle

j— | 7 O Read
Ty T2 ':‘T Ta
CcLK
~ | / '\
Ays - Ay r-X 1 / O Addr
|

AD, - ADg x 1 /O Addr po l;O Data

RD’

f

IO/M. S,, S, x

(b) VO read memory cycle

- | 7 O Wrrite —i
CLK
ALE

AD, - ADO | 7 O Addr Data from MPU
e —t

1I0O/7/M. S,. S, lofﬁ'-1 S, =0, s°-1

e I N

(b) IIO write machln. cycle

Addressing Modes

TYPES OF ADDRESSING MODES

Intel 8085 uses the following addressing modes:
Direct Addressing Mode
Register Addressing Mode
Register Indirect Addressing Mode
Immediate Addressing Mode

Implicit Addressing Mode

DIRECT ADDRESSING MODE

In this mode, the address of the operand is given in
the instruction itself.

LDA 2500 H | Load the contents of memory
- LDA location 2500 H in accumulator.

2500 H is the address of source.

Accumulator is the destination.

REGISTER ADDRESSING MODE

o In this mode, the operand is in general purpose
register.

MOV A, B |Move the contents of register B to
A.

O MOV 15 UIc UpcCcidlull.

o B is the source of data.

o Ais the destination.

REGISTER INDIRECT ADDRESSING MODE

o In this mode, the address of operand is specified by
a register pair.

MOV A, M | Move data from memory location
specified by H-L pair to accumulator.

o MOV is the operation.

o M is the memory location specified by H-L register
pair.

o Ais the destination.

IMMEDIATE ADDRESSING MODE

In this mode, the operand is specified within the
instruction itself.

MVI is the operation.
05 H is the immediate data (source).

A is the destination.

IMPLICIT ADDRESSING MODE

If address of source of data as well as address of
destination of result is fixed, then there is no need
to give any operand along with the instruction.

CMA is the operation.
Ais the source.

A is the destination.

8085 Instruction Set

8085 Instruction Set

Instruction Set of 8085

< A instruetion 1 a binary pattern designed meide o
microprocessor to perlor o specihe funetion.

* The entire group of instractions (hat o nderoprocessor
supports is culled Instruction Set.

© BoBs5 has 2406 instructions,
© Each instruction is represented by an 8-bit binaryvalue.

* lhese 8-bits of hinary valise is ealled Op-Code or
Instruction Byte.

8085 Instruction Set

Classification of Instruction Set

¢ Data Transler Instruction
+ Arithmetic Instructions

¢ Lagical Instructions

¢« Branching Instructions

« Control Instructions

8085 Instruction Set 3

Data Transfer Instructions

¢ 'I'hese instructions move data between registers, or
between memory and registers.

* These instructions copy data trom source to
destination.

* While copying, the contents of source are not
modified.

8085 Instruction Set

Data Transfer Instructions

| Operand Description
MOV Rd, Rs Copy from source to destination,
M. Rs
Rd, M

« This instruction copies the contents of the source register
infto the destination register.

* The contents of the source register are not altered.

« If one of the operands is a memory location, its location is
specified by the contents of the HL registers.

* Example: MOV B, C or MOV B, M

8085 Instruction Set

Data Transfer Instructions

Dperand Description
MV Rd, Data Move immediare B-hit
M, Dlaza

¢ The 8-bit data is stored in the destination register or
MEmory.

« 1f the operand is a memory location, its location is
specified by the contents of the H-1. registers.

« Example: MVI B, 5711 or MVI M, 5711

8085 Instruction Set

Data Transfer Instructions

L1XA 16-hit address Load Accumilaror

* The contents of a memory location, specitied by a 16-
bit address in the operand, are copied to the
accumulator.

* The contenls of the source are not altered.

* Example: LDA 2034H

8085 Instruction Set

Data Transfer Instructions

Uprende O perand Pete piphtiin
Tais

* The contents of the designated register pair paint to a memory
location.

* This Instruction copies the contents of that memeory location
iite the aconmulator ' '

¢ Thecontents of either the register palt or the memory location
are pot altered.

¢ Lxample: LDAX B

8085 Instruction Set

Data Transfer Instructions
 Opeode | Operand | Description

LXI Reg. pair, 16-bit Load register pair immediate
data

* 'I'his instruction loads 16-bit data in the register pair.

¢« Example: LXI 11, 2034 11

8085 Instruction Set

Data Transfer Instructions
[Opoite || Opeiaud] Demie

LHLD 16-hit address Load H-L registers direct
* T'his instruction copies the contents of memory
location pointed out by 16-bit address into register L.

* Tt copies the contents of next memory location into
register 11.

« Example: LHLD 2040 H

8085 Instruction Set

10

Data Transfer Instructions
" Opcode | Operand | Descriplion

STA 16 bit address Store accumulator divect

* The conlents ol accumulator are copied into the
memory location specilied by the operand.

* Example: STA 2500 H

8085 Instruction Set

11

Data Transfer Instructions

Oypreode | Operantd | Description
STAX Rea pair Srarteaceumularoeindir=er

+ The contents of accumulator are copied into the
memory location specilied by the conlents ol the
register pair.

« Example: STAX B

8085 Instruction Set 12

Data Transfer Instructions
. Opeode | Operand | Description

SHILD 16-bit address Store LI-L registers direct

¢ The contents of register L are stored into memory
location specified by the 16-bit address.

* The contents of register H are stored into the next
memory location,

* Example: SHLD 2550 H

8085 Instruction Set

13

Data Transfer Instructions

XCG KNone Exchange [I-L with D-E
* The contents of register H are exchanged with the
contents of register D.

* 'The contents of register L are exchanged with the
contents of register E.

* Example: XCHG

8085 Instruction Set 14

Data Transfer Instructions

SFHL MNone Copy H-L pair to the Stack Pointer [SP)

* This instruction loads the contents ol H-1. pair into SP.

» Example: SPHL

8085 Instruction Set

15

Data Transfer Instructions

| Uperand | lescription
XTHL None Exchange H-L with top of stack

* The contents of L register are exchanged with the
location pointed out by the contents of the SP.

» The contents of H register are exchanged with the next
location (SP +1).

« Example: XTHL

8085 Instruction Set 16

Data Transfer Instructions

PCTHL None Load program counter with H-L contents
* The contents of registers H and L are copied into the
program counter (PC).

* The contents ol H are placed as Lthe high-order byle
and the contents ol 1. as the low-order hyte.

* Example: PCHL

8085 Instruction Set

17

Data Transfer Instructions

PUSIE Regpar Pushagiespaouromade

* The contents ol register pair are copied onlo stack.

« SPis decremented and the contents ol high-order registers
(B, 1), H, A) are copied into stack.

* SPis again decremented and the contents of low-order
reaisters (U 1, L, Flags) are copied into stack.

* Example: PUSH B

8085 Instruction Set

18

Data Transfer Instructions

POt Rig, prats Py sk b it er prats

¢« The contents of tap of stack are copied into register pair.

« The contents of location pointed out by 5P are copled to
e low-onderresister (C, L, L, Tlags).

« 8P is incremented and the contents of location are E'ﬂlpii.'_"d
to the high-order register (B, 12, T1, A).

- Example: POP I

8085 Instruction Set

19

Data Transfer Instructions

OuT B-hbit port Copy data from accumulator to a port with 8-
address bt address

* The contents of accumulator are copied into the 1/O
port,

« Example: OUT 78 H

8085 Instruction Set 20

Data Transfer Instructions
" Opcode | Operand | Description

I S-bir port Copy data to accumulator from a port with 8-
address hir address

* The contents of I/ port are copied into accumulator.

* Example: IN 8C H

8085 Instruction Set 21

Addition

+ Any 8-bil number, or Lthe conlents ol register, or Lhe
conlents ol memory location can be added Lo the
contents of accumulator.

+ 'The result (sum) is stored in the accumulator.
+ No two other 8-bit registers can be added directly.

- Example: The contents of register B cannot be added
directly to the contents of register (.

8085 Instruction Set

22

Subtraction

« Any 8-bit number, or the contents of register, or the
contents of memory location can be subtracted from
the contents of accumulator.

* The result is stored in the accumulator.
» Subtraction is performed in 2's complement form.

« If the result is negative, it is stored in 2's complement
form.

* No two other 8-bit registers can be subtracted directly.

8085 Instruction Set

23

Increment / Decrement

* The 8-bit contents of a register or a memory location
can be incremented or decremented by 1.

* The 16-bit contents of a register pair can he
incremented or decremented by 1,

* Increment or decrement can be performed on any
regisler or a memory location,

8085 Instruction Set 24

ALY

¥

-]

i

[,]

Arithmetic Instructions

Opreranad Drescriplion

K Add register or memary ro accunmularor

1% |

The contents of t'egi.qrer ar Memory are added to the conrents ot
avenrmalator

The result is stored in accumulator.,

If the operand is memory location, its address is specitied by H-L pair.

All ﬂngs are modified to reflect the resulr of the addition.

Exa mpl&: ADDBorADID M

8085 Instruction Set

25

Arithmetic Instructions

TR 1= 'I'lllur_rJ il Ihear STULETT
. ' B ' Adds T Eﬂ-l:-!.‘ﬂ e UAT
M vaEy

The contents of register or metiiory and Carry Flag (CY) are added to
the contents of accumulator

T regult 18 srored maceomularor,

If the vperand is meniory location. its addeess is specified by H-L pait.
All {lags are modified to retlect the resull of the addition.

Example: ADC Bor ADC M

8085 Instruction Set

26

Arithmetic Instructions

Opeode | Dperand | Description
ADI 8-bit data Add immediate to accumulator

* The 8-bit data is added to the contents of accumulator.
» The result is stored in accumulator.

« All flags are modified to reflect the result of the
addition.

« Example: ADI 45 H

8085 Instruction Set

27

Arithmetic Instructions

Opoode | Urperand | [escription

ACT &-bat data Add immediate to accumulator with carry

* The 8-bit data and the Carry Flag (CY) are added to the
contents of accumulator.

* The result is stored in accumulator.
« All flags are modified to reflect the result of the addition.

* Example: ACI 45 H

8085 Instruction Set

28

Arithmetic Instructions

Chperand Description

DAD Reg. pair Add register pair to H-L pair

+ The 16-bit contents of the register pair are added to the
contents of H-L pair.

* The result is stored in H-L pair.
* [f the result is larger than 16 bits, then CY is set.

* Mo other flags are changed.
* Example: DAD B

8085 Instruction Set

29

Arithmetic Instructions
T T [— e —

sUB 'ﬁl Subirracr rogistor of memery from sccumulicor

T'he contenrs of ths register or memery locarion are subtracead tronn
rhe contents af the accumalarorn

The eesulr is stored inaccumunalator,

I e operanidd s nuemory location, itk duldress is speciliced by TT-L pain

A Flags are roodified toreTeer the resull of sulbiraction.

Example: SUR B or SUB M

8085 Instruction Set

30

SBEL

2

-

=

=

T

Arithmetic Instructions

K Subtract register or memory from accumulator
M with barrow

The contents of the register or memory location and Borrow Flag (i.e.
CY) are subtracted from the contents of the accumulator.

The result is stored in accumularor
If the operand is memory location, its address is specified by H-L pair.
All flags are moditied to reflect the result of subtraction.

Example: SBE B or SBB M

8085 Instruction Set

31

Arithmetic Instructions

| Description

SLIT 8-bit data Subtract immediate from accumulator

¢ The 8-bit data is subtracted from the contents of the
accurmilator,

* The result is stored in accumulator.
= All flags are modified to reflect the result of subtraction.

» Example: SUI 45 H

8085 Instruction Set

32

Arithmetic Instructions

SBI a-bit data Subtract immediate fom acoumulator with
borrow

* The 8-hit data and the Borrow Flag (i.e. CY) is subtracted
from the contents of the acoumulator,

= The result 1s stored i1 accmmulator.

« All flags are modified to reflect the result of subtraction.

* Example: SBI 45 H

8085 Instruction Set

33

Arithmetic Instructions

Uhpiaile | et] | Diesi pipiom

INK [InTrmrie tegister o7 wewory by)
- |

 Thecontents of register or memaory lpcation are
incremented by 1

« The result is stored in the same place.

« If the operand is a memory location, its address is specilied
by the conrents of H-L pair.

* Example: INR Bor INE M

8085 Instruction Set

34

Arithmetic Instructions

INX R Increment register pair by 1

* The contents of register pair are incremented by 1.

« The result is stored in the same place.

* Example: INX H

8085 Instruction Set

35

Arithmetic Instructions
" Opeade | Opeensd | Descsigton
DCR R Decrement register or memory by 1
M
* The contents of register or memory location are
decremented by 1.

* The result is stored in the same place.

* If the operand is a memory location, its address is specified
by the contents of H-L pair.

* Example: DCR B or DCR M

8085 Instruction Set

36

Arithmetic Instructions

DPCX R Decrement register pair by 1

* The contents of register pair are decremented by 1.

* The result is stored in the same place.

« Example: DCX 11

8085 Instruction Set 37

Logical Instructions

* These instruclions perlom lopical operdlions on data
stored in registers, memory and stalus flags.

¢ The logical operations are:
« AND
« (IR
« XOR
* Rotate
o Compare
» Lomploment

8085 Instruction Set

38

PSW (Program Status word)
- Flag unaffected

* affected

O reset

1 set

S Sign (Bit7)

Z Zero (Bit 6)

AC Auxiliary Carry (Bit 4)

P Parity (Bit 2)

CY Carry (Bit 0)

8085 Instruction Set

39

AND, OR, XOR

« Any 8-bit data, or the contents of register, or memory
location can logically have

« AND operation
« DR operation
« XOR operation

with the contents of accomilator

¢ The result i stored in accumulator,

8085 Instruction Set

40

Rotate

« Each bit in the accumulator can be shifted either left or
right to the next position.

8085 Instruction Set

41

Compare

» Any 8-bit data, or the contents of register, or memory
location can be coimpares for:

o Lipuality
o Grreater Thai
¢ Less Than

with the contents of accumulator.

¢ The result is reflected in status (lags.

8085 Instruction Set

42

Complement

* The contents of accumulator can be complemented.

* Each o 1s replaced by 1and each 1 is replaced by o.

8085 Instruction Set

43

Logical Instructions
m Operandd Descriplion

CMP Compare register or memory with

R
i accumaulator

* The contents of the operand (register or memory) are
compared wilh the contents ol the accumulalor,

* Both contents are preserved .

* The resull ol the comparison is shown by setling Lhe

tlags of the PSW as follows:

8085 Instruction Set

44

CMP

i1

Logical Instructions

Opcode Operand Description

E. Compare register or memory with
Wil accuimlator

it (A} = (reg/mem): carry flag is set
it (A} = (reg/mem): zero flag is set
il (A) = (reg/mem): carry and vero [lags are resel.

Example: CMP B or CMP M

8085 Instruction Set

45

Logical Instructions

L o | 8-bit data fcrrll].tﬂr-: inunediate with acoumulator

¢ 'The 8-bit data is compared with the contents of
accumulator,

¢ 'I'he values being compared remain unchanged.

* The result of the comparison is shown by setting the
flags of the P5W as [ollows:

8085 Instruction Set

46

Logical Instructions

CPI B-hit data Compare immediare with accumularor

» il (A) = data: carry [lag is set
* il (A) = dala: zero [lag is sel
* if (A) = data: carry and zero flags are reset

* Example: CPI 8gH

8085 Instruction Set

Logical Instructions

Dparnle el ewrripiam

ANA R | Lgheal AND evgidber ol fheimany with
M avvuwilatng

The contents of the accumulator are logically ANDed with the contents
af VEgIster o) memory.

The pesualt le placed in the accumulatar,

If the operand s memory location, it sddress s specified Ly the
cantents of H-1 pate

5. Z. P are modilied o reflect the sesalt of the upﬁ-rat[nn.
CYois desel ane AC is eot,
Example: ANA B or ANANM.

8085 Instruction Set

48

Logical Instructions
| Opeode | Operand | Description

ANI &-bit data Logical AND immediate with accumulator

* The contents of the acocumulator are logically ANDed with
the 8-bit data.

* The result is placed in the accumulator.
« 5, 2, P are modified to reflect the result,
* CY is reset, AC is set.
* Example: AN] 86H.

8085 Instruction Set

49

Logical Instructions

D ndimil | desitviption
W accumulator -

o THe et of the mumulmm bereleally OB weith thv eombints of the regivter or
IOy

I Byl am plarad mthe aocurmlaier

« E the speeans] b s |:|.|.|=m-!|' Lorasing, dts sulifies is rpn.'l.ﬂc:! by the ¢ S n.[H-.LFudl:-

v 5 2 Pave puodillen] topeflauy thie pesnle
P Y] AC g szt

 Exampher ORA T oy ORA M

8085 Instruction Set

50

Logical Instructions
Opeode | Operand _ Descriprion

CIHI 8-hirdara Logical OR immediate with accumulatar

« The conlents of the accuunulalor are logically ORed with
the 8-bit data.

* 'The result is placed in the accumulator.

o &, 7, P are modified to reflect the resulf.
* CY and AC are reset.

« Example: ORI 86H.

8085 Instruction Set

51

Logical Instructions

Chpianile || Ogpreramil | Ehesarripl boval
XRA ! Lirgieal XOH s glater or memiody With
M accmmmlaton,

o The contents of the accumiilator are XORed with the contents of

Chie pegister or niemory,
* The result is placed in the scowmulator

o i the operand 15 a memory location, 1ts address 15 specified by
the contents of H-L pair.

v 8, Z, P are modified to reflect the result of the operation.
o OY and AL are reset.
« Example: XEA B or XEA M.

8085 Instruction Set

52

Logical Instructions

Operand | Description
XRI 8-bit data XOR immediate with accumulator

* The contents of the accumulator are X(ORed with the
8-hit data.

* The result is placed in the accumulator.
» §, Z. P are modified to reflect the result.

* Y and AC are reset,
* Example: XRI 36H.

8085 Instruction Set

53

" Opeode | Operand | Desciiption

RAL Mone Rotate accumulator left through carry

* Each binary bit of the accumulator is rotated left by one
position through the Carry flag.

» Bit D)7 is placed in the Carry flag, and the Carry flag is
placed in the least significant position Do.

* Y is modified according to bit D7,
« 5, 7, P AC are not affected.

* Example: RAL.

8085 Instruction Set 54

RAR Mone Rotate accumulator right through carry

* Each binary bit of the accumulator is rotated right by one
position through the Carry [lag.

* Bit Do is placed in the Carry flag, and the Carry flag is
placed in the most significant position D7.

» CY is modified according to bit Do.
« 8, Z, P AC are not aflected.
* Example: RAR.

8085 Instruction Set 55

» circular Left shift

Optode | Operdnd Desrriptiomn

RLIC None Rotate accomulator left:

* Each binary bit of the accumulator is rolated lelt by one
posilion.

= Bit D7 is placed in the position of Do as well as in the Carry
flag.

« CY is moditied according to bit D7.
« 8§, Z, P AC are nol allected.
* Example: RI.C,

8085 Instruction Set 56

m circular right shift

| Opeade | Operaud skt

RRC None- Rotate accamulator right

« Each binary bit of the accumulator is rotated right by one

pnﬁitinu.

« Bil Do is placed in e position of Dy as well as in the Carry
Hag.

« CY is modified according to hit Do.
« S.Z. P.AC are not aftected.
« Example: RRC.

8085 Instruction Set 57

Logical Instructions

CMA None Complement accumulatar

¢ The contents ol the accumulator are complemented,

* No tlags are atfected.
* Example: CMA.

8085 Instruction Set 58

Logical Instructions

Opcode Uperand Descriplion
CMC None Complemenl carry

* The Carry tlag is complemented.
* No other flags are affected.
» Example: CMC.

8085 Instruction Set

59

Logical Instructions

'l'][;II'II-IIr" l'.'-r-—.-l.'rill'li:in"

BT None St carry.

¢+ The Carry {lag is set to 1.
« No other flags are affected.
« Example: 51'C.

8085 Instruction Set

60

Branching Instructions

* The branching instruction alter the normal sequential
tlow.

* These instructions alter either unconditionally or
conditionally.

8085 Instruction Set 61

Branching Instructions

IMpP 165-bit address Juinp unconditionally

¢ 'The program sequence is (ranslerred (o the memory
location specitied by the 16-bit address given in the
operand.

* Example:]MP 2034 H.

8085 Instruction Set 62

Branching Instructions

Operand ! Description
Ix 16-hit address Jump condirionally

¢ The program sequence is transferred to the memory
location specified by the 16-bit address given in the

operand based on the specified tlag of the PSW.

* Example: |Z 2034 H.

8085 Instruction Set 63

Jump Conditionally

s ot Af Carry Y-
INL! Potrape 41 N Ly tY =0
ﬂ* Joy Al st 5-0
™ lusmp i Mings §=1
i Jesenph if Faerey H=1
NZ v AL Ny Ziepo 7=0
e Jrareagy if Tty Feen F=1
iro ortsage if Parity: Ol F-u

8085 Instruction Set

Branching Instructions

| Opewle | Opesand | Dewriptini___|
cALL bityhifeia. Eallwieendifidally

¢ The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand.

« Before the transter, the address of the next instruction afier

CALL (the contents of the program counter) is pushed onto
the stack.

« Example: CALL 2034 H.

8085 Instruction Set 65

Branching Instructions

Description
RET Nonc Beturn unconditionally

* The program sequence is transferred from the
subrouline Lo Lhe calling program.

* The two bytes from the top of the stack are copied into
the program counter, and program execution begins at
the new address.

* Example: RET.

8085 Instruction Set

66

Control Instructions
m Operand Description

(9] Mone Mo operation

* No operation 1s performed.

* The instruction is fetched and decoded but no
operation is executed.

« Example: NOP

8085 Instruction Set

67

Control Instructions

HIT Mamne Halr

* The CPU finishes executing the current instruction
and halls any [urther execulion.

* An interrupt or resct is necessary to exit from the halt
state.

* Example: HIT

8085 Instruction Set

68

Control Instructions
" Opcode | Operand | Description

DI MNone Disable interrupl

¢ The interrupt enable flip-flop is reset and all the
interrupts except the TRAP are disabled.

» No tlags are atfected.
+ Example: DI

8085 Instruction Set 69

Control Instructions

EI None Enable interrupt

* The interrupt enable flip-flop is set and all interrupts
are enabled.

* No [lags are allecled.

* 'I'his instruction is necessary to re-enable the
interrupts (except 'TRAP).

* Example: FI

8085 Instruction Set 70

Summary — Data transfer

MOV Move

MVI Move Immediate

LDA Load Accumulator Directly from Memory
STA Store Accumulator Directly in Memory
LHLD Load H & L Registers Directly from
Memory

SHLD Store H & L Registers Directly in
Memory

8085 Instruction Set 71

Summary Data transfer

An 'X' in the name of a data transfer instruction implies that it
deals with a register pair (16-bits);

LXI Load Register Pair with Immediate data

LDAX Load Accumulator from Address in Register Pair
STAX Store Accumulator in Address in Register Pair
XCHG Exchange H & L with D & E

XTHL Exchange Top of Stack with H & L

8085 Instruction Set 72

Summary - Arithmetic Group

Add, Subtract, Increment / Decrement data in registers or memory.

ADD Add to Accumulator
ADI Add Immediate Data to Accumulator
ADC Add to Accumulator Using Carry Flag
ACl Add Immediate data to Accumulator Using Carry
SUB Subtract from Accumulator
SUlI Subtract Immediate Data from Accumulator
SBB Subtract from Accumulator Using Borrow (Carry) Flag
SBlI Subtract Immediate from Accumulator
Using Borrow (Carry) Flag
INR Increment Specified Byte by One
DCR Decrement Specified Byte by One
INX Increment Register Pair by One
DCX Decrement Register Pair by One
DAD Double Register Add; Add Content of Register Pairto H & L
Register Pair

8085 Instruction Set 73

Summary Logical Group

This group performs logical (Boolean) operations on data in
registers and memory and on condition flags.

These instructions enable you to set specific bits in the
accumulator ON or OFF.

ANA Logical AND with Accumulator

ANI Logical AND with Accumulator Using Immediate
Data

ORA Logical OR with Accumulator

OR Logical OR with Accumulator Using Immediate
Data

XRA Exclusive Logical OR with Accumulator

XRI Exclusive OR Using Immediate Data

8085 Instruction Set 74

The Compare instructions compare the content of an 8-bit value with
the contents of the accumulator;

CMP Compare
CPI Compare Using Immediate Data

The rotate instructions shift the contents of the accumulator one bit
position to the left or right:

RLC Rotate Accumulator Left
RRC Rotate Accumulator Right
RAL Rotate Left Through Carry

RAR Rotate Right Through Carry
Complement and carry flag instructions:
CMA Complement Accumulator

CMC Complement Carry Flag
STC Set Carry Flag

8085 Instruction Set 75

‘ Summary - Branch Group

= Unconditional branching

o JMP Jump
o CALL Call
o RET Return
= Conditions
o NZ Not Zero (Z = 0)
o Z Zero (Z=1)
o NC No Carry (C = 0)
o C Carry (C=1)
o PO Parity Odd (P = 0)
o PE Parity Even (P =1)
o P Plus (S = 0)
o M Minus (S = 1)
= Conditional branching

8085 Instruction Set

Summary - Stack

PUSH
POP

XTHL
SPHL

Push Two bytes of Data onto the Stack
Pop Two Bytes of Data off the Stack
Exchange Top of Stack with H & L
Move content of H & L to Stack Pointer

8085 Instruction Set 77

‘ I/0 instructions

= IN Initiate Input Operation
= OUT Initiate Output Operation

8085 Instruction Set

78

Summary -Machine Control instructions

= E Enable Interrupt System
=D Disable Interrupt System
= HLT Halt

= NOP No Operation

8085 Instruction Set 79

8086 MICROPROCESSOR

Block diagram of 8086

MEMOY
IHTE-.FHFE
- e 2 R ———

i
' i . IMITRARTTIN
STHEAM
| r WYWEE.
] i N BRIERZE :
I ' _= -
II

FHAUKE 2-7 8006 imimrmal bock dlagram. {{rlel oo

Software Model of the 8086 Microprocessors

L
e g ngwrs
E P iR
CRLLRETE]
Ery E
- =
| — T il
— l
_— .
e
| !—-— Timn s o= 1l
— L oy = e
—
L | Em
B rud wiwd
= §p | uE LTI WEE
oE g |iIX
g R ¥
L L L T |
- i'
¥ —_— Sl pRER
.l_—rrn
iu' = e e
e m_
el
= H
ey

AX

BX

CX

DX

3086 Registers

General Purpose

Index

BP

SP

DI

AH [AL
B H BL
CH CL
DH DL

Segment

Status and Control

CS

SS

Flags

DS

ES

General Purpose Registers

15 H 817 L 0
AX (Accumulator)
AH — :'— — AX - the Accumulator
- (Base Eiﬂ'ﬁ en BX - the Base Register
CX - the Count Register
CX (Used as a counter) DX - the Data Register
CH Ll
DX (Used to point to data in VO operations)
DH | DL

 Normally used for storing temporary results
e Each of the registers is 16 bits wide (AX, BX, CX, DX)
 Can be accessed as either 16 or 8 bits AX, AH, AL

General Purpose Registers

o AX
— Accumulator Register

— Preferred register to use in arithmetic, logic and data
transfer instructions because it generates the shortest
Machine Language Code

— Must be used in multiplication and division
operations

— Must also be used in I/O operations

e BX
— Base Register
— Also serves as an address register

General Purpose Registers

o CX
— Count register
— Used as a loop counter
— Used in shift and rotate operations

e DX
— Data register
— Used in multiplication and division
— Also used in I/O operations

Pointer and Index Registers

SP Stack Polnber

BP Base Pointer

Sl Source Index

] Destination Index
IP Instruction Pointer

e All 16 bits wide, L/H bytes are not accessible

e Used as memory pointers
— Example: MOV AH, [Sl]

* Move the byte stored in memory location whose address is contained in
register Sl to register AH

e |Pis not under direct control of the programmer

Flag Register

Flag,,

Flags,

X

X

4

k4

ar

oF

.I:F 'I-'Fl!_l’

ZF

| X

AF | X |PF | X | OF

Overflow

Direction

Interrupt enable

Trap

Sign

Zero

2 A A A A A A
+mmm:nmm1a. {

Carry
Parity

Auxiliary Carry

6 are status flags
3 are control flag

9

8086 Programmer’s Model

Extra Segment
Code Segment

Stack Segment
Data Segment
Instruction Pointer

Accumulator

Base Register

Count Register

Data Register

Stack Pointer

Base Pointer

Source Index Register
Destination Index Register

10

The Stack

e The stack is used for temporary storage of information
such as data or addresses.

e When a is executed, the 8086 automatically es
the current value of CS and IP onto the stack.

e Other registers can also be pushed

 Before return from the , instructions can
be used to pop values back from the stack into the
corresponding registers.

11

The Stack

PUSH POP

55:0000h

SS5:SP

SS:FFFEh

End of
stack

12

imm = MmO R G AR e

Bl == = =% = e =S g o owE
O @ O s M th R e g — O

g

33
. |-

anl
a0

DU o0 U000 000 oo Ira

DHHETBEESREHN

e B8
MISE | MODE

Voo

ADISS
A18:53
AITEA
AIEES
ATISH
BHE/ST
IR

A
AL T (HOLDY
AT {(HLIA)
COGK (WA
= g
& |oTA|
=] {BEMN)
QEn (ALE:
ot (A

13

INTEL 8086 - Pin Details

BAAE LA |

MIEE | MODE

Power Supply

5V £ 10%

Reset

Registers, seg
regs, flags

CS: FFFFH, IP:

(M 0000H
T8

{AEN) If high for
o s a0 [ALE] minimum 4
Clock Ao - . -.] st | . clks

Duty cycle: 33%

INTEL 8086 - Pin Details

BAAE LA |

MIEE | MODE

Address/Data Bus:

Contains address
bits A;.-A;when ALE
is 1 & data bits D, —

D, when ALE is O.

Address Latch Enable:

When high,
multiplexed

address/data bus
contains address
information.

i fdl l'-E' i

IOTA)

READY
FESET 15

INTEL 8086 - Pin Details

MAX I MIN |
Mot | Moo
vioo
_ v | ADES
INTERRUPT v 2 ; A14:53

NTHEA
ATEER

ATESH

E =4 M

im

Non - maskable

i
¥

interrupt

Interrupt
acknowledge

Interrupt request

GO
Alizd
Aafia
_..'I.['IIIE
A0311
ALMa

R0
AL
AT
AL
A0S
A4
g

AD2

FANL

Al

i

& TH

CLE

~EIT
LE*l]

INTEL 8086 - Pin Details

BAAE
MO

wios
ADES
ATEN
MTTEA
AEER
ATLIER
ﬁ-' a7

PR
Hb

I LA

g
:'H‘I_u'nu_

(]
IaTAa)
{BEM)
[alE:

[T A

Direct
Memory
Access

Hold

acknowledge

S6: Logic O,

S%: Indicates condition
of IF flag bits,

54-53: Indicate which
segment is accessed
guring current bus
cycle:

i ke

_ ALK s

Ll of o e Eiee

T e

INTEL 8086 - Pin Details

GO
ALz
ama
ADAVE
AN
Al1a
AIE
AL
ADT
ADE
ADE
AL
AL
An
Al
AL
M
I TH
CLK

NI

naoonoonononoonoonnonnoon

25 8 B

=00 e
U U0 gd oo ooomIroT

L=l
3

S

L IR L
.hL'In":l'q..—d-:l'_

S

BAAE
MO

LA
MCDE

Address/Status Bus

Address bits A, —
A, & Status bits S,
— 53

BHE#, A,:

0,0: Whole word
(16-bits)

0,1: High byte
to/from odd address

1,0: Low byte
to/from even address

1,1: No selection

SHO
ADTd
ama
ADAE
AN
Al1a
REM
ADHE
ADT
ADE
AQ5
ADdL
AT
Q2
Al
Al
Mt
I TH
CLK

NI

INTEL 8086 - Pin Details

BAAE LA |
MOEE | MODE

25 8 B

e
(4]

il
B

£l
L

5
D -

282K

[]

OANONOONOO0OO0nNOOonrEn

=t
Dlm
qgn

Bus High Enable/S7

Enables most
significant data bits
D,: — Dg during read
or write operation.

S,: Always 1.

INTEL 8086 - Pin Details

BAAE LA |
MIEE | MODE
" I

ADES

ATA0S0

Min/Max mode

Minimum Mode: +5V

_I'l. IFE E I\ |

Maximum Mode: 0V

ATRER

ATESH

BHE S

E =4 M

Minimum Mode Pins

im

Maximum Mode

Pins

20

Minimum Mode- Pin Details

403 Voo
JHL] ADE
ATESE
i A1754
96] A1E55
86 [AESs
34 7] BHE/ST
Mk RAX

ADYA
AD1S
A1
AL
ADS
ALY
AGT
ADE 31] (HOLO)
ADS 30 |

ADd4 29

ADD 28]

ADZ 27]

AD1 oy [

AT . 28]

ET |

IMTH 29 [

LK ol

GND = L]

=1 &y F E Lk

LU

S$2 5150

000: INTA

001: read I/0O port
010: write 1/0O port
011: halt

100: code access
101: read memory
110: write memory
111: none -passive

Maximum Mode - Pin Details

VEC
ADS
AT1E/ES
ATTiS4
ATR/SS
AIRISE
BHE/ST
T
AD
RO/GTO

Status Signal

Inputs to 8288 to
generate eliminated
signals due to max
mode.

22

Lock Output

Used to lock peripherals
off the system

Activated by using the
LOCK: prefix on any

instruction

Maximum Mode - Pin Details

1l
ADS

ATE/ES
A1Ti54
ATR/ES
ATRISH
BHE/ST
MR

DMA

Request/Grant

Lock Output

Maximum Mode - Pin Details

VEC
ADS
AT1E/ES
ATTiS4
ATR/SS
ATRISH
BHE/ST
T
AD
RO/GTD

QS1 QSO
00: Queue is idle

01: First byte of opcode

RCGTY
LOCH

10: Queue is empty

11: Subsequent byte of
opcode

Queue Status

Used by numeric
coprocessor (8087)

Minimum Mode 8086 System

Poen i iy
. e
f 1 Pr—
T]
e {:::}'-J--Fﬁ gy
plobst - - ::)i.._-i._
ik -

] - i
HOLD —— ———= T s e
ol s [, ~— I T
i —
1 TR
el e WAL
-:tr:
it

25

Minimum Mode 8086 System

h
Gn
W

e G MNMX = YOG
—= Rast WG —
A S— — — —
- - m ”;Tﬁ . .
WR +—— —— . ' =-_
—— |
AE © ~igTE
'..Mi__] Latchan |, T ADDR__
L_O‘Uﬁ gﬁ-E_ l ’ na Al ! l | |
e i — 18 | ek
d bl D‘, O“ %-
———ow |88
5 [Y ‘ i
| Tramcetvees |
E : ka 1
| BME :‘ ‘ | |
| A J SV U ekl X
| RO WR CS, cz.ce..oe‘csanwn

RAM OS5 7 eProM Ty

—_——— —— - -

DATA 8US.

‘Read’ Cycle timing Diagram for
Minimum Mode

T, T Ty T '
w [
R TR (e X
oo Yo I T X oam)
’“’ \ o4
" \ /

o\ [-

‘Write’ Cycle timing Diagram for

T

-

AL —

Tz

| Ty

Minimum Mode

| T T4

]|

IT-

|

-

Add) Slaluy X_ BHE X
Pya—Big

X

AddfData

X as-te X

Walid data D15 ! l:]u

X

wH -

\

DERN

DTFEJ

Maximum Mode 8086 System

Puawer supmy

GND

i) Add resaidgte bos

NTR ————————— -

INTh —————

Intecowpil
LTEE T S ——

LR | I —

RESET ————=

DMa 1OLD
Infeclace HL LM - : I

1’“‘-

Made _
sleer MNMX

<:> Al g=AD y, A5 y=iggiSy

o 1) EHE
MEL _ v
——_= '
M Memony 1O
e i E o Fald

—————= hD
—_ ﬁ
————————& [DCN

————— READY

CLK

Clack 29

Maximum Mode 8086 System

= Gl
(O 8 DEN [-
5 oTH [S 51- 52
L B 3. 3
—arlEmant = ¥ oRe GONTRCL BUS "
— T . E o2 PR PO (1
Clk = FAnsct 20| sEM E IE"'T': I
Garnambnr - T L [¥
£E4 —++ Gk =¥ ‘ 0B ,
MR e
| B= B f—— .
i E—- o i : GEN ALE
1Y 1
aras : |
ADg-D45 | 4 ! CLk | g = L
B iq s il _ACDRESS 8U% S
. zard
e — &,
()
- o
AD. - ADv. | DTR 1
3 iR EI
|_ aala =
DEM - [0 '-_:-|G T::’.!-__ A'I'l
J 7 BHE
B G S I
CEOy 030, RO C5 WA AD
wR
Wemory Peripheml
0 S _.__.--\"\-.
1 TN
LT, BLIS py

Maximum Mode 8086 System

Here, either a numeric coprocessor of the type 8087 or another
processor is interfaced with 8086.

The Memory, Address Bus, Data Buses are shared resources
between the two processors.

The control signals for Maximum mode of operation are
generated by the Bus Controller chip 8788.

The three status outputs SO*, S1*, S2* from the processor are
input to 8788.

The outputs of the bus controller are the Control Signals, namely
DEN, DT/R*, IORC*, IOWTC*, MWTC*, MRDC*, ALE etc.

31

Memory Read timing in
Maximum Mode

I O A s O I 5 s (o
' 1
CLK 1 l _.J |
- ——— {ne bue cycle '

FEMRCIHT

i
3
&

ne —— A

¥ ¥ i indairipl acknowlecoe
...... i i ! WO
W TS Active ¥ 1 o 1) werim
8.~ 3 Ardive } inactive 5 | . Aok
i 0 0 Opoodns leinh
= e e 1 i i Wamn'y =i
ADDVSTATUS }-{ BHE, A— Mg :.“-{ Sy - S }' . \ 8 Kinory wiita
| 1 i Frassa iy
Tg =Ty -
ADDDATA m TABLE 8-6 [lus oorrol
A4~ ADy lurcione genarabed Ly the
oy s controler (HEEH) usHng
MACC .I'r g2, 51, and 55

DT/H 4_\.' _ J'II

DEN

32

Memory Write timing in
Maximum Mode

_|||'r]'.L BE i 5o FLehceon
ALE

indairipl acknowlecoe
PO

1wt

HHah

Opoodns leinh
Mamoy =i
ke wiite

: Pt i
ADDDATA _>'—{P-1:|—-"'4:| }{ DATA QUT Dy - Dy }—'

A
&
g
:
o
8
&

e h [D =& O I
a0 o (OF e [= TR

MmN TARLE 8- [us goral
WWTC Iunchons genarabed L2y She
|':"l"-"3-m I'i ! s controler (BREE) uabng

L &3, 81, and BO)
OTHR

oEN \ /

33

8086 Control Signals

1.
. BHE
. M/IO
. DT/R
. RD

. WR

. DEN

N O o A WN

ALE

34

 Multiprocessor Systems refer to the use of multiple
processors that executes instructions simultaneously
and communicate with each other using mail boxes and
Semaphores.

e Maximum mode of 8086 is designed to implement 3
basic multiprocessor configurations:

1. Coprocessor (8087)

2. Closely coupled (8089)
3. Loosely coupled (Multibus)

35

* Coprocessors and Closely coupled configurations are
similar in that both the 8086 and the external processor
shares the:

- Memory

- 1/0 system

- Bus & bus control logic
- Clock generator

36

Coprocessor / Closely Coupled
Configuration

— CLOCK

—a| 3080 e—

Coprocessor
or

~®| Independent

Pocessor

Bus

—3 (Control
Logic

Syvstem Bus

]

Memory

Lith

-

37

TEST pin of 8086

Used in conjunction with the WAIT instruction in
multiprocessing environments.

This is input from the 8087 coprocessor.

During execution of a wait instruction, the CPU checks this
signal.

If it is low, execution of the signal will continue; if not, it
will stop executing.

38

Advantages of Multiprocessor

Configuration
High can be achieved by having more than
one CPU.
The system can be in modular form.

Each bus master module is an independent unit and normally resides on
a separate PC board. One can be added or removed without affecting the
others in the system.

A in one module normally does not affect the breakdown
of the entire system and the faulty module can be easily
detected and replaced

Each bus master has its own local bus to access dedicated
memory or |O devices. So a greater
can be achieved.

39

WAIT State

« oy
1 2 3 4
Clock SN
READY \ /
e A is an extra clocking period, inserted

between T2 and T3, to lengthen the bus cycle, allowing
slower memory and I/O components to respond.

* The input is sampled at the end of T2, and again,
if necessary in the middle of Tw.

40

41

Addressing Modes

Immediate

Direct

ndirect

Register

Register Indirect
Displacement (Indexed)
Stack

Immediate Addressing

Operand is part of instruction
Operand = address field
e.g. ADD AX, 5h

LDA #5

— Add 5 to contents of accumulator
— 5is operand

No memory reference to fetch data
Fast
Limited range

[nstruction

| Operand

Lik | |||||||._'.I|:|I|'

42

Direct Addressing

* Address field contains address of operand
« Effective address EA = address field (A)
ADD AX, value

Value DB 05h

— Add contents of cell value to accumulator AX
— Look in memory at address value for operand

« Single memory reference to access data
* No additional calculations to work out effective address
« Limited address space

43

44

Direct Addressing Diagram

~Instruction

A

Memory

—p

Operand.

(b)) Direct

Indirect Addressing (1/2)

 Memory cell pointed to by address field
contains the address of (pointer to) the
operand
« EA=(A)
— Look in A, find address (A) and look there for
operand
+ e.g. ADD AX, (A)

— Add contents of cell pointed to by contents of
A to accumulator

45

46

Indirect Addressing (2/2)

Large address space
2" where n = word length

May be nested, multilevel, cascaded
—e.g. EA=(((A)))
« Draw the diagram yourself

Multiple memory accesses to find operand
Hence slower

47

Indirect Addressing Diagram

[nstruction

A i

Memory

Operand [o—

_'..-

(¢) Indirect

Register Addressing (1/2)

* Operand is held in register named in
address filed

« EA=R
 Limited number of registers

* Very small address field needed
— Shorter instructions
— Faster instruction fetch
— MOV AX, BX
— ADD AX, BX

48

Register Addressing (2/2)

 No memory access
* Very fast execution
* Very limited address space

* Multiple registers helps performance
— Requires good assembly programming or
compiler writing
— N.B. C programming

* register int a;
» c.f. Direct addressing

49

50

Register Addressing Diagram

Instruction

R

p Uperand

Registers

(d) Register

51

Register Indirect Addressing

C.f. indirect addressing

EA = (R)

Operand is in memory cell pointed to by
contents of register R

Large address space (2")

One fewer memory access than indirect
addressing

Register Indirect Addressing Diagram

|nstruction

Memory

P

Registers

>

Operand |

(¢) Register Indirect

52

Displacement Addressing

« EA=A+ (R)
» Effective address=start address + displacement
« Effective address=0ffset + (Segment Register)

* Use direct and register indirect

 Address field hold two values

— A = base value
— R = register that holds displacement

— Or vice versa

53

54

Displacement Addressing

Diagram

Instruction

R |

A

Memory

T

Registers

(I Displacement

55

Relative Addressing (PC-
Relative)

A version of displacement addressing
R = Program counter, PC
EA=A+ (PC)

l.e. get operand from A cells from current
location pointed to by PC

c.f locality of reference & cache usage

56

Base-Register Addressing

A holds displacement
—EA=(CS)+A

R holds pointer to base address
R may be explicit or implicit

e.g. segment registers in 80x86

Indexed Addressing

A= base

* R = displacement
—EA=A+(R)

» Good for accessing arrays
—~EA=A+ (R)
— R++

57

Combinations

Postindex Tuble 11.2

Pentium |1 Addreesing Modes

- EA=(A) +(R)

Preindex
— EA=(A+(R))

Muode

Algaorithim

Lrnmed s

KReplster Lpetitnd

Displaeemant

ETE

Bose with displocemuen

Selid udes witly dsicstien)

(S willy bices iied il ccrreed

Bse with scaied mideoxnnd doplemant
atiave

COperund = A

LA=R

LA = 185K« A

LA = 8R) (B

LA ISR« (B« A

LA SR) =11} «S + A

LA = (SR (B 4l A
LA = (SR~ (I} x5 « (B)ys A
LA « (P75 - A

LA Enduy bddiess

A U RTINS

SE o oawncmenar teyiuter

e L T Y

A et ol s sddiess DUId e Che mxiactim
L R U T

N e beas ogsun

| = doy .l.‘ci!.h

N = aasling reetor

58

Stack Addressing
» Operand is (implicitly) on top of stack

Oeg

— ADD Pop top two |tems from stack

and add and

Instruction

Tmplicil

»

lop of Stack
Register

(z) Stack

59

Modde

Alzorithm

Principal Advantape

Principal Disadvantape

Imimaediate
Mirecr

[nadirecl

Foesrsier
Fagistor indirect
Dhisplacement

Srack

Cpcrand = A

EA -~ A
CA=iAl
EA—I
EA=(R)
Fa A iR

FA — top of stack

Moo memary referencs
Simple

Luree udddress space
Mo mernaory relerene
Large address space
Flexibaility

P s My referanee

Limitad operand magnitude
Lirnited aldress space
Blulliple memosy relerences
Lantledd aldress space

Extra memery reference
Complesiny

Limited applicability

60

Question Bank(Objective Type Questions)

1. In Microprocessor
a. program is stored in memory and data is stored in the registers.
b. program is stored in the registers and data is stored in memory.
c. both program and data are stored in the memory.

d. both program and data are stored in the registers.

2 .A Microprocessor contains.
a. most of the control and arithmetic logic functions of a computer.
b. most of the RAM .
c. most of the ROM.

d. peripheral drivers.

3. A PC in a micro-computer.
a. counts the number of instructions executed in a run.
b. counts the number of programs run after startying.
c. counts the points to the next executable instruction

d. points to the present instruction being executed.

4. An instruction cycle is made up of:
a. one or more execute cycles
b. one or more fetch cycles

c. one opcode and one execute cycle

d. none of the above.

5. The number of minimum clock cycles in a machine cycle for 8085 are.
a. 1
b. 2
c.3

d.5

6. In a 8-bit microprocessor ,the fetch reqired to fetch a 8 bytes instruction will be:
a. 1
b.2
c.3

d. depends on computer design

7. The maximun integer ahich can be stored on an 8-bit accunulator is
a. 2kb
b. 200
c.224

d. 255.

8. The address bus of intel 8085 is 16 bit wide and hence the memory which can be accessed by
this address bus is :

a.112
b.4kb

c.16kb

d.64 kb

9. A byte corresponds to
(a) 4 bits
(b) 8 bits
(c) 16 bits

(d) 32 bits

10. A gigabyte represents
(a) 1 billion bytes
(b) 1000 kilobytes
(c) 230 bytes

(d) 1024 bytes

11. A megabyte represents
(a) 1 million bytes
(b) 1000 kilobytes
(c) 220 bytes
(d) 1024 bytes
12. A Kb corresponds to
(a) 1024 bits
(b) 1000 bytes
(c) 210 bytes
(d) 210 bits

13. A superscalar processor has

(a) multiple functional units
(b) a high clock speed
(c) a large amount of RAM

(d) many I/O ports

14. A 32-bit processor has
(a) 32 registers
(b) 32 I/O devices
(c) 32 Mb of RAM

(d) a 32-bit bus or 32-bit registers

15. A 20-bit address busallows access to a memory of capacity
(a) 1 Mb
(b) 2 Mb
(c) 32Mb

(d) 64 Mb

16. A 32-bit address bus allows access to a memory of capacity
(a) 64 Mb
(b) 16 Mb
(c) 1 Gb

(d) 4 Gb

17.Clock speed is measured in
(a) bits per second

(b) baud

(c) bytes
(d) Hertz

18. An FPU
(a) makes integer arithmetic faster
(b) makes pipelining more efficient
(c) increases RAM capacity

(d) makes some arithmetic calculations faster

19. Pipelining improves CPU performance due to
(a) reduced memory access time

(b) increased clock speed

(c) the introduction of parallellism

(d) additional functional units

20. The system bus is made up of
(a) data bus
(b) data bus and address bus
(c) data bus and control bus

(d) data bus, control bus and address bus

21. A machine cycle refers to
(a) fetching an instruction
(b) clock speed
(c) fetching, decoding and executing an instruction

(d)executing an instruction

22. A Pentium processor comprises
(a) more than 1 million transistors
(b) more than 3 million transistors
(c) 500,000 transistors

(d) 900,000 transistors

23. Which of the following is NOT a type of processor
(a) PowerPC 601
(b) Motorola 8086
(c) Motorola 68000

(d) Intel Pentium

24. An RS-232 interface is
(a) a parallel interface
(b) a serial interface
(c) printer interface

(d) a modem interface

25. Multiprogramming refers to
(a) having several programs in RAM at the same time
(b)multitasking
(c) writing programs in multiple languages

(d) none of the previous

26. Multitasking refers to

(a) having several programs in RAM at the same time

(b) the ability to run 2 or more programs concurrently
(c) writing programs in multiple languages

(d) none of the previous

27. Multiprogramming is a prerequisite for
(a) multitasking
(b) an operating system
(c) to run more than one program at the same time

(d) none of the above

28. Multiprocessing is
(a) same as multitasking
(b) same as multiprogramming
(c)multiuser

(d) involves using more than one processor at the same time

29. A compiler is
(a) a fast interpreter
(b) slower than an interpreter
(c) converts a program to machine code

(d) none of the previous

30. An interpreter is
(a) faster than a compiler
(b) translates and executes programs statement by statement

(c) converts a program to machine code

(d) none of the previous
31. Which of the following is not part of the processor
(a) the ALU
(b) the CU
(c) the registers

(d) the system bus

32. Pipelining improves CPU performance due to
(a) reduced memory access time
(b) increased clock speed
(c) the introduction of parallellism

(d) additional functional units

33. The Pentium processor is
(a) 16-bit
(b) 32-bit
(c) 64 bit

(d) 8-bit

34. The IBM/Motorola PowerPC 601 processor is
(a) 16-bit
(b) 32-bit
(c) 64 bit

(d) 8-bit

35. An assembly language instruction
(a) always has a label
(b) always takes at least 1 operand
(c) always has an operation field

(d) always modifies the status register

36. An arithmetic instruction always modifies the
(a) stack pointer
(b) status register
(c) program counter

(d) an index register

37. A conditional jump instruction
(a) always cause a transfer of control
(b) always involves the use of the status register
(c) always modifies the program counter

(d) always involves testing the Zero flag

38. An interrupt instruction
(a) causes an unconditional transfer of control
(b) causes a conditional transfer of control
(c) modifies the status register

(d) is an I/O instruction

39. A data movement instruction will

(a) modify the status register
(b) modify the stack pointer
(c) modify the program counter

(d) transfer data from one location to another

40. The memory address register is used to store
(a) data to be transferred to memory
(b) data that has been transferred from memory
(c) the address of a memory location

(d) an instruction that has been transferred from memory.

41. The memory data register is used to store
(a) data to be transferred to or from memory
(b) data to be transferred to the stack
(c) the address of a memory location

(d) an instruction that has been transferred from memory

42. The instruction register stores
(a) an instruction that has been decoded
(b) an instruction that has been fetched from memory
(¢) an instruction that has been executed

(d) the address of the next instruction to be executed

43 The program counter

(a) stores the address of the instruction that is currently being executed

(b) stores the next instruction to be executed
(c) stores the address of the next instruction to be executed

(d) stores the instruction that is being currently executed.

44. The stack pointer stores
(a) the address of the stack in memory
(b) address of the last item pushed on the stack
(c) the address of the next free stack location

(d) the address of the last item popped from the stack

45. Memory mapped I/O involves
(a) transferring information between memory locations
(b) transferring information between registers and memory
(c) transferring information between the CPU and 1/O devices in the same way as
between the CPU and memory

(d) transferring information between I/O devices and memory

46. A hardware interrupt is
(a) also called an internal interrupt
(b) also called an external interrupt
(c) an I/O interrupt

(d) a clock interrupt

47. An assembly language program is typically

(a) non-portable

(b) shorter than an equivalent HLL program
(c) harder to read than a machine code program

(d)slower to execute than a compiled HLL program

48. Programs are written in assembly language because they
(a) run faster than HLL programs
(b) are portable
(c) easier to write than machine code programs
(d) they allow the programmer access to registers or instructions

that are not usually provided by a HLL

49. An assembly language program is translated to machine code by
(a) an assembler
(b) a compiler
(c) an interpreter

(d) a linker

50. An assembly language directive is
(a) the same as an instruction
(b) used to define space for variables
(c) used to start a program

(d) to give commands to an assembler

