
INTRODUCTION OF 8085
MICROPROCESSOR

CHAPTER OUTLINE

 Block diagram of a computer system

 Basic components of a computer system using block
diagrams:
 Cpu

 Memory

 Input and output unit

 Evolution of microprocessor : 4,8,16,32 dan 64 byte

 Nibble, byte, word dan longword

 Fecthing and execution cycles.

 Internal structure and basic operation of a microprocessor
(arithmetic and logic unit, control unit, register sets,
accumulator, condition code register, program counter, stack
pointer)

 Bus system: data bus, address bus and control bus.

 Microprocessor clock system

 Examples of microprocessor: 8085,8086. 2

Introduction

 A computer is a programmable machine that

receives input, stores and manipulates

data//information, and provides output in a useful

format.

http://en.wikipedia.org/wiki/Machine
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Information

1.1 DIAGRAM OF A COMPUTER

SYSTEM
A computer is a programmable machine that receives input, stores and

manipulates data//information, and provides output in a useful format.

4

Diagram Of A Computer System

http://en.wikipedia.org/wiki/Machine
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Information

1.1 BLOCK DIAGRAM OF A BASIC

COMPUTER SYSTEM

ROM RAM I/O

interface

I/O

devicesCPU

5

Basic computer system consist of a Central processing unit (CPU),

memory (RAM and ROM), input/output (I/O) unit.

Block diagram of a basic computer system

Address bus

Data bus Control

bus

BASIC COMPONENT OF MICROCOMPUTER

1. CPU - Central Processing Unit

 the portion of a computer system that carries out the

instructions of a computer program

 the primary element carrying out the computer's functions. It is

the unit that reads and executes program instructions.

 The data in the instruction tells the processor what to do.

6
Pentium D dual core processors

http://en.wikipedia.org/wiki/File:Pentiumd.JPG

2. Memory

 physical devices used to store data or programs (sequences of

instructions) on a temporary or permanent basis for use in an

electronic digital computer.

 Computer main memory comes in two principal varieties:

random-access memory (RAM) and read-only memory (ROM).

 RAM can be read and written to anytime the CPU commands it,

but ROM is pre-loaded with data and software that never

changes, so the CPU can only read from it.

 ROM is typically used to store the computer's initial start-up

instructions.

 In general, the contents of RAM are erased when the power to

the computer is turned off, but ROM retains its data indefinitely.

 In a PC, the ROM contains a specialized program called the

BIOS that orchestrates loading the computer's operating system

from the hard disk drive into RAM whenever the computer is

turned on or reset.
7

http://en.wikipedia.org/wiki/Random-access_memory
http://en.wikipedia.org/wiki/Random-access_memory
http://en.wikipedia.org/wiki/Random-access_memory
http://en.wikipedia.org/wiki/Read-only_memory
http://en.wikipedia.org/wiki/Read-only_memory
http://en.wikipedia.org/wiki/Read-only_memory
http://en.wikipedia.org/wiki/BIOS
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/File:Eprom.jpg

3. I/O Unit

 Input/output (I/O), refers to the communication between an

information processing system (such as a computer), and the

outside world possibly a human, or another information

processing system.

 Inputs are the signals or data received by the system, and

outputs are the signals or data sent from it

 Devices that provide input or output to the computer are called

peripherals

 On a typical personal computer, peripherals include input devices

like the keyboard and mouse, and output devices such as the

display and printer. Hard disk drives, floppy disk drives and

optical disc drives serve as both input and output devices.

Computer networking is another form of I/O.

8

http://en.wikipedia.org/wiki/Information_processing_system
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Output
http://en.wikipedia.org/wiki/Peripheral
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Mouse_(computing)
http://en.wikipedia.org/wiki/Computer_monitor
http://en.wikipedia.org/wiki/Printer_(computing)
http://en.wikipedia.org/wiki/Hard_disk_drive
http://en.wikipedia.org/wiki/Floppy_disk
http://en.wikipedia.org/wiki/Optical_disc_drive
http://en.wikipedia.org/wiki/Computer_networking

EVOLUTION OF MICROPROCESSOR

9

DATA SIZE

Nibble 4 bit

Byte 8 bit

Word 16 bit

Long word 32 bit

10

8085
 8-bit general purpose microprocessor

 Capable to address 64k of memory

 Forty pins, requires +5 V single power supply

 3-MHz single-phase clock.

R.Ha

rihar

an

AP/

EEE

BLOCK DIAGRAM

R.Ha

rihar

an

AP/

EEE

FETCHING & EXECUTION CYCLES

 Fetching Cycles

 The fetch cycle takes the instruction required

from memory, stores it in the instruction register,

and

 moves the program counter on one so that it

points to the next instruction.

 Execute cycle

 The actual actions which occur during the

execute cycle of an instruction.

 depend on both the instruction itself and the

addressing mode specified to be used to access

the data that may be required.
13

FETCHING AN INSTRUCTION

 Step 1

14

Instruction pointer (program counter) hold the address

of the next instruction to be fetch.

 Step 2

15

FETCHING AN INSTRUCTION (cont.)

 Step 3

16

FETCHING AN INSTRUCTION (cont.)

 Step 4

17

FETCHING AN INSTRUCTION (cont.)

 Step 5

18

FETCHING AN INSTRUCTION (cont.)

 Step 6

19

FETCHING AN INSTRUCTION (cont.)

INTERNAL STRUCTURE AND BASIC OPERATION

OF MICROPROCESSOR

ALU Register

Section

Control and timing

section

Address bus

Data bus

Control bus

20Block diagram of a microprocessor

ARITHMETIC AND LOGIC UNIT (ALU)

 The component that performs the arithmetic and

logical operations

 the most important components in a microprocessor,

and is typically the part of the processor that is

designed first.

 able to perform the basic logical operations (AND,

OR), including the addition operation.

 The inclusion of inverters on the inputs enables the

same ALU hardware to perform the subtraction

operation (adding an inverted operand), and the

operations NAND and NOR.

21

INTERNAL STRUCTURE OF ALU

2 bits of ALU 22

CONTROL UNIT

 The circuitry that controls the flow of information

through the processor, and coordinates the

activities of the other units within it.

 In a way, it is the "brain within the brain", as it

controls what happens inside the processor, which

in turn controls the rest of the PC.

 On a regular processor, the control unit performs

the tasks of fetching, decoding, managing

execution and then storing results.

23

INTERNAL STRUCTURE OF CONTROL UNIT

24

REGISTER SETS

 The register section/array consists completely of

circuitry used to temporarily store data or program

codes until they are sent to the ALU or to the

control section or to memory.

 The number of registers are different for any

particular CPU and the more register a CPU have

will result in easier programming tasks.

 Registers are normally measured by the number of

bits they can hold, for example, an "8-bit register" or

a "32-bit register". 25

http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/8-bit
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/32-bit
http://en.wikipedia.org/wiki/32-bit

REGISTER IN MOTOROLA 68000

MICROPROCESSOR

SUPERVISOR STACK POINTER

USER STACK POINTER

USER VYTESYSTEM BYTE

D0

D1

D2
D3

D4

D5
D6

D7

A0

A1

A2
A3

A4

A5

A6

A7

A7

PC

SR

31 16 15 8 7 0

31 16 15 8 7 0

15 8 7 0

DATA REGISTERS

ADDRESS REGISTERS

STACK POINTER

PROGRAM CONTER

STATUS REGISTER

26

ACCUMULATOR

 a register in which intermediate arithmetic and logic

results are stored.

 example for accumulator use is summing a list of

numbers.

 The accumulator is initially set to zero, then each

number in turn is added to the value in the accumulator.

 Only when all numbers have been added is the result

held in the accumulator written to main memory or to

another, non-accumulator, CPU register.

27

CONDITION CODE REGISTER (CCR)

 an 8 bit register used to store the status of CPU,

such as carry, zero, overflow and half carry.

28

Flag Name Description

Z Zero flag Indicates that the result of a mathematical or logical operation was zero.

C Carry flag

Indicates that the result of an operation produced an answer greater

than the number of available bits. (This flag may also be set before a

mathematical operation as an extra operand to certain instructions, e.g.

"add with carry".)

X Extend flag
Masks the XIRQ request when set. It is set by the hardware and

cleared by the software as well is set by unmaskable XIRQ.

N Negative/ Sign flag

Indicates that the result of a mathematical operation is negative. In

some processors, the N and S flags have different meanings: the S flag

indicates whether a subtraction or addition has taken place, whereas

the N flag indicates whether the last operation result is positive or

negative.

V Overflow Flag

Indicates that the result of an operation has overflowed according to the

CPU's word representation, similar to the carry flag but for signed

operations.

I interrupts

Interrupts can be enabled or disabled by respectively setting or clearing

this flag. Modifying this flag may be restricted to programs executing in

supervisor mode

29

PROGRAM COUNTER (PC)

a 16 bit register, used to store the next
address of the operation code to be fetched
by the CPU.

Not much use in programming, but as an
indicator to user only.

Purpose of PC in a Microprocessor

 to store address of tos (top of stack)

 to store address of next instruction to be
executed.

 count the number of instructions.

 to store base address of the stack.
30

INTERNAL STRUCTURE OF PC

31

STACK POINTER (SP)

The stack is configured as a data structure
that grows downward from high memory to
low memory.

At any given time, the SP holds the 16-bit
address of the next free location in the
stack.

The stack acts like any other stack when
there is a subroutine call or on an interrupt.
ie. pushing the return address on a jump,
and retrieving it after the operation is
complete to come back to its original
location.

32

BUS SYSTEM

 a subsystem that transfers data between computer

components inside a computer or between

computers.

4 PCI Express bus card slots (from top to bottom: x4, x16, x1 and x16),

compared to a traditional 32-bit PCI bus card slot (very bottom).

33

BUS SYSTEM CONNECTION

34

DATA BUS

The data bus is 'bi-directional'

 data or instruction codes from memory or

input/output.are transferred into the

microprocessor

 the result of an operation or computation is sent

out from the microprocessor to the memory or

input/output.

Depending on the particular microprocessor,

the data bus can handle 8 bit or 16 bit data.

35

ADDRESS BUS

 The address bus is 'unidirectional', over which the

microprocessor sends an address code to the

memory or input/output.

 The size (width) of the address bus is specified by

the number of bits it can handle.

 The more bits there are in the address bus, the

more memory locations a microprocessor can

access.

 A 16 bit address bus is capable of addressing

65,536 (64K) addresses.

36

CONTROL BUS

 The control bus is used by the microprocessor to

send out or receive timing and control signals in

order to coordinate and regulate its operation and

to communicate with other devices, i.e. memory or

input/output.

37

MICRO PROCESSOR CLOCK

 Also called clock rate, the speed at which a microprocessor
executes instructions. Every computer contains an internal
clock that regulates the rate at which instructions are executed
and synchronizes all the various computer components.

 The CPU requires a fixed number of clock ticks (or clock
cycles) to execute each instruction. The faster the clock, the
more instructions the CPU can execute per second. Clock
speeds are expressed in megahertz (MHz) or gigahertz
((GHz).

 Some microprocessors are superscalar, which means that
they can execute more than one instruction per clock cycle.

 Like CPUs, expansion buses also have clock speeds. Ideally,
the CPU clock speed and the bus clock speed should be the
same so that neither component slows down the other. In
practice, the bus clock speed is often slower than the CPU
clock speed, which creates a bottleneck. This is why new local
buses, such as AGP, have been developed.

38

EXAMPLES OF MICRO PROCESSOR

 Intel 8085

 Intel 8086

39

8086

 The 8086 is a 16-bit microprocessor

chip designed by Intel, which gave

rise to the x86 architecture;

development work on the 8086

design started in the spring of 1976

and the chip was introduced to the

market in the summer of 1978.

 The Intel 8088, released in 1979,

was a slightly modified chip with an

external 8-bit data bus (allowing the

use of cheaper and fewer

supporting logic chips and is notable

as the processor used in the original

IBM PC.
40

8085

 The Intel 8085 is an 8-bit

microprocessor introduced by

Intel in 1977.

 It was binary-compatible with the

more-famous Intel 8080 but

required less supporting

hardware, thus allowing simpler

and less expensive

microcomputer systems to be

built.

An Intel 8085AH processor.

Produced
From 1977 to

1990s

Common manufacturer(s)
•Intel and

several others

Max. CPU clock rate
3,5 and

6 MHz

Instruction set pre x86

Package(s) •40 pin DIP

41

http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Clock_rate
http://en.wikipedia.org/wiki/Instruction_set
http://en.wikipedia.org/wiki/X86
http://en.wikipedia.org/wiki/Dual_in-line_package

42

Instruction Cycle:

TIMING DIAGRAM

R.Ha

rihar

an

AP/

EEE

time required to access the memory or

input/output devices is called machine cycle

Machine Cycle:

R.Ha

rihar

an

AP/

EEE

The machine cycle and instruction cycle takes multiple

clock periods.

T- States:

A portion of an operation carried out in one

system clock period is called as T-state

R.Ha

rihar

an

AP/

EEE

• Microprocessor operates with reference to

clock signals.

• X1 and X2 we provide clock signals and this

frequency is divided by two.

• This frequency is called as the operating

frequency.
R.Ha

rihar

an

AP/

EEE

R.Ha

rihar

an

AP/

EEE

R.Ha

rihar

an

AP/

EEE

R.Ha

rihar

an

AP/

EEE

R.Ha

rihar

an

AP/

EEE

R.Ha

rihar

an

AP/

EEE

R.Ha

rihar

an

AP/

EEE

R.Ha

rihar

an

AP/

EEE

R.Ha

rihar

an

AP/

EEE

R.Ha

rihar

an

AP/

EEE

57

Addressing Modes

TYPES OF ADDRESSING MODES

 Intel 8085 uses the following addressing modes:

1. Direct Addressing Mode

2. Register Addressing Mode

3. Register Indirect Addressing Mode

4. Immediate Addressing Mode

5. Implicit Addressing Mode

R.Ha

rihar

an

AP/

EEE

DIRECT ADDRESSING MODE

 In this mode, the address of the operand is given in

the instruction itself.

 LDA is the operation.

 2500 H is the address of source.

 Accumulator is the destination.

R.Ha

rihar

an

AP/

EEE

LDA 2500 H Load the contents of memory

location 2500 H in accumulator.

REGISTER ADDRESSING MODE

 In this mode, the operand is in general purpose

register.

 MOV is the operation.

 B is the source of data.

 A is the destination.

R.Ha

rihar

an

AP/

EEE

MOV A, B Move the contents of register B to

A.

REGISTER INDIRECT ADDRESSING MODE

 In this mode, the address of operand is specified by

a register pair.

 MOV is the operation.

 M is the memory location specified by H-L register

pair.

 A is the destination.

R.Ha

rihar

an

AP/

EEE

MOV A, M Move data from memory location

specified by H-L pair to accumulator.

IMMEDIATE ADDRESSING MODE

 In this mode, the operand is specified within the

instruction itself.

 MVI is the operation.

 05 H is the immediate data (source).

 A is the destination.

R.Ha

rihar

an

AP/

EEE

MVI A, 05 H Move 05 H in accumulator.

IMPLICIT ADDRESSING MODE

 If address of source of data as well as address of

destination of result is fixed, then there is no need

to give any operand along with the instruction.

 CMA is the operation.

 A is the source.

 A is the destination.

R.Ha

rihar

an

AP/

EEE

CMA Complement accumulator.

8085 Instruction Set 1

8085 Instruction Set

8085 Instruction Set 2

8085 Instruction Set 3

8085 Instruction Set 4

8085 Instruction Set 5

8085 Instruction Set 6

8085 Instruction Set 7

8085 Instruction Set 8

8085 Instruction Set 9

8085 Instruction Set 10

8085 Instruction Set 11

8085 Instruction Set 12

8085 Instruction Set 13

8085 Instruction Set 14

8085 Instruction Set 15

8085 Instruction Set 16

8085 Instruction Set 17

8085 Instruction Set 18

8085 Instruction Set 19

8085 Instruction Set 20

8085 Instruction Set 21

8085 Instruction Set 22

8085 Instruction Set 23

8085 Instruction Set 24

8085 Instruction Set 25

8085 Instruction Set 26

8085 Instruction Set 27

8085 Instruction Set 28

8085 Instruction Set 29

8085 Instruction Set 30

8085 Instruction Set 31

8085 Instruction Set 32

8085 Instruction Set 33

8085 Instruction Set 34

8085 Instruction Set 35

8085 Instruction Set 36

8085 Instruction Set 37

8085 Instruction Set 38

8085 Instruction Set 39

 PSW (Program Status word)

 - Flag unaffected

 * affected

 0 reset

 1 set

 S Sign (Bit 7)

 Z Zero (Bit 6)

 AC Auxiliary Carry (Bit 4)

 P Parity (Bit 2)

 CY Carry (Bit 0)

8085 Instruction Set 40

8085 Instruction Set 41

8085 Instruction Set 42

8085 Instruction Set 43

8085 Instruction Set 44

8085 Instruction Set 45

8085 Instruction Set 46

8085 Instruction Set 47

8085 Instruction Set 48

8085 Instruction Set 49

8085 Instruction Set 50

8085 Instruction Set 51

8085 Instruction Set 52

8085 Instruction Set 53

8085 Instruction Set 54

8085 Instruction Set 55

8085 Instruction Set 56

 circular Left shift

8085 Instruction Set 57

 circular right shift

8085 Instruction Set 58

8085 Instruction Set 59

8085 Instruction Set 60

8085 Instruction Set 61

8085 Instruction Set 62

8085 Instruction Set 63

8085 Instruction Set 64

8085 Instruction Set 65

8085 Instruction Set 66

8085 Instruction Set 67

8085 Instruction Set 68

8085 Instruction Set 69

8085 Instruction Set 70

8085 Instruction Set 71

Summary – Data transfer

 MOV Move

 MVI Move Immediate

 LDA Load Accumulator Directly from Memory

 STA Store Accumulator Directly in Memory

 LHLD Load H & L Registers Directly from

Memory

 SHLD Store H & L Registers Directly in

Memory

8085 Instruction Set 72

Summary Data transfer

 An 'X' in the name of a data transfer instruction implies that it

deals with a register pair (16-bits);

 LXI Load Register Pair with Immediate data

 LDAX Load Accumulator from Address in Register Pair

 STAX Store Accumulator in Address in Register Pair

 XCHG Exchange H & L with D & E

 XTHL Exchange Top of Stack with H & L

8085 Instruction Set 73

Summary - Arithmetic Group
 Add, Subtract, Increment / Decrement data in registers or memory.

 ADD Add to Accumulator

 ADI Add Immediate Data to Accumulator

 ADC Add to Accumulator Using Carry Flag

 ACI Add Immediate data to Accumulator Using Carry

 SUB Subtract from Accumulator

 SUI Subtract Immediate Data from Accumulator

 SBB Subtract from Accumulator Using Borrow (Carry) Flag

 SBI Subtract Immediate from Accumulator

Using Borrow (Carry) Flag

 INR Increment Specified Byte by One

 DCR Decrement Specified Byte by One

 INX Increment Register Pair by One

 DCX Decrement Register Pair by One

 DAD Double Register Add; Add Content of Register Pair to H & L

Register Pair

8085 Instruction Set 74

Summary Logical Group

 This group performs logical (Boolean) operations on data in
registers and memory and on condition flags.

 These instructions enable you to set specific bits in the
accumulator ON or OFF.

 ANA Logical AND with Accumulator

 ANI Logical AND with Accumulator Using Immediate

Data

 ORA Logical OR with Accumulator

 OR Logical OR with Accumulator Using Immediate

Data

 XRA Exclusive Logical OR with Accumulator

 XRI Exclusive OR Using Immediate Data

8085 Instruction Set 75

 The Compare instructions compare the content of an 8-bit value with
the contents of the accumulator;

 CMP Compare

 CPI Compare Using Immediate Data

 The rotate instructions shift the contents of the accumulator one bit
position to the left or right:

 RLC Rotate Accumulator Left

 RRC Rotate Accumulator Right

 RAL Rotate Left Through Carry

 RAR Rotate Right Through Carry

 Complement and carry flag instructions:

 CMA Complement Accumulator

 CMC Complement Carry Flag

 STC Set Carry Flag

8085 Instruction Set 76

Summary - Branch Group

 Unconditional branching
 JMP Jump

 CALL Call

 RET Return

 Conditions
 NZ Not Zero (Z = 0)

 Z Zero (Z = 1)

 NC No Carry (C = 0)

 C Carry (C = 1)

 PO Parity Odd (P = 0)

 PE Parity Even (P = 1)

 P Plus (S = 0)

 M Minus (S = 1)

 Conditional branching

8085 Instruction Set 77

Summary - Stack

 PUSH Push Two bytes of Data onto the Stack

 POP Pop Two Bytes of Data off the Stack

 XTHL Exchange Top of Stack with H & L

 SPHL Move content of H & L to Stack Pointer

8085 Instruction Set 78

I/0 instructions

 IN Initiate Input Operation

 OUT Initiate Output Operation

8085 Instruction Set 79

Summary -Machine Control instructions

 EI Enable Interrupt System

 DI Disable Interrupt System

 HLT Halt

 NOP No Operation

8086 MICROPROCESSOR

Block diagram of 8086

2

Software Model of the 8086 Microprocessors

3

8086 Registers

4

C S

S S

D S

E S

S e g m e n t

B P

In d e x

S P

S I

D I

A H

B H

C H

D H D L

C L

B L

A L

G e n e r a l P u r p o s e

S t a t u s a n d C o n t ro l

F la g s

IP

A X

B X

C X

D X

General Purpose Registers

• Normally used for storing temporary results

• Each of the registers is 16 bits wide (AX, BX, CX, DX)

• Can be accessed as either 16 or 8 bits AX, AH, AL

5

AX - the Accumulator
BX - the Base Register
CX - the Count Register
DX - the Data Register

General Purpose Registers

• AX

– Accumulator Register

– Preferred register to use in arithmetic, logic and data
transfer instructions because it generates the shortest
Machine Language Code

– Must be used in multiplication and division
operations

– Must also be used in I/O operations

• BX

– Base Register

– Also serves as an address register

6

General Purpose Registers

• CX

– Count register

– Used as a loop counter

– Used in shift and rotate operations

• DX

– Data register

– Used in multiplication and division

– Also used in I/O operations

7

Pointer and Index Registers

• All 16 bits wide, L/H bytes are not accessible

• Used as memory pointers

– Example: MOV AH, [SI]

• Move the byte stored in memory location whose address is contained in

register SI to register AH

• IP is not under direct control of the programmer
8

Flag Register

9

Carry

Parity

Auxiliary Carry

Zero

Overflow

Direction

Interrupt enable

Trap

Sign
6 are status flags

3 are control flag

8086 Programmer’s Model

10

ES

CS

SS

DS

IP

AH

BH

CH

DH

AL

BL

CL

DL

SP

BP

SI

DI

FLAGS

AX

BX

CX

DX

Extra Segment

Code Segment

Stack Segment

Data Segment

Instruction Pointer

Accumulator

Base Register

Count Register

Data Register

Stack Pointer

Base Pointer

Source Index Register

Destination Index Register

BIU registers
(20 bit adder)

EU registers

The Stack

• The stack is used for temporary storage of information

such as data or addresses.

• When a CALL is executed, the 8086 automatically PUSHes

the current value of CS and IP onto the stack.

• Other registers can also be pushed

• Before return from the subroutine, POP instructions can

be used to pop values back from the stack into the

corresponding registers.

11

The Stack

12

INTEL 8086 - Pin Diagram

13

INTEL 8086 - Pin Details

14

Ground

Clock

Duty cycle: 33%

Power Supply

5V  10%

Reset

Registers, seg

regs, flags

CS: FFFFH, IP:

0000H

If high for

minimum 4

clks

INTEL 8086 - Pin Details

15

Address/Data Bus:

Contains address

bits A15-A0 when ALE

is 1 & data bits D15 –
D0 when ALE is 0.

Address Latch Enable:

When high,

multiplexed

address/data bus

contains address

information.

INTEL 8086 - Pin Details

16

INTERRUPT

Non - maskable

interrupt

Interrupt request

Interrupt

acknowledge

INTEL 8086 - Pin Details

17

Direct

Memory

Access

Hold

acknowledge

Hold

INTEL 8086 - Pin Details

18

Address/Status Bus

Address bits A19 –
A16 & Status bits S6

– S3

INTEL 8086 - Pin Details

19

Bus High Enable/S7

Enables most

significant data bits

D15 – D8 during read

or write operation.

S7: Always 1.

BHE#, A0:

0,0: Whole word
(16-bits)

0,1: High byte
to/from odd address

1,0: Low byte
to/from even address

1,1: No selection

INTEL 8086 - Pin Details

20

Min/Max mode

Minimum Mode: +5V

Maximum Mode: 0V

Minimum Mode Pins

Maximum Mode

Pins

Minimum Mode- Pin Details

21

Read Signal

Write Signal

Memory or I/0

Data Bus Enable

Data

Transmit/Receive

Maximum Mode - Pin Details

22

Status Signal

Inputs to 8288 to

generate eliminated

signals due to max

mode.

S2 S1 S0

000: INTA

001: read I/O port

010: write I/O port

011: halt

100: code access

101: read memory

110: write memory

111: none -passive

Maximum Mode - Pin Details

23

DMA

Request/Grant

Lock Output

Lock Output

Used to lock peripherals

off the system

Activated by using the

LOCK: prefix on any

instruction

Maximum Mode - Pin Details

24

Queue Status

Used by numeric

coprocessor (8087)

QS1 QS0

00: Queue is idle

01: First byte of opcode

10: Queue is empty

11: Subsequent byte of

opcode

Minimum Mode 8086 System

25

Minimum Mode 8086 System

26

‘Read’ Cycle timing Diagram for
Minimum Mode

27

‘Write’ Cycle timing Diagram for
Minimum Mode

28

Maximum Mode 8086 System

29

Maximum Mode 8086 System

30

Maximum Mode 8086 System
• Here, either a numeric coprocessor of the type 8087 or another

processor is interfaced with 8086.

• The Memory, Address Bus, Data Buses are shared resources

between the two processors.

• The control signals for Maximum mode of operation are

generated by the Bus Controller chip 8788.

• The three status outputs S0*, S1*, S2* from the processor are

input to 8788.

• The outputs of the bus controller are the Control Signals, namely

DEN, DT/R*, IORC*, IOWTC*, MWTC*, MRDC*, ALE etc.

31

Memory Read timing in

Maximum Mode

32

Memory Write timing in

Maximum Mode

33

8086 Control Signals

1. ALE

2. BHE

3. M/IO

4. DT/R

5. RD

6. WR

7. DEN

34

Coprocessor and Multiprocessor configuration

• Multiprocessor Systems refer to the use of multiple

processors that executes instructions simultaneously

and communicate with each other using mail boxes and

Semaphores.

• Maximum mode of 8086 is designed to implement 3

basic multiprocessor configurations:

1. Coprocessor (8087)

2. Closely coupled (8089)

3. Loosely coupled (Multibus)

35

Coprocessor and Multiprocessor configuration

• Coprocessors and Closely coupled configurations are

similar in that both the 8086 and the external processor

shares the:

- Memory

- I/O system

- Bus & bus control logic

- Clock generator

36

Coprocessor / Closely Coupled

Configuration

37

TEST pin of 8086

• Used in conjunction with the WAIT instruction in

multiprocessing environments.

• This is input from the 8087 coprocessor.

• During execution of a wait instruction, the CPU checks this

signal.

• If it is low, execution of the signal will continue; if not, it

will stop executing.

38

Advantages of Multiprocessor

Configuration
1. High system throughput can be achieved by having more than

one CPU.

2. The system can be expanded in modular form.
Each bus master module is an independent unit and normally resides on

a separate PC board. One can be added or removed without affecting the

others in the system.

3. A failure in one module normally does not affect the breakdown

of the entire system and the faulty module can be easily

detected and replaced

4. Each bus master has its own local bus to access dedicated

memory or IO devices. So a greater degree of parallel processing

can be achieved.

39

WAIT State

• A wait state (Tw) is an extra clocking period, inserted

between T2 and T3, to lengthen the bus cycle, allowing

slower memory and I/O components to respond.

• The READY input is sampled at the end of T2, and again,

if necessary in the middle of Tw. If READY is ‘0’ then a

Tw is inserted.

40

 1 2 3 4

Clock

READY

Tw

41

Addressing Modes

• Immediate

• Direct

• Indirect

• Register

• Register Indirect

• Displacement (Indexed)

• Stack

42

Immediate Addressing
• Operand is part of instruction

• Operand = address field

• e.g. ADD AX, 5h

• LDA #5

– Add 5 to contents of accumulator

– 5 is operand

• No memory reference to fetch data

• Fast

• Limited range

43

Direct Addressing

• Address field contains address of operand

• Effective address EA = address field (A)

ADD AX, value

Value DB 05h

– Add contents of cell value to accumulator AX

– Look in memory at address value for operand

• Single memory reference to access data

• No additional calculations to work out effective address

• Limited address space

44

Direct Addressing Diagram

45

Indirect Addressing (1/2)

• Memory cell pointed to by address field

contains the address of (pointer to) the

operand

• EA =(A)

– Look in A, find address (A) and look there for

operand

• e.g. ADD AX, (A)

– Add contents of cell pointed to by contents of

A to accumulator

46

Indirect Addressing (2/2)

• Large address space

• 2n where n = word length

• May be nested, multilevel, cascaded

– e.g. EA = (((A)))

• Draw the diagram yourself

• Multiple memory accesses to find operand

• Hence slower

47

Indirect Addressing Diagram

48

Register Addressing (1/2)

• Operand is held in register named in

address filed

• EA = R

• Limited number of registers

• Very small address field needed

– Shorter instructions

– Faster instruction fetch

– MOV AX, BX

– ADD AX, BX

49

Register Addressing (2/2)

• No memory access

• Very fast execution

• Very limited address space

• Multiple registers helps performance

– Requires good assembly programming or

compiler writing

– N.B. C programming

• register int a;

• c.f. Direct addressing

50

Register Addressing Diagram

51

Register Indirect Addressing

• C.f. indirect addressing

• EA = (R)

• Operand is in memory cell pointed to by

contents of register R

• Large address space (2n)

• One fewer memory access than indirect

addressing

52

Register Indirect Addressing Diagram

53

Displacement Addressing

• EA = A + (R)
• Effective address=start address + displacement

• Effective address=Offset + (Segment Register)

• Use direct and register indirect

• Address field hold two values

– A = base value

– R = register that holds displacement

– or vice versa

54

Displacement Addressing

Diagram

55

Relative Addressing (PC-

Relative)
• A version of displacement addressing

• R = Program counter, PC

• EA = A + (PC)

• i.e. get operand from A cells from current

location pointed to by PC

• c.f locality of reference & cache usage

56

Base-Register Addressing

• A holds displacement

– EA = (CS) + A

• R holds pointer to base address

• R may be explicit or implicit

• e.g. segment registers in 80x86

57

Indexed Addressing

• A = base

• R = displacement

– EA = A + (R)

• Good for accessing arrays

– EA = A + (R)

– R++

58

Combinations
• Postindex

– EA = (A) + (R)

• Preindex

– EA = (A+(R))

59

Stack Addressing

• Operand is (implicitly) on top of stack

• e.g.

– ADD Pop top two items from stack

and add and push

60

Question Bank(Objective Type Questions)

1. In Microprocessor

a. program is stored in memory and data is stored in the registers.

b. program is stored in the registers and data is stored in memory.

c. both program and data are stored in the memory.

d. both program and data are stored in the registers.

2 .A Microprocessor contains.

a. most of the control and arithmetic logic functions of a computer.

b. most of the RAM .

c. most of the ROM.

d. peripheral drivers.

3. A PC in a micro-computer.

a. counts the number of instructions executed in a run.

b. counts the number of programs run after startying.

c. counts the points to the next executable instruction

d. points to the present instruction being executed.

4. An instruction cycle is made up of:

a. one or more execute cycles

b. one or more fetch cycles

c. one opcode and one execute cycle

d. none of the above.

5. The number of minimum clock cycles in a machine cycle for 8085 are.

a. 1

b. 2

c. 3

d. 5

6. In a 8-bit microprocessor ,the fetch reqired to fetch a 8 bytes instruction will be:

a. 1

b. 2

c. 3

d. depends on computer design

7. The maximun integer ahich can be stored on an 8-bit accunulator is

a. 2kb

b. 200

c. 224

d. 255.

8. The address bus of intel 8085 is 16 bit wide and hence the memory which can be accessed by

this address bus is :

a.112

b.4kb

c.16kb

d.64 kb

9. A byte corresponds to

(a) 4 bits

 (b) 8 bits

(c) 16 bits

(d) 32 bits

10. A gigabyte represents

(a) 1 billion bytes

 (b) 1000 kilobytes

(c) 230 bytes

 (d) 1024 bytes

11. A megabyte represents

(a) 1 million bytes

(b) 1000 kilobytes

(c) 220 bytes

 (d) 1024 bytes

12. A Kb corresponds to

(a) 1024 bits

 (b) 1000 bytes

 (c) 210 bytes

 (d) 210 bits

13. A superscalar processor has

(a) multiple functional units

(b) a high clock speed

(c) a large amount of RAM

(d) many I/O ports

14. A 32-bit processor has

(a) 32 registers

 (b) 32 I/O devices

(c) 32 Mb of RAM

(d) a 32-bit bus or 32-bit registers

15. A 20-bit address busallows access to a memory of capacity

 (a) 1 Mb

 (b) 2 Mb

(c) 32Mb

 (d) 64 Mb

16. A 32-bit address bus allows access to a memory of capacity

(a) 64 Mb

(b) 16 Mb

 (c) 1 Gb

 (d) 4 Gb

17.Clock speed is measured in

(a) bits per second

 (b) baud

(c) bytes

 (d) Hertz

18. An FPU

(a) makes integer arithmetic faster

(b) makes pipelining more efficient

(c) increases RAM capacity

(d) makes some arithmetic calculations faster

19. Pipelining improves CPU performance due to

(a) reduced memory access time

(b) increased clock speed

(c) the introduction of parallellism

(d) additional functional units

20. The system bus is made up of

(a) data bus

(b) data bus and address bus

(c) data bus and control bus

(d) data bus, control bus and address bus

21. A machine cycle refers to

(a) fetching an instruction

(b) clock speed

(c) fetching, decoding and executing an instruction

(d)executing an instruction

22. A Pentium processor comprises

(a) more than 1 million transistors

(b) more than 3 million transistors

(c) 500,000 transistors

(d) 900,000 transistors

23. Which of the following is NOT a type of processor

(a) PowerPC 601

(b) Motorola 8086

(c) Motorola 68000

(d) Intel Pentium

24. An RS-232 interface is

(a) a parallel interface

(b) a serial interface

(c) printer interface

(d) a modem interface

25. Multiprogramming refers to

(a) having several programs in RAM at the same time

(b)multitasking

(c) writing programs in multiple languages

(d) none of the previous

26. Multitasking refers to

(a) having several programs in RAM at the same time

(b) the ability to run 2 or more programs concurrently

(c) writing programs in multiple languages

(d) none of the previous

27. Multiprogramming is a prerequisite for

(a) multitasking

(b) an operating system

(c) to run more than one program at the same time

(d) none of the above

28. Multiprocessing is

(a) same as multitasking

(b) same as multiprogramming

(c)multiuser

(d) involves using more than one processor at the same time

29. A compiler is

(a) a fast interpreter

(b) slower than an interpreter

(c) converts a program to machine code

(d) none of the previous

30. An interpreter is

(a) faster than a compiler

(b) translates and executes programs statement by statement

(c) converts a program to machine code

(d) none of the previous

31. Which of the following is not part of the processor

(a) the ALU

(b) the CU

(c) the registers

(d) the system bus

32. Pipelining improves CPU performance due to

(a) reduced memory access time

(b) increased clock speed

(c) the introduction of parallellism

(d) additional functional units

33. The Pentium processor is

(a) 16-bit

(b) 32-bit

 (c) 64 bit

(d) 8-bit

34. The IBM/Motorola PowerPC 601 processor is

(a) 16-bit

 (b) 32-bit

(c) 64 bit

 (d) 8-bit

35. An assembly language instruction

(a) always has a label

(b) always takes at least 1 operand

(c) always has an operation field

(d) always modifies the status register

36. An arithmetic instruction always modifies the

(a) stack pointer

(b) status register

(c) program counter

(d) an index register

37. A conditional jump instruction

(a) always cause a transfer of control

(b) always involves the use of the status register

(c) always modifies the program counter

(d) always involves testing the Zero flag

38. An interrupt instruction

(a) causes an unconditional transfer of control

(b) causes a conditional transfer of control

(c) modifies the status register

(d) is an I/O instruction

39. A data movement instruction will

(a) modify the status register

(b) modify the stack pointer

(c) modify the program counter

(d) transfer data from one location to another

40. The memory address register is used to store

(a) data to be transferred to memory

(b) data that has been transferred from memory

(c) the address of a memory location

(d) an instruction that has been transferred from memory.

41. The memory data register is used to store

(a) data to be transferred to or from memory

(b) data to be transferred to the stack

(c) the address of a memory location

(d) an instruction that has been transferred from memory

42. The instruction register stores

(a) an instruction that has been decoded

(b) an instruction that has been fetched from memory

(c) an instruction that has been executed

(d) the address of the next instruction to be executed

43 The program counter

(a) stores the address of the instruction that is currently being executed

(b) stores the next instruction to be executed

(c) stores the address of the next instruction to be executed

(d) stores the instruction that is being currently executed.

44. The stack pointer stores

(a) the address of the stack in memory

(b) address of the last item pushed on the stack

(c) the address of the next free stack location

(d) the address of the last item popped from the stack

45. Memory mapped I/O involves

(a) transferring information between memory locations

(b) transferring information between registers and memory

(c) transferring information between the CPU and I/O devices in the same way as

 between the CPU and memory

(d) transferring information between I/O devices and memory

46. A hardware interrupt is

(a) also called an internal interrupt

(b) also called an external interrupt

(c) an I/O interrupt

(d) a clock interrupt

47. An assembly language program is typically

(a) non-portable

(b) shorter than an equivalent HLL program

(c) harder to read than a machine code program

(d)slower to execute than a compiled HLL program

48. Programs are written in assembly language because they

(a) run faster than HLL programs

(b) are portable

(c) easier to write than machine code programs

(d) they allow the programmer access to registers or instructions

that are not usually provided by a HLL

49. An assembly language program is translated to machine code by

(a) an assembler

(b) a compiler

(c) an interpreter

(d) a linker

50. An assembly language directive is

(a) the same as an instruction

(b) used to define space for variables

(c) used to start a program

(d) to give commands to an assembler

